# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5828 | 0 | 1.0000 | Target-enriched sequencing enables accurate identification of bloodstream infections in whole blood. Bloodstream infections are within the top ten causes of death globally, with a mortality rate of up to 70%. Gold standard blood culture testing is time-consuming, resulting in delayed, but accurate, treatment. Molecular methods, such as RT-qPCR, have limited targets in one run. We present a new Ampliseq detection system (ADS) combining target amplification and next-generation sequencing for accurate identification of bacteria, fungi, and antimicrobial resistance determinants directly from blood samples. In this study, we included removal of human genomic DNA during nucleic acid extraction, optimized the target sequence set and drug resistance genes, performed antimicrobial resistance profiling of clinical isolates, and evaluated mock specimens and clinical samples by ADS. ADS successfully identified pathogens at the species-level in 36 h, from nucleic acid extraction to results. Besides pathogen identification, ADS can also present drug resistance profiles. ADS enabled detection of all bacteria and accurate identification of 47 pathogens. In 20 spiked samples and 8 clinical specimens, ADS detected at least 92.81% of reads mapped to pathogens. ADS also showed consistency with the three culture-negative samples, and correctly identified pathogens in four of five culture-positive clinical blood specimens. This Ampliseq-based technology promises broad coverage and accurate pathogen identification, helping clinicians to accurately diagnose and treat bloodstream infections. | 2022 | 34915067 |
| 5827 | 1 | 0.9998 | Duplex dPCR System for Rapid Identification of Gram-Negative Pathogens in the Blood of Patients with Bloodstream Infection: A Culture-Independent Approach. Early and accurate detection of pathogens is important to improve clinical outcomes of bloodstream infections (BSI), especially in the case of drug-resistant pathogens. In this study, we aimed to develop a culture-independent digital PCR (dPCR) system for multiplex detection of major sepsiscausing gram-negative pathogens and antimicrobial resistance genes using plasma DNA from BSI patients. Our duplex dPCR system successfully detected nine targets (five bacteria-specific targets and four antimicrobial resistance genes) through five reactions within 3 hours. The minimum detection limit was 50 ag of bacterial DNA, suggesting that 1 CFU/ml of bacteria in the blood can be detected. To validate the clinical applicability, cell-free DNA samples from febrile patients were tested with our system and confirmed high consistency with conventional blood culture. This system can support early identification of some drug-resistant gram-negative pathogens, which can help improving treatment outcomes of BSI. | 2021 | 34528911 |
| 5796 | 2 | 0.9997 | Antibiotic treatment algorithm development based on a microarray nucleic acid assay for rapid bacterial identification and resistance determination from positive blood cultures. Rapid diagnosis of bloodstream infections remains a challenge for the early targeting of an antibiotic therapy in sepsis patients. In recent studies, the reliability of the Nanosphere Verigene Gram-positive and Gram-negative blood culture (BC-GP and BC-GN) assays for the rapid identification of bacteria and resistance genes directly from positive BCs has been demonstrated. In this work, we have developed a model to define treatment recommendations by combining Verigene test results with knowledge on local antibiotic resistance patterns of bacterial pathogens. The data of 275 positive BCs were analyzed. Two hundred sixty-three isolates (95.6%) were included in the Verigene assay panels, and 257 isolates (93.5%) were correctly identified. The agreement of the detection of resistance genes with subsequent phenotypic susceptibility testing was 100%. The hospital antibiogram was used to develop a treatment algorithm on the basis of Verigene results that may contribute to a faster patient management. | 2016 | 26712265 |
| 5826 | 3 | 0.9997 | Rapid and accurate sepsis diagnostics via a novel probe-based multiplex real-time PCR system. Sepsis is a critical clinical emergency that requires prompt diagnosis and intervention. Its prevalence has increased due to the aging population and increased antibiotic resistance. Early identification and the use of innovative technologies are crucial for improving patient outcomes. Modern methodologies are needed to minimize the turnaround time for diagnosis and improve outcomes. Rapid diagnostic tests and multiplex PCR are effective but have limitations in identifying a range of pathogens and target genes. Our study evaluated two novel probe-based multiplex real-time PCR systems: the SEPSI ID and SEPSI DR panels. These systems can quickly identify bacterial and fungal pathogens, alongside antibiotic resistance genes. The assays cover 29 microorganisms (gram-negative bacteria, gram-positive bacteria, yeast, and mold species), alongside 23 resistance genes and four virulence factors. A streamlined workflow uses 2 µL of broth from positive blood cultures (BCs) without nucleic acid extraction and provides results in approximately 1 h. We present the results from an evaluation of 228 BCs and 22 isolates previously characterized by whole-genome sequencing. In comparison to the reference methods, the SEPSI ID panel demonstrated a sensitivity of 96.88%, a specificity of 100%, and a PPV of 100%, whereas the SEPSI DR panel showed a sensitivity of 97.8%, a PPV of 89.7%, and a specificity of 96.7%. Both panels also identified additional pathogens and resistance-related targets not detected by conventional methods. This assay shows promise for rapidly and accurately diagnosing sepsis. Future studies should validate its performance in various clinical settings to enhance sepsis management and improve patient outcomes.IMPORTANCEWe present a new diagnostic method that enables the quick and precise identification of pathogens and resistance genes from positive blood cultures, eliminating the need for nucleic acid extraction. This technique can also be used on fresh pathogen cultures. It has the potential to greatly improve treatment protocols, leading to better patient outcomes, more responsible antibiotic use, and more efficient management of healthcare resources. | 2025 | 41025980 |
| 5039 | 4 | 0.9997 | Analytical validation of a novel high multiplexing real-time PCR array for the identification of key pathogens causative of bacterial ventilator-associated pneumonia and their associated resistance genes. OBJECTIVES: Rapid diagnosis and appropriate empirical antimicrobial therapy before the availability of conventional microbiological results is of pivotal importance for the clinical outcome of ventilator-associated pneumonia (VAP). We evaluated the VAPChip, a novel, closed cartridge molecular tool aiming to identify directly from clinical samples and within a working day the principal bacteria causative of VAP as well as clinically relevant β-lactam resistance genes. METHODS: The Real-time Array PCR for Infectious Diseases (RAP-ID) is a novel technology that combines multiplex PCR with real-time microarray detection. The VAPChip is a closed cartridge kit adapted to the RAP-ID instrument that targets 13 key respiratory pathogens causative of VAP and 24 relevant antimicrobial resistance genes that mediate resistance to β-lactam agents, including extended-spectrum cephalosporins and carbapenems. Analytical validation of the VAPChip was carried out blindly on a collection of 292 genotypically characterized bacterial reference and clinical isolates, including 225 isolates selected on the basis of their species identification and antimicrobial resistance profiles and 67 bacterial isolates belonging to the oropharyngeal flora not targeted by the array. RESULTS: The limit of detection of the assay lies between 10 and 100 genome copies/PCR and the dynamic range is five orders of magnitude permitting at least semi-quantitative reporting of the results. Sensitivity, specificity and negative and positive predictive values ranged from 95.8% to 100% for species identification and detection of resistance genes. CONCLUSIONS: VAPChip is a novel diagnostic tool able to identify resistant bacterial isolates by RAP-ID technology. The results of this analytical validation have to be confirmed on clinical specimens. | 2013 | 23065698 |
| 2247 | 5 | 0.9997 | Metagenomic identification of pathogens and antimicrobial-resistant genes in bacterial positive blood cultures by nanopore sequencing. Nanopore sequencing workflows have attracted increasing attention owing to their fast, real-time, and convenient portability. Positive blood culture samples were collected from patients with bacterial bloodstream infection and tested by nanopore sequencing. This study compared the sequencing results for pathogen taxonomic profiling and antimicrobial resistance genes to those of species identification and phenotypic drug susceptibility using traditional microbiology testing. A total of 37 bacterial positive blood culture results of strain genotyping by nanopore sequencing were consistent with those of mass spectrometry. Among them, one mixed infection of bacteria and fungi was identified using nanopore sequencing and confirmatory quantitative polymerase chain reaction. The amount of sequencing data was 21.89 ± 8.46 MB for species identification, and 1.0 MB microbial strain data enabled accurate determination. Data volumes greater than or equal to 94.6 MB nearly covered all the antimicrobial resistance genes of the bacteria in our study. In addition, the results of the antimicrobial resistance genes were compared with those of phenotypic drug susceptibility testing for Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. Therefore, the nanopore sequencing platform for rapid identification of causing pathogens and relevant antimicrobial resistance genes complementary to conventional blood culture outcomes may optimize antimicrobial stewardship management for patients with bacterial bloodstream infection. | 2023 | 38192400 |
| 5694 | 6 | 0.9997 | Multiplex characterization of human pathogens including species and antibiotic-resistance gene identification. The efficient medical treatment of infections requires detailed information about the pathogens involved and potential antibiotic-resistance mechanisms. The dramatically increasing incidence of multidrug-resistant bacteria especially highlights the importance of sophisticated diagnostic tests enabling a fast patient-customized therapy. However, the current molecular detection methods are limited to either the detection of species or only a few antibiotic-resistance genes.In this work, we present a human pathogen characterization assay using a rRNA gene microarray identifying 75 species comprising bacteria and fungi. A statistical classifier was developed to facilitate the automated species identification. Additionally, the clinically most important β-lactamases were identified simultaneously in a 100-plex reaction using padlock probes and the same microarray. The specificity and sensitivity of the combined assay was determined using clinical isolates. The detection limit was 10(5) c.f.u. ml(-1), recovering 89 % of the detectable β-lactamase-encoding genes specifically. The total assay time was less than 7 hand the modular character of the antibiotic-resistance detection allows the easy integration of further genetic targets. In summary, we present a fast, highly specific and sensitive multiplex pathogen characterization assay. | 2016 | 26489938 |
| 5089 | 7 | 0.9996 | A TaqMan-based multiplex real-time PCR assay for the rapid detection of tigecycline resistance genes from bacteria, faeces and environmental samples. BACKGROUND: Tigecycline is a last-resort antibiotic used to treat severe infections caused by extensively drug-resistant bacteria. Recently, novel tigecycline resistance genes tet(X3) and tet(X4) have been reported, which pose a great challenge to human health and food security. The current study aimed to establish a TaqMan-based real-time PCR assay for the rapid detection of the tigecycline-resistant genes tet(X3) and tet(X4). RESULTS: No false-positive result was found, and the results of the TaqMan-based real-time PCR assay showed 100% concordance with the results of the sequencing analyses. This proposed method can detect the two genes at the level of 1 × 10(2) copies/μL, and the whole process is completed within an hour, allowing rapid screening of tet(X3) and tet(X4) genes in cultured bacteria, faeces, and soil samples. CONCLUSION: Taken together, the TaqMan-based real-time PCR method established in this study is rapid, sensitive, specific, and is capable of detecting the two genes not only in bacteria, but also in environmental samples. | 2020 | 32571294 |
| 4939 | 8 | 0.9996 | Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. OBJECTIVES: The introduction of metagenomic sequencing to diagnostic microbiology has been hampered by slowness, cost and complexity. We explored whether MinION nanopore sequencing could accelerate diagnosis and resistance profiling, using complicated urinary tract infections as an exemplar. METHODS: Bacterial DNA was enriched from clinical urines (n = 10) and from healthy urines 'spiked' with multiresistant Escherichia coli (n = 5), then sequenced by MinION. Sequences were analysed using external databases and bioinformatic pipelines or, ultimately, using integrated real-time analysis applications. Results were compared with Illumina data and resistance phenotypes. RESULTS: MinION correctly identified pathogens without culture and, among 55 acquired resistance genes detected in the cultivated bacteria by Illumina sequencing, 51 were found by MinION sequencing directly from the urines; with three of the four failures in an early run with low genome coverage. Resistance-conferring mutations and allelic variants were not reliably identified. CONCLUSIONS: MinION sequencing comprehensively identified pathogens and acquired resistance genes from urine in a timeframe similar to PCR (4 h from sample to result). Bioinformatic pipeline optimization is needed to better detect resistances conferred by point mutations. Metagenomic-sequencing-based diagnosis will enable clinicians to adjust antimicrobial therapy before the second dose of a typical (i.e. every 8 h) antibiotic. | 2017 | 27667325 |
| 5777 | 9 | 0.9996 | Rapid Detection of Antimicrobial Resistance Genes in Critically Ill Children Using a Custom TaqMan Array Card. Bacteria are identified in only 22% of critically ill children with respiratory infections treated with antimicrobial therapy. Once an organism is isolated, antimicrobial susceptibility results (phenotypic testing) can take another day. A rapid diagnostic test identifying antimicrobial resistance (AMR) genes could help clinicians make earlier, informed antimicrobial decisions. Here we aimed to validate a custom AMR gene TaqMan Array Card (AMR-TAC) for the first time and assess its feasibility as a screening tool in critically ill children. An AMR-TAC was developed using a combination of commercial and bespoke targets capable of detecting 23 AMR genes. This was validated using isolates with known phenotypic resistance. The card was then tested on lower respiratory tract and faecal samples obtained from mechanically ventilated children in a single-centre observational study of respiratory infection. There were 82 children with samples available, with a median age of 1.2 years. Major comorbidity was present in 29 (35%) children. A bacterial respiratory pathogen was identified in 13/82 (16%) of children, of which 4/13 (31%) had phenotypic AMR. One AMR gene was detected in 49/82 (60%), and multiple AMR genes were detected in 14/82 (17%) children. Most AMR gene detections were not associated with the identification of phenotypic AMR. AMR genes are commonly detected in samples collected from mechanically ventilated children with suspected respiratory infections. AMR-TAC may have a role as an adjunct test in selected children in whom there is a high suspicion of antimicrobial treatment failure. | 2023 | 38136735 |
| 5824 | 10 | 0.9996 | Evaluation of a micro/nanofluidic chip platform for the high-throughput detection of bacteria and their antibiotic resistance genes in post-neurosurgical meningitis. BACKGROUND: Post-neurosurgical meningitis (PNM) is one of the most severe hospital-acquired infections worldwide, and a large number of pathogens, especially those possessing multi-resistance genes, are related to these infections. Existing methods for detecting bacteria and measuring their response to antibiotics lack sensitivity and stability, and laboratory-based detection methods are inconvenient, requiring at least 24h to complete. Rapid identification of bacteria and the determination of their susceptibility to antibiotics are urgently needed, in order to combat the emergence of multi-resistant bacterial strains. METHODS: This study evaluated a novel, fast, and easy-to-use micro/nanofluidic chip platform (MNCP), which overcomes the difficulties of diagnosing bacterial infections in neurosurgery. This platform can identify 10 genus or species targets and 13 genetic resistance determinants within 1h, and it is very simple to operate. A total of 108 bacterium-containing cerebrospinal fluid (CSF) cultures were tested using the MNCP for the identification of bacteria and determinants of genetic resistance. The results were compared to those obtained with conventional identification and antimicrobial susceptibility testing methods. RESULTS: For the 108 CSF cultures, the concordance rate between the MNCP and the conventional identification method was 94.44%; six species attained 100% consistency. For the production of carbapenemase- and extended-spectrum beta-lactamase (ESBL)-related antibiotic resistance genes, both the sensitivity and specificity of the MNCP tests were high (>90.0%) and could fully meet the requirements of clinical diagnosis. CONCLUSIONS: The MNCP is fast, accurate, and easy to use, and has great clinical potential in the treatment of post-neurosurgical meningitis. | 2018 | 29559366 |
| 5825 | 11 | 0.9996 | Polymerase Chain Reaction (PCR) Profiling of Extensively Drug-Resistant (XDR) Pathogenic Bacteria in Pulmonary Tuberculosis Patients. Introduction Pulmonary tuberculosis (TB) remains a global health concern, exacerbated by the emergence of extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis. This study employs advanced molecular techniques, specifically polymerase chain reaction (PCR) profiling, to comprehensively characterize the genetic landscape of XDR pathogenic bacteria in patients diagnosed with pulmonary TB. The objective of the study is to elucidate the genes that are associated with drug resistance in pulmonary TB strains through the application of PCR and analyze specific genetic loci that contribute to the development of resistance against multiple drugs. Materials and methods A total of 116 clinical samples suspected of TB were collected from the tertiary healthcare setting of Saveetha Medical College and Hospitals for the identification of MTB, which includes sputum (n = 35), nasal swabs (n = 17), blood (n = 44), and bronchoalveolar lavage (BAL) (n = 20). The collected specimens were processed and subjected to DNA extraction. As per the protocol, reconstitution of the DNA pellet was carried out. The reconstituted DNA was stored at -20 °C for the PCR assay. From the obtained positive sample specimens, XDR pulmonary TB specimens were focused on the targeted genes, specifically the rpoB gene for rifampicin resistance, inhA, and katG gene for thepromoter region for isoniazid resistance. Results Out of a total of 116 samples obtained, 53 tested positive for pulmonary TB, indicative of a mycobacterial infection. Among these positive cases, 43 patients underwent treatment at a tertiary healthcare facility. Subsequently, a PCR assay was performed with the extracted DNA for the target genes rpoB, inhA, and katG. Specifically, 22 sputum samples exhibited gene expression for rpoB, inhA, and katG, while nine nasal swabs showed expression of the rpoB and inhA genes. Additionally, rpoB gene expression was detected in seven blood specimens, and both rpoB and inhA genes were expressed in five BAL samples. Conclusion The swift diagnosis and efficient treatment of XDR-TB can be facilitated by employing advanced and rapid molecular tests and oral medication regimens. Utilizing both newly developed and repurposed anti-TB drugs like pretomanid, bedaquiline, linezolid, and ethionamide. Adhering to these current recommendations holds promise for managing XDR-TB effectively. Nevertheless, it is significant to conduct well-designed clinical trials and studies to further evaluate the efficacy of new agents and shorter treatment regimens, thus ensuring continuous improvement in the management of this challenging condition. | 2024 | 38953074 |
| 5829 | 12 | 0.9996 | Diagnosing Antibiotic Resistance Using Nucleic Acid Enzymes and Gold Nanoparticles. The rapid and accurate detection of antimicrobial resistance is critical to limiting the spread of infections and delivering effective treatments. Here, we developed a rapid, sensitive, and simple colorimetric nanodiagnostic platform to identify disease-causing pathogens and their associated antibiotic resistance genes within 2 h. The platform can detect bacteria from different biological samples (i.e., blood, wound swabs) with or without culturing. We validated the multicomponent nucleic acid enzyme-gold nanoparticle (MNAzyme-GNP) platform by screening patients with central line associated bloodstream infections and achieved a clinical sensitivity and specificity of 86% and 100%, respectively. We detected antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) in patient swabs with 90% clinical sensitivity and 95% clinical specificity. Finally, we identified mecA resistance genes in uncultured nasal, groin, axilla, and wound swabs from patients with 90% clinical sensitivity and 95% clinical specificity. The simplicity and versatility for detecting bacteria and antibiotic resistance markers make our platform attractive for the broad screening of microbial pathogens. | 2021 | 33970612 |
| 2233 | 13 | 0.9996 | Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. BACKGROUND: Pneumonia is a major healthcare problem. Rapid pathogen identification is critical, but often delayed due to the duration of culturing. Early, broad antibacterial therapy might lead to false-negative culture findings and eventually to the development of antibiotic resistances. We aimed to assess the accuracy of the new application Unyvero P50 based on multiplex PCR to detect bacterial pathogens in respiratory specimens from children and neonates. METHODS: In this prospective study, bronchoalveolar lavage fluids, tracheal aspirates, or pleural fluids from neonates and children were analyzed by both traditional culture methods and Unyvero multiplex PCR. RESULTS: We analyzed specimens from 79 patients with a median age of 1.8 (range 0.01-20.1). Overall, Unyvero yielded a sensitivity of 73.1% and a specificity of 97.9% compared to culture methods. Best results were observed for non-fermenting bacteria, for which sensitivity of Unyvero was 90% and specificity 97.3%, while rates were lower for Gram-positive bacteria (46.2 and 93.9%, respectively). For resistance genes, we observed a concordance with antibiogram of 75% for those specimens in which there was a cultural correlate. CONCLUSIONS: Unyvero is a fast and easy-to-use tool that might provide additional information for clinical decision making, especially in neonates and in the setting of nosocomial pneumonia. Sensitivity of the PCR for Gram-positive bacteria and important resistance genes must be improved before this application can be widely recommended. | 2018 | 29086343 |
| 5779 | 14 | 0.9996 | Development of a One-Step Multiplex qPCR Assay for Detection of Methicillin and Vancomycin Drug Resistance Genes in Antibiotic-Resistant Bacteria. The most common antibiotic-resistant bacteria in Korea are methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Pathogen identification in clinical laboratories can be divided into traditional phenotype- and genotype-based methods, both of which are complementary to each other. The genotype-based method using multiplex real-time polymerase chain reaction (PCR) is a rapid and accurate technique that analyzes material at the genetic level by targeting genes simultaneously. Accordingly, we aimed to develop a rapid method for studying the genetic characteristics of antibiotic-resistant bacteria and to provide an experimental guide for the efficient antibiotic resistance gene analysis of mecA detection for MRSA and vanA or vanB detection for VRE using a one-step multiplex qPCR assay at an early stage of infection. As a result, the sensitivity and specificity of the mecA gene for clinical S. aureus isolates, including MRSA and methicillin-susceptible S. aureus, were 97.44% (95% CI, 86.82-99.87%) and 96.15% (95% CI, 87.02-99.32%), respectively. The receiver operating characteristic area under the curve for the diagnosis of MRSA was 0.9798 (*** p < 0.0001). Therefore, the molecular diagnostic method using this newly developed one-step multiplex qPCR assay can provide accurate and rapid results for the treatment of patients with MRSA and VRE infections. | 2024 | 39452724 |
| 5795 | 15 | 0.9996 | Direct identification of Gram-positive bacteria and resistance determinants from blood cultures using a microarray-based nucleic acid assay: in-depth analysis of microarray data for undetermined results. BACKGROUND: The Verigene Gram-Positive Blood Culture (BC-GP) nucleic acid assay (Nanosphere, Inc., Northbrook, IL, USA) is a newly developed microarray-based test with which 12 Gram-positive bacterial genes and three resistance determinants can be detected using blood culture broths. We evaluated the performance of this assay and investigated the signal characteristics of the microarray images. METHODS: At the evaluation stage, we tested 80 blood cultures that were positive for various bacteria (68 bacteria covered and 12 not covered by the BC-GP panel) collected from the blood of 36 patients and 44 spiked samples. In instances where the automated system failed and errors were called, we manually inspected microarray images, measured the signal intensities of target spots, and reclassified the results. RESULTS: With the manual analysis of the microarray images of 14 samples for which error calls were reported, we could obtain correct identification results for 12 samples without the need for retesting, because strong signals in the target spots were clearly discriminable from background noise. With our interpretation strategy, we could obtain 97.1% sensitivity and 100% specificity for bacterial identification by using the BC-GP assay. The two unidentified bacteria were viridans group streptococci, which produced weaker target signals. During the application stage, among 25 consecutive samples positive for Gram-positive bacteria, we identified two specimens with error calls as Streptococcus spp. by using manual analysis. CONCLUSIONS: With help of the manual review of the microarray images, the BC-GP assay could successfully identify species and resistance markers for many clinically important Gram-positive bacteria. | 2015 | 25536666 |
| 5042 | 16 | 0.9996 | Multiplex loop-mediated isothermal amplification (multi-LAMP) assay for rapid detection of mcr-1 to mcr-5 in colistin-resistant bacteria. Purpose: The discovery of the plasmid-mediated colistin resistance genes, mcr, revealed a mechanism of transmission of colistin resistance, which is a major, global public health concern especially among individuals infected with carbapenem-resistant Gram-negative bacteria. To monitor the spread and epidemiology of mcr genes, a convenient and reliable method to detect mcr genes in clinical isolates is needed, especially in the primary care institutions. This study aimed to establish a restriction endonuclease-based multiplex loop-mediated isothermal amplification (multi-LAMP) assay to detect mcr genes (mcr-1 to mcr-5) harbored by colistin-resistant bacteria. Methods: A triple-LAMP assay for mcr-1, mcr-3, and mcr-4 and a double-LAMP assay for mcr-2 and mcr-5 were established. The sensitivity and specificity of the LAMP reactions were determined via electrophoresis and visual detection. Results: The sensitivity of the LAMP assay was 10-fold greater than that of PCR, with high specificity among the screened primers. Specific mcr genes were distinguished in accordance with band numbers and the fragment length of the digested LAMP amplification products. Furthermore, the LAMP assay was confirmed as a rapid and reliable diagnostic technique upon application for clinical samples, and the results were consistent with those of conventional PCR assay. Conclusion: The multi-LAMP assay is a potentially promising method to detect mcr genes and will, if implemented, help prevent infections by drug-resistant bacteria in primary-care hospitals due to rapid and reliable surveillance. To our knowledge, this is the first study to report the application of LAMP to detect mcr-2 to mcr-5 genes and the first time that multi-LAMP has been applied to detect mcr genes. | 2019 | 31308708 |
| 5040 | 17 | 0.9996 | Rapid detection and differentiation of mobile colistin resistance (mcr-1 to mcr-10) genes by real-time PCR and melt-curve analysis. BACKGROUND: The emergence of multi-drug-resistant (MDR) micro-organisms prompted new interest in older antibiotics, such as colistin, that had been abandoned previously due to limited efficacy or high toxicity. Over the years, several chromosomal-encoded colistin resistance mechanisms have been described; more recently, 10 plasmid-mediated mobile colistin resistance (mcr) genes have been identified. Spread of these genes among MDR Gram-negative bacteria is a matter of serious concern; therefore, reliable and timely mcr detection is paramount. AIM: To design and validate a multiplex real-time polymerase chain reaction (PCR) assay for detection and differentiation of mcr genes. METHODS: All available mcr alleles were downloaded from the National Center for Biotechnology Information Reference Gene Catalogue, aligned with Clustal Omega and primers designed using Primer-BLAST. Real-time PCR monoplexes were optimized and validated using a panel of 120 characterized Gram-negative strains carrying a wide range of resistance genes, often in combination. Melt-curve analysis was used to confirm positive results. FINDINGS: In-silico analysis enabled the design of a 'screening' assay for detection of mcr-1/2/6, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8 and mcr-9/10, paired with an internal control assay to discount inhibition. A 'supplementary' assay was subsequently designed to differentiate mcr-1, mcr-2, mcr-6, mcr-9 and mcr-10. Expected results were obtained for all strains (100% sensitivity and specificity). Melt-curve analysis showed consistent melting temperature results. Inhibition was not observed. CONCLUSIONS: The assay is rapid and easy to perform, enabling unequivocal mcr detection and differentiation even when more than one variant is present. Adoption by clinical and veterinary microbiology laboratories would aid the surveillance of mcr genes amongst Gram-negative bacteria. | 2021 | 33485969 |
| 2236 | 18 | 0.9996 | Development of a Multiplex PCR Platform for the Rapid Detection of Bacteria, Antibiotic Resistance, and Candida in Human Blood Samples. The diagnosis of bloodstream infections (BSIs) still relies on blood culture (BC), but low turnaround times may hinder the early initiation of an appropriate antimicrobial therapy, thus increasing the risk of infection-related death. We describe a direct and rapid multiplex PCR-based assay capable of detecting and identifying 16 bacterial and four Candida species, as well as three antibiotic-resistance determinants, in uncultured samples. Using whole-blood samples spiked with microorganisms at low densities, we found that the MicrobScan assay had a mean limit of detection of 15.1 ± 3.3 CFU of bacteria/Candida per ml of blood. When applied to positive BC samples, the assay allowed the sensitive and specific detection of BSI pathogens, including bla(KPC)-, mecA-, or vanA/vanB-positive bacteria. We evaluated the assay using prospectively collected blood samples from patients with suspected BSI. The sensitivity and specificity were 86.4 and 97.0%, respectively, among patients with positive BCs for the microorganisms targeted by the assay or patients fulfilling the criteria for infection. The mean times to positive or negative assay results were 5.3 ± 0.2 and 5.1 ± 0.1 h, respectively. Fifteen of 20 patients with MicrobScan assay-positive/BC-negative samples were receiving antimicrobial therapy. In conclusion, the MicrobScan assay is well suited to complement current diagnostic methods for BSIs. | 2019 | 31799215 |
| 4937 | 19 | 0.9996 | Fast and Accurate Large-Scale Detection of β-Lactamase Genes Conferring Antibiotic Resistance. Fast detection of β-lactamase (bla) genes allows improved surveillance studies and infection control measures, which can minimize the spread of antibiotic resistance. Although several molecular diagnostic methods have been developed to detect limited bla gene types, these methods have significant limitations, such as their failure to detect almost all clinically available bla genes. We developed a fast and accurate molecular method to overcome these limitations using 62 primer pairs, which were designed through elaborate optimization processes. To verify the ability of this large-scale bla detection method (large-scaleblaFinder), assays were performed on previously reported bacterial control isolates/strains. To confirm the applicability of the large-scaleblaFinder, the assays were performed on unreported clinical isolates. With perfect specificity and sensitivity in 189 control isolates/strains and 403 clinical isolates, the large-scaleblaFinder detected almost all clinically available bla genes. Notably, the large-scaleblaFinder detected 24 additional unreported bla genes in the isolates/strains that were previously studied, suggesting that previous methods detecting only limited types of bla genes can miss unexpected bla genes existing in pathogenic bacteria, and our method has the ability to detect almost all bla genes existing in a clinical isolate. The ability of large-scaleblaFinder to detect bla genes on a large scale enables prompt application to the detection of almost all bla genes present in bacterial pathogens. The widespread use of the large-scaleblaFinder in the future will provide an important aid for monitoring the emergence and dissemination of bla genes and minimizing the spread of resistant bacteria. | 2015 | 26169415 |