Antimicrobial susceptibility testing and tentative epidemiological cut-off values for Lactobacillaceae family species intended for ingestion. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
581101.0000Antimicrobial susceptibility testing and tentative epidemiological cut-off values for Lactobacillaceae family species intended for ingestion. INTRODUCTION: In this work, 170 strains covering 13 species from the Lactobacillaceae family were analyzed to determine minimal inhibitory concentration (MIC) distributions to nine antimicrobial agents, and genes potentially conferring resistance. This allows a proposal of tentative Epidemiological Cut-Offs (ECOFFs) that follows the phylogeny for interpretation of resistance in the 13 species. METHODS: The 170 strains originated from different sources, geographical areas, and time periods. MICs for nine antibiotics were determined according to the ISO 10932 standard for lactobacillia and by a modified CLSI-method for Leuconostoc and Pediococcus which ensured sufficient growth. The strains were whole genome sequenced, subtyped by core genome analysis, and assessed for the presence of antibiotic resistance genes using the ResFinder and NCBI AMRFinder databases. RESULTS AND DISCUSSION: The data provide evidence that antimicrobial susceptibility follows phylogeny instead of fermentation pattern and accordingly, tentative ECOFFs were defined. For some species the tentative ECOFFs for specific antibiotics are above the cut-off values set by the European Food Safety Authority (EFSA) which are primarily defined according to fermentation pattern or at genus level. The increased tolerance for specific antibiotics observed for some species was evaluated to be innate, as only for one strain phenotypic resistance was found to be related to an acquired resistance gene. In general, more data are needed to define ECOFFs and since the number of isolates available for industrial relevant bacterial species are often limited compared to clinically relevant species, it is important; 1) that strains are unambiguously defined at species level and subtyped through core genome analysis, 2) MIC determination are performed by use of a standardized method to define species-specific MIC distributions and 3) that known antimicrobial resistance genes are determined in whole genome sequences to support the MIC determinations.202339816654
591010.9998Antimicrobial Susceptibility Testing and Tentative Epidemiological Cutoff Values for Five Bacillus Species Relevant for Use as Animal Feed Additives or for Plant Protection. Bacillus megaterium (n = 29), Bacillus velezensis (n = 26), Bacillus amyloliquefaciens (n = 6), Bacillus paralicheniformis (n = 28), and Bacillus licheniformis (n = 35) strains from different sources, origins, and time periods were tested for the MICs for nine antimicrobial agents by the CLSI-recommended method (Mueller-Hinton broth, 35°C, for 18 to 20 h), as well as with a modified CLSI method (Iso-Sensitest [IST] broth, 37°C [35°C for B. megaterium], 24 h). This allows a proposal of species-specific epidemiological cutoff values (ECOFFs) for the interpretation of antimicrobial resistance in these species. MICs determined by the modified CLSI method were 2- to 16-fold higher than with the CLSI-recommended method for several antimicrobials. The MIC distributions differed between species for five of the nine antimicrobials. Consequently, use of the modified CLSI method and interpretation of resistance by use of species-specific ECOFFs is recommended. The genome sequences of all strains were determined and used for screening for resistance genes against the ResFinder database and for multilocus sequence typing. A putative chloramphenicol acetyltransferase (cat) gene was found in one B. megaterium strain with an elevated chloramphenicol MIC compared to the other B. megaterium strains. In B. velezensis and B. amyloliquefaciens, a putative tetracycline efflux gene, tet(L), was found in all strains (n = 27) with reduced tetracycline susceptibility but was absent in susceptible strains. All B. paralicheniformis and 23% of B. licheniformis strains had elevated MICs for erythromycin and harbored ermD The presence of these resistance genes follows taxonomy suggesting they may be intrinsic rather than horizontally acquired. Reduced susceptibility to chloramphenicol, streptomycin, and clindamycin could not be explained in all species.IMPORTANCE When commercializing bacterial strains, like Bacillus spp., for feed applications or plant bioprotection, it is required that the strains are free of acquired antimicrobial resistance genes that could potentially spread to pathogenic bacteria, thereby adding to the pool of resistance genes that may cause treatment failures in humans or animals. Conversely, if antimicrobial resistance is intrinsic to a bacterial species, the risk of spreading horizontally to other bacteria is considered very low. Reliable susceptibility test methods and interpretation criteria at the species level are needed to accurately assess antimicrobial resistance levels. In the present study, tentative ECOFFs for five Bacillus species were determined, and the results showed that the variation in MICs followed the respective species. Moreover, putative resistance genes, which were detected by whole-genome sequencing and suggested to be intrinsic rather that acquired, could explain the resistance phenotypes in most cases.201830030233
467920.9997Antimicrobial and Phylogenomic Characterization of Bacillus cereus Group Strains Isolated from Different Food Sources in Italy. Background:Bacillus cereus is a widespread environmental Gram-positive bacterium which is especially common in soil and dust. It produces two types of toxins that cause vomiting and diarrhea. At present, foodborne outbreaks due to Bacillus cereus group bacteria (especially Bacillus cereus sensu stricto) are rising, representing a serious problem in the agri-food supply chain. Methods: In this work, we analyzed 118 strains belonging to the Bacillus cereus group, isolated from several food sources, for which in vitro and in silico antibiotic resistance assessments were performed. Results: Many strains showed intermediate susceptibility to clindamycin, erythromycin, and tetracycline, suggesting an evolving acquisition of resistance against these antibiotics. Moreover, one strain showed intermediate resistance to meropenem, an antibiotic currently used to treat infections caused by Bacillus cereus. In addition to the phenotypic antimicrobial resistance profile, all strains were screened for the presence/absence of antimicrobial genes via whole-genome sequencing. There was inconsistency between the in vitro and in silico analyses, such as in the case of vancomycin, for which different isolates harbored resistance genes but, phenotypically, the same strains were sensitive. Conclusions: This would suggest that antibiotic resistance is a complex phenomenon due to a variety of genetic, epigenetic, and biochemical mechanisms.202439335071
550030.9997Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of Enterococcus faecium strains isolated from commercial swine and cattle probiotic products. Enterococcus faecium is one of the more commonly used bacterial species as a probiotic in animals. The organism, a common inhabitant of the gut of animals and humans, is a major nosocomial pathogen responsible for a variety infections in humans and sporadic infections in animals. In swine and cattle, E. faecium-based probiotic products are used for growth promotion and gut functional and health benefits. The objective of this study was to utilize whole genome sequence-based analysis to assess virulence potential, detect antimicrobial resistance genes, and analyze phylogenetic relationships of E. faecium strains from commercial swine and cattle probiotics. Genomic DNA extracted from E. faecium strains, isolated from commercial probiotic products of swine (n = 9) and cattle (n = 13), were sequenced in an Illumina MiSeq platform and analyzed. Seven of the nine swine strains and seven of the 13 cattle strains were identified as Enterococcus lactis, and not as E. faecium. None of the 22 probiotic strains carried major virulence genes required to initiate infections, but many carried genes involved in adhesion to host cells, which may benefit the probiotic strains to colonize and persist in the gut. Strains also carried genes encoding resistance to a few medically important antibiotics, which included aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia], macrolide, lincosamide and streptogramin B (msrC), tetracyclines [tet(L) and tet(M)], and phenicols [cat-(pc194)]. The comparison of the genotypic to phentypic AMR data showed presence of both related and unrelated genes in the probiotic strains. Swine and cattle probiotic E. faecium strains belonged to diverse sequence types. Phylogenetic analysis of the probiotic strains, and strains of human (n = 29), swine (n = 4), and cattle (n = 4) origin, downloaded from GenBank, indicated close clustering of strains belonging to the same species and source, but a few swine and cattle probiotic strains clustered closely with other cattle and human fecal strains. In conclusion, the absence of major virulence genes characteristic of the clinical E. faecium strains suggests that these probiotic strains are unlikely to initiate opportunistic infection. However, the carriage of AMR genes to medically important antibiotics and close clustering of the probiotic strains with other human and cattle fecal strains suggests that probiotic strains may pose risk to serve as a source of transmitting AMR genes to other gut bacteria.202235150575
467840.9997Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives - The Basic Safety and Usefulness Criterion. The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus.202134277757
597250.9997Method of Selection of Bacteria Antibiotic Resistance Genes Based on Clustering of Similar Nucleotide Sequences. A new method for selection of bacterium antibiotic resistance genes is proposed and tested for solving the problems related to selection of primers for PCR assay. The method implies clustering of similar nucleotide sequences and selection of group primers for all genes of each cluster. Clustering of resistance genes for six groups of antibiotics (aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, macrolides and lincosamides, and fusidic acid) was performed. The method was tested for 81 strains of bacteria of different genera isolated from patients (K. pneumoniae, Staphylococcus spp., S. agalactiae, E. faecalis, E. coli, and G. vaginalis). The results obtained by us are comparable to those in the selection of individual genes; this allows reducing the number of primers necessary for maximum coverage of the known antibiotic resistance genes during PCR analysis.201729063318
549960.9997Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes. In food, bacteria carrying antibiotic resistance genes could play a prominent role in the spread of resistance. Staphylococcus equorum populations can become large in a number of fermented foods, yet the antibiotic resistance properties of this species have been little studied. In this work, the resistance/susceptibility (R/S) profile of S. equorum strains (n = 30) from cheese to 16 antibiotics was determined by broth microdilution. The minimum inhibitory concentration (MIC) for all antibiotics was low in most strains, although higher MICs compatible with acquired genes were also noted. Genome analysis of 13 strains showed the S. equorum resistome to be composed of intrinsic mechanisms, acquired mutations, and acquired genes. As such, a plasmidic cat gene providing resistance to chloramphenicol was found in one strain; this was able to provide resistance to Staphylococcus aureus after electroporation. An msr(A) polymorphic gene was identified in five strains. The Mrs(A) variants were associated with variable resistance to erythromycin. However, the genetic data did not always correlate with the phenotype. As such, all strains harbored a polymorphic fosB/fosD gene, although only one acquired copy was associated with strong resistance to fosfomycin. Similarly, a plasmid-associated blaR1-blaZI operon encoding a penicillinase system was identified in five ampicillin- and penicillin G-susceptible strains. Identified genes not associated with phenotypic resistance further included mph(C) in two strains and norA in all strains. The antibiotic R/S status and gene content of S. equorum strains intended to be employed in food systems should be carefully determined.202337511416
493670.9997A New Tool for Analyses of Whole Genome Sequences Reveals Dissemination of Specific Strains of Vancomycin-Resistant Enterococcus faecium in a Hospital. A new easy-to-use online bioinformatic tool analyzing whole genome sequences of healthcare associated bacteria was used by a local infection control unit to retrospectively map genetic relationship of isolates of E. faecium carrying resistance genes to vancomycin in a hospital. Three clusters of isolates were detected over a period of 5 years, suggesting transmission between patients. Individual relatedness between isolates within each cluster was established by SNP analyses provided by the system. Genetic antimicrobial resistance mechanisms to antibiotics other than vancomycin were identified. The results suggest that the system is suited for hospital surveillance of E. faecium carrying resistance genes to vancomycin in settings with access to next Generation Sequencing without bioinformatic expertise for interpretation of the genome sequences.202134778297
467480.9997Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture. Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened through scientific-based efficacy trials and product labels should allow identification of individual bacterial strains and inform the farmer on specific purpose, dosage and correct application measures.201526147573
467790.9997Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human. Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.201931399643
4675100.9997Antibiotic Susceptibility Profiles of Pediococcus pentosaceus from Various Origins and Their Implications for the Safety Assessment of Strains with Food-Technology Applications. ABSTRACT: In the fight against the spread of antibiotic resistance, authorities usually require that strains "intentionally added into the food chain" be tested for their antibiotic susceptibility. This applies to strains used in starter or adjunct cultures for the production of fermented foods, such as many strains of Pediococcus pentosaceus. The European Food Safety Authority recommends testing strains for their antibiotic susceptibility based on both genomic and phenotypic approaches. Furthermore, it proposes a set of antibiotics to assess as well as a list of microbiological cutoffs (MCs), allowing classification of lactic acid bacteria as susceptible or resistant. Accurate MCs are essential not only to avoid false-negative strains, which may carry antibiotic resistance genes and remain unnoticed, but also to avoid false-positive strains, which may be discarded while screening potential candidates for food-technology applications. Because of relatively scarce data, MCs have been defined for the whole Pediococcus genus, although differences between species should be expected. In this study, we investigated the antibiotic susceptibility of 35 strains of P. pentosaceus isolated from various matrices in the past 70 yr. MICs were determined using a standard protocol, and MIC distributions were established. Phenotypic analyses were complemented with genome sequencing and by seeking known antibiotic resistance genes. The genomes of all the strains were free of known antibiotic resistance genes, but most displayed MICs above the currently defined MCs for chloramphenicol, and all showed excessive MICs for tetracycline. Based on the distributions, we calculated and proposed new MCs for chloramphenicol (16 instead of 4 mg/L) and tetracycline (256 instead of 8 mg/L).202133320937
4684110.9997Genomic characterization and assessment of the virulence and antibiotic resistance of the novel species Paenibacillus sp. strain VT-400, a potentially pathogenic bacterium in the oral cavity of patients with hematological malignancies. BACKGROUND: Paenibacillus sp. strain VT-400, a novel spore-forming bacterium, was isolated from patients with hematological malignancies. METHODS: Paenibacillus sp. strain VT-400 was isolated from the saliva of four children with acute lymphoblastic leukemia. The genome was annotated using RAST and the NCBI Prokaryotic Genome Annotation Pipeline to characterize features of antibiotic resistance and virulence factors. Susceptibility to antibiotics was determined by the Kirby-Bauer disc diffusion method. We used a mouse model of pneumonia to study virulence in vivo. Mice were challenged with 7.5 log10-9.5 log10 CFU, and survival was monitored over 7 days. Bacterial load was measured in the lungs and spleen of surviving mice 48 h post-infection to reveal bacterial invasion and dissemination. RESULTS: Whole-genome sequencing revealed a large number of virulence factors such as hemolysin D and CD4+ T cell-stimulating antigen. Furthermore, the strain harbors numerous antibiotic resistance genes, including small multidrug resistance proteins, which have never been previously found in the Paenibacillus genus. We then compared the presence of antibiotic resistance genes against results from antibiotic susceptibility testing. Paenibacillus sp. strain VT-400 was found to be resistant to macrolides such as erythromycin and azithromycin, as well as to chloramphenicol and trimethoprim-sulphamethoxazole. Finally, the isolate caused mortality in mice infected with ≥8.5 log10 CFU. CONCLUSIONS: Based on our results and on the available literature, there is yet no strong evidence that shows Paenibacillus species as an opportunistic pathogen in immunocompromised patients. However, the presence of spore-forming bacteria with virulence and antibiotic resistance genes in such patients warrants special attention because infections caused by spore-forming bacteria are poorly treatable.201626900405
5909120.9997Antibiotic susceptibility profiles of Lactobacillus reuteri and Lactobacillus fermentum. Lactobacillus reuteri and Lactobacillus fermentum, which are commonly used as food processing aids and probiotics, can potentially act as reservoirs of antibiotic resistance genes. Acquired resistance genes may be transferred via the food chain or in the gastrointestinal tract to pathogenic bacteria. Knowledge of the distributions of antibiotic MICs for a species is needed when using a phenotypic method to assess the presence of acquired resistance genes. In the present study, 56 L. reuteri and 56 L. fermentum strains that differed by source and spatial and temporal origin were assessed for antibiotic susceptibility using an Etest kit and a broth microdilution protocol. L. fermentum strains displayed a uniform distribution of MICs for all six antibiotics tested. L. reuteri strains had a bimodal distribution of MICs or a distribution with MICs above the test range for 7 of the 14 antibiotics tested. Genetic relatedness was observed among L. reuteri strains with high MICs for both ampicillin and tetracycline and among strains with high MICs for both erythromycin and clindamycin. Results obtained with the Etest and the broth microdilution method corresponded well with each other. Thus, further research may make it possible to define microbiological breakpoints for distinguishing between strains with and without acquired resistance genes.200717340877
5501130.9997The oral microbiota of domestic cats harbors a wide variety of Staphylococcus species with zoonotic potential. This study aimed to characterize the species, antimicrobial resistance and dispersion of CRISPR systems in staphylococci isolated from the oropharynx of domestic cats in Brazil. Staphylococcus strains (n=75) were identified by MALDI-TOF and sequencing of rpoB and tuf genes. Antimicrobial susceptibility was assessed by disk diffusion method and PCR to investigate the presence of antimicrobial-resistance genes usually present in mobile genetic elements (plasmids), in addition to plasmid extraction. CRISPR - genetic arrangements that give the bacteria the ability to resist the entry of exogenous DNA - were investigated by the presence of the essential protein Cas1 gene. A great diversity of Staphylococcus species (n=13) was identified. The presence of understudied species, like S. nepalensis and S. pettenkoferi reveals that more than one identification method may be necessary to achieve conclusive results. At least 56% of the strains contain plamids, being 99% resistant to at least one of the eight tested antimicrobials and 12% multidrug resistant. CRISPR were rare among the studied strains, consistent with their putative role as gene reservoirs. Moreover, herein we describe for the first time their existence in Staphylococcus lentus, to which the system must confer additional adaptive advantage. Prevalence of resistance among staphylococci against antimicrobials used in veterinary and human clinical practice and the zoonotic risk highlight the need of better antimicrobial management practices, as staphylococci may transfer resistance genes among themselves, including to virulent species, like S. aureus.201728284599
3122140.9997Hybrid sequence-based analysis reveals the distribution of bacterial species and genes in the oral microbiome at a high resolution. Bacteria in the oral microbiome are poorly identified owing to the lack of established culture methods for them. Thus, this study aimed to use culture-free analysis techniques, including bacterial single-cell genome sequencing, to identify bacterial species and investigate gene distribution in saliva. Saliva samples from the same individual were classified as inactivated or viable and then analyzed using 16S rRNA sequencing, metagenomic shotgun sequencing, and bacterial single-cell sequencing. The results of 16S rRNA sequencing revealed similar microbiota structures in both samples, with Streptococcus being the predominant genus. Metagenomic shotgun sequencing showed that approximately 80 % of the DNA in the samples was of non-bacterial origin, whereas single-cell sequencing showed an average contamination rate of 10.4 % per genome. Single-cell sequencing also yielded genome sequences for 43 out of 48 wells for the inactivated samples and 45 out of 48 wells for the viable samples. With respect to resistance genes, four out of 88 isolates carried cfxA, which encodes a β-lactamase, and four isolates carried erythromycin resistance genes. Tetracycline resistance genes were found in nine bacteria. Metagenomic shotgun sequencing provided complete sequences of cfxA, ermF, and ermX, whereas other resistance genes, such as tetQ and tetM, were detected as fragments. In addition, virulence factors from Streptococcus pneumoniae were the most common, with 13 genes detected. Our average nucleotide identity analysis also suggested five single-cell-isolated bacteria as potential novel species. These data would contribute to expanding the oral microbiome data resource.202438708423
5644150.9997Identification and Characterization of Antibiotic-Resistant, Gram-Negative Bacteria Isolated from Korean Fresh Produce and Agricultural Environment. The consumption of fresh produce and fruits has increased over the last few years as a result of increasing consumer awareness of healthy lifestyles. Several studies have shown that fresh produces and fruits could be potential sources of human pathogens and antibiotic-resistant bacteria. In this study, 248 strains were isolated from lettuce and surrounding soil samples, and 202 single isolates selected by the random amplified polymorphic DNA (RAPD) fingerprinting method were further characterized. From 202 strains, 184 (91.2%) could be identified based on 16S rRNA gene sequencing, while 18 isolates (8.9%) could not be unequivocally identified. A total of 133 (69.3%) and 105 (54.7%) strains showed a resistance phenotype to ampicillin and cefoxitin, respectively, while resistance to gentamicin, tobramycin, ciprofloxacin, and tetracycline occurred only at low incidences. A closer investigation of selected strains by whole genome sequencing showed that seven of the fifteen sequenced strains did not possess any genes related to acquired antibiotic resistance. In addition, only one strain possessed potentially transferable antibiotic resistance genes together with plasmid-related sequences. Therefore, this study indicates that there is a low possibility of transferring antibiotic resistance by potential pathogenic enterobacteria via fresh produce in Korea. However, with regards to public health and consumer safety, fresh produce should nevertheless be continuously monitored to detect the occurrence of foodborne pathogens and to hinder the transfer of antibiotic resistance genes potentially present in these bacteria.202337317216
5816160.9997Comparison of virulence and resistance genes in Mannheimia haemolytica and Pasteurella multocida from dairy cattle with and without bovine respiratory disease. Mannheimia haemolytica and Pasteurella multocida are two of the main bacterial pathogens associated with bovine respiratory disease (BRD). BRD represents one of the most significant health challenges in the cattle industry, causing substantial economic losses through animal morbidity and mortality while raising serious welfare concerns. The objectives of this project were to (i) characterize virulence factor (VF) and antimicrobial resistance (AMR) genes in M. haemolytica and P. multocida isolates from dairy cattle of different ages with and without BRD using whole-genome sequencing (WGS); (ii) evaluate associations between microbial genetic elements and animal disease status; and (iii) assess the accuracy of genome-based predictions for the antimicrobial resistance phenotype. Using a case-control study, AMR and VF genes were characterized from 149 P. multocida and 68 M. haemolytica isolates from preweaned calves, weaned heifers, and cows with and without BRD. The large genetic diversity observed in both bacterial species prevented the identification of unique genetic markers associated with disease status or age group. AMR genes (22 genes) from 12 antimicrobial classes were identified in P. multocida isolates, while 11 AMR genes for seven antimicrobial classes were identified in M. haemolytica isolates. Additionally, 28 and 15 virulence genes were identified in P. multocida and M. haemolytica, respectively. The ability of WGS-based predictions to predict phenotypic antimicrobial resistance showed variable accuracy across different antimicrobials, achieving moderate levels of agreement overall. Findings from this project demonstrate that identifying genomic markers based on gene presence/absence lacks discriminatory power within this population for identifying unique genotypes associated with disease status in these genomically diverse organisms. IMPORTANCE: This case-control study provides key microbial ecological advances by elucidating the role of bacteria in the bovine respiratory disease complex in dairy cattle. Previous research has identified specific virulence factors in both bacterial genomes that resulted in disease. Our results challenge this perception and are of high impact, revealing that the pan-genome of both bacteria did not differentiate among the clinical cases or age groups, and a specific pathogenic pathotype was not evident in the isolates from this study, and it did not emerge when including additional public whole-genome sequences to increase the analytical power of the analysis (the first study to use this approach to evaluate bovine respiratory disease in cattle). In addition to these novel discoveries, this study describes the first population-scale genomic comparison of both Mannheimia haemolytica and Pasteurella multocida genomes collected from affected and healthy dairy cattle from different age groups and from multiple farms.202540522106
5502170.9997Short communication: Diversity of species and transmission of antimicrobial resistance among Staphylococcus spp. isolated from goat milk. The increasing production of goat milk and its derivatives is affected by the occurrence of intramammary infections, which are highly associated with the presence of Staphylococcus species, including some with zoonotic potential. Staphylococci in general can exchange mobile genetic elements, a process that may be facilitated by the isolate's capacity of forming biofilms. In this study we identified, to the species level, Staphylococcus isolated from goat milk samples by MALDI-TOF and confirmed the identification by sequencing housekeeping genes (rrs and tuf). Eight species were identified, more than half being either Staphylococcus epidermidis or Staphylococcus lugdunensis. The isolates were shown by pulsed-field gel electrophoresis to be genetically diverse between the studied herds. Resistance to ampicillin and penicillin was widespread, and 2 Staph. epidermidis isolates contained the methicillin-resistance gene mecA. Most of the isolates that were resistant to at least 1 of the 13 antimicrobials tested harbored plasmids, one of which was demonstrated to be conjugative, being transferred from a Staph. epidermidis to a Staphylococcus aureus strain. Biofilm formation was observed in almost every isolate, which may contribute to their capacity of exchanging antimicrobial resistance genes in addition to acting as a physical barrier to the access of drugs. Our results showed that antimicrobial resistance among goat staphylococci may be emerging in a process facilitated by the exchange of mobile genetic elements between the bacteria and the establishment of biofilms, which calls for careful monitoring and more effective control therapies.201930928272
5510180.9997Investigating possible association between multidrug resistance and isolate origin with some virulence factors of Escherichia coli strains isolated from infant faeces and fresh green vegetables. AIMS: In this study, the association between multidrug resistance (MDR) and the expression of some virulence factors were evaluated in Escherichia coli strains isolated from infant faeces and fresh green vegetables. The effect of isolate origin on associated virulence factors was evaluated. In addition, genetic fingerprinting of a sample of these isolates (10 isolates from each group) was studied in order to detect any genetic relatedness among these isolates. METHODS AND RESULTS: Escherichia coli isolates were divided into four groups based on their origin (human faeces or plant) and their antibiotic resistance (multiresistance or susceptible). PCR was used to investigate heat-labile and heat-stable enterotoxin genes, and four siderophore genes (aerobactin, enterobactin, salmochelin and yersiniabactin). Genetic fingerprinting of the isolates was performed using enterobacterial repetitive intergenic consensus PCR. Siderophore production was measured by a colorimetric method. Biofilm formation was evaluated by a crystal violet assay. The results of the study showed that the expression of MDR is not significantly associated with an increase in these virulence factors or with biofilm formation. However, the origin of isolates had a significant association with siderophore gene availability and consequently on the concentrations of siderophores released. Genetic fingerprinting indicated that human and plant isolates have the same clonal origin, suggesting their circulation among humans and plants. CONCLUSION: Antibiotic-susceptible strains of E. coli may be as virulent as MDR strains. Results also suggest that the environment can play a potential role in selection of strains with specific virulence factors. SIGNIFICANCE AND IMPACT OF THE STUDY: Antibiotic-susceptible isolates of Escherichia coli from plant or human origin can be as virulent as the multidrug resistance (MDR) ones. Genetic relatedness was detected among the isolates of plant and human origin, indicating the circulation of these bacteria among human and plants. This could imply a potential role for environmental antimicrobial resistant bacteria in human infection.201931034123
5736190.9997Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness.202540872636