# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5802 | 0 | 1.0000 | Dissecting vancomycin-intermediate resistance in staphylococcus aureus using genome-wide association. Vancomycin-intermediate Staphylococcus aureus (VISA) is currently defined as having minimal inhibitory concentration (MIC) of 4-8 µg/ml. VISA evolves through changes in multiple genetic loci with at least 16 candidate genes identified in clinical and in vitro-selected VISA strains. We report a whole-genome comparative analysis of 49 vancomycin-sensitive S. aureus and 26 VISA strains. Resistance to vancomycin was determined by broth microdilution, Etest, and population analysis profile-area under the curve (PAP-AUC). Genome-wide association studies (GWAS) of 55,977 single-nucleotide polymorphisms identified in one or more strains found one highly significant association (P = 8.78 E-08) between a nonsynonymous mutation at codon 481 (H481) of the rpoB gene and increased vancomycin MIC. Additionally, we used a database of public S. aureus genome sequences to identify rare mutations in candidate genes associated with VISA. On the basis of these data, we proposed a preliminary model called ECM+RMCG for the VISA phenotype as a benchmark for future efforts. The model predicted VISA based on the presence of a rare mutation in a set of candidate genes (walKR, vraSR, graSR, and agrA) and/or three previously experimentally verified mutations (including the rpoB H481 locus) with an accuracy of 81% and a sensitivity of 73%. Further, the level of resistance measured by both Etest and PAP-AUC regressed positively with the number of mutations present in a strain. This study demonstrated 1) the power of GWAS for identifying common genetic variants associated with antibiotic resistance in bacteria and 2) that rare mutations in candidate gene, identified using large genomic data sets, can also be associated with resistance phenotypes. | 2014 | 24787619 |
| 5766 | 1 | 0.9994 | Ceftazidime resistance in Pseudomonas aeruginosa is multigenic and complex. Pseudomonas aeruginosa causes a wide range of severe infections. Ceftazidime, a cephalosporin, is a key antibiotic for treating infections but a significant proportion of isolates are ceftazidime-resistant. The aim of this research was to identify mutations that contribute to resistance, and to quantify the impacts of individual mutations and mutation combinations. Thirty-five mutants with reduced susceptibility to ceftazidime were evolved from two antibiotic-sensitive P. aeruginosa reference strains PAO1 and PA14. Mutations were identified by whole genome sequencing. The evolved mutants tolerated ceftazidime at concentrations between 4 and 1000 times that of the parental bacteria, with most mutants being ceftazidime resistant (minimum inhibitory concentration [MIC] ≥ 32 mg/L). Many mutants were also resistant to meropenem, a carbapenem antibiotic. Twenty-eight genes were mutated in multiple mutants, with dacB and mpl being the most frequently mutated. Mutations in six key genes were engineered into the genome of strain PAO1 individually and in combinations. A dacB mutation by itself increased the ceftazidime MIC by 16-fold although the mutant bacteria remained ceftazidime sensitive (MIC < 32 mg/L). Mutations in ampC, mexR, nalC or nalD increased the MIC by 2- to 4-fold. The MIC of a dacB mutant was increased when combined with a mutation in ampC, rendering the bacteria resistant, whereas other mutation combinations did not increase the MIC above those of single mutants. To determine the clinical relevance of mutations identified through experimental evolution, 173 ceftazidime-resistant and 166 sensitive clinical isolates were analysed for the presence of sequence variants that likely alter function of resistance-associated genes. dacB and ampC sequence variants occur most frequently in both resistant and sensitive clinical isolates. Our findings quantify the individual and combinatorial effects of mutations in different genes on ceftazidime susceptibility and demonstrate that the genetic basis of ceftazidime resistance is complex and multifactorial. | 2023 | 37192202 |
| 5768 | 2 | 0.9994 | The resistance mechanism of Escherichia coli induced by ampicillin in laboratory. BACKGROUND: Multi-drug-resistant Escherichia coli poses a great threat to human health, especially resistant to ampicillin (AMP), but the mechanism of drug resistance is not very clear. PURPOSE: To understand the mechanism of resistance of E. coli to beta-lactam antibiotics by inducing drug resistance of sensitive bacteria in laboratory. METHODS: Clinical sensitive E. coli strain was induced into resistance strain by 1/2 minimum inhibitive concentration (MIC) induced trails of AMP. The drug resistance spectrum was measured by modified K-B susceptibility test. Whole-genome sequencing analysis was used to analyze primary sensitive strain, and resequencing was used to analyze induced strains. Protein tertiary structure encoded by the gene containing single nucleotide polymorphism (SNP) was analyzed by bioinformatics. RESULTS: After 315 hrs induced, the MIC value of E. coli 15743 reached to 256 µg/mL, 64 times higher than that of the sensitive bacteria. During the induction process, the bacterial resistance process is divided into two stages. The rate of drug resistance occurs rapidly before reaching the critical concentration of 32 µg/mL, and then the resistance rate slows down. Sequencing of the genome of resistant strain showed that E. coli 15743 drug-resistant strain with the MIC values of 32 and 256 µg/mL contained four and eight non-synonymous SNPs, respectively. These non-synonymous SNPs were distributed in the genes of frdD, ftsI, acrB, OmpD, marR, VgrG, and envZ. CONCLUSION: These studies will improve our understanding of the molecular mechanism of AMP resistance of E. coli, and may provide the basis for prevention and control of multi-drug-resistant bacteria and generation of new antibiotics to treat E. coli infection. | 2019 | 31571941 |
| 4746 | 3 | 0.9994 | Correlation of QRDR mutations and MIC levels in fluoroquinolone-resistant Staphylococcus aureus clinical isolates. Antimicrobial resistance is a global health problem. Among various antibiotic-resistant bacteria, Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA), is a clinically important pathogen responsible for serious infections because of its multidrug resistance (MDR) and association with high mortality rates. The MDR nature of MRSA, including resistance to macrolides, aminoglycosides, fluoroquinolones, and tetracyclines, limits therapeutic choices and poses significant challenges in clinical management. This study aimed to analyze the correlation between mutations in the quinolone resistance-determining region (QRDR) and the minimum inhibitory concentration (MIC) of fluoroquinolone drugs, such as ciprofloxacin and levofloxacin, in MRSA and methicillin-sensitive S. aureus (MSSA). A total of 63 S. aureus clinical strains were isolated from blood samples of sepsis patients. DNA sequence analysis was performed using gDNA extracted from all S. aureus clinical isolates to identify mutations in the QRDR of gyrA, gyrB, parC, and parE. The MICs of antimicrobials were determined by the broth microdilution method. Among these genes, only mutations in parC showed a statistically significant positive correlation with elevated MIC levels, underscoring the primary role of parC in mediating resistance in our clinical isolates. Notably, all isolates exhibited a substitution at serine 80 (S80) in parC, and those harboring simultaneous substitutions at both S80 and glutamic acid 84 (E84) demonstrated markedly increased MIC values for both drugs. These findings reinforce previously reported associations between dual mutations and high-level fluoroquinolone resistance, while highlighting the distinct contribution of parC among the QRDR genes analyzed in this study. Furthermore, we found that the most frequent mutation in the QRDR was the cytosine-to-thymine mutation.IMPORTANCEAntimicrobial resistance is a growing global health crisis, making bacterial infections harder to treat. Staphylococcus aureus, especially MRSA, is a major concern due to its resistance to multiple antibiotics, including fluoroquinolones like ciprofloxacin and levofloxacin. Our study highlights how specific genetic mutations in the quinolone resistance-determining region (QRDR) influence fluoroquinolone resistance. We found that mutations in the parC gene, particularly substitutions at serine 80 (S80) and glutamic acid 84 (E84), significantly increase resistance. Understanding these mutations helps predict antibiotic resistance and may guide more effective treatment strategies. By identifying key genetic changes that drive fluoroquinolone resistance, our research contributes to developing improved diagnostic tools and targeted therapies to combat drug-resistant S. aureus infections. This knowledge is crucial for clinicians and researchers working to control the spread of antibiotic-resistant bacteria and improve patient outcomes. | 2025 | 41081515 |
| 5055 | 4 | 0.9993 | The PitA protein contributes to colistin susceptibility in Pseudomonas aeruginosa. Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of problematic infections in individuals with predisposing conditions. Infections can be treated with colistin but some isolates are resistant to this antibiotic. To better understand the genetic basis of resistance, we experimentally evolved 19 independent resistant mutants from the susceptible laboratory strain PAO1. Whole genome sequencing identified mutations in multiple genes including phoQ and pmrB that have previously been associated with resistance, pitA that encodes a phosphate transporter, and carB and eno that encode enzymes of metabolism. Individual mutations were engineered into the genome of strain PAO1. Mutations in pitA, pmrB and phoQ increased the minimum inhibitory concentration (MIC) for colistin 8-fold, making the bacteria resistant. Engineered pitA/phoQ and pitA/pmrB double mutants had higher MICs than single mutants, demonstrating additive effects on colistin susceptibility. Single carB and eno mutations did not increase the MIC suggesting that their effect is dependent on the presence of other mutations. Many of the resistant mutants had increased susceptibility to β-lactams and lower growth rates than the parental strain demonstrating that colistin resistance can impose a fitness cost. Two hundred and fourteen P. aeruginosa isolates from a range of sources were tested and 18 (7.8%) were colistin resistant. Sequence variants in genes identified by experimental evolution were present in the 18 resistant isolates and may contribute to resistance. Overall our results identify pitA mutations as novel contributors to colistin resistance and demonstrate that resistance can reduce fitness of the bacteria. | 2023 | 37824582 |
| 5836 | 5 | 0.9993 | Identification of Pseudomonas aeruginosa genes associated with antibiotic susceptibility. Pseudomonas aeruginosa causes acute and chronic infections in humans and these infections are difficult to treat due to the bacteria's high-level of intrinsic and acquired resistance to antibiotics. To address this problem, it is crucial to investigate the molecular mechanisms of antibiotic resistance in this organism. In this study, a P. aeruginosa transposon insertion library of 17000 clones was constructed and screened for altered susceptibility to seven antibiotics. Colonies grown on agar plates containing antibiotics at minimum inhibitory concentrations (MICs) and those unable to grow at 1/2 MIC were collected. The transposon-disrupted genes in 43 confirmed mutants that showed at least a three-fold increase or a two-fold decrease in susceptibility to at least one antibiotic were determined by semi-random PCR and subsequent sequencing analysis. In addition to nine genes known to be associated with antibiotic resistance, including mexI, mexB and mexR, 24 new antibiotic resistance-associated genes were identified, including a fimbrial biogenesis gene pilY1 whose disruption resulted in a 128-fold increase in the MIC of carbenicillin. Twelve of the 43 genes identified were of unknown function. These genes could serve as targets to control or reverse antibiotic resistance in this important human pathogen. | 2010 | 20953948 |
| 5838 | 6 | 0.9993 | Alteration in the Morphological and Transcriptomic Profiles of Acinetobacter baumannii after Exposure to Colistin. Acinetobacter baumannii is often highly resistant to multiple antimicrobials, posing a risk of treatment failure, and colistin is a "last resort" for treatment of the bacterial infection. However, colistin resistance is easily developed when the bacteria are exposed to the drug, and a comprehensive analysis of colistin-mediated changes in colistin-susceptible and -resistant A. baumannii is needed. In this study, using an isogenic pair of colistin-susceptible and -resistant A. baumannii isolates, alterations in morphologic and transcriptomic characteristics associated with colistin resistance were revealed. Whole-genome sequencing showed that the resistant isolate harbored a PmrB(L208F) mutation conferring colistin resistance, and all other single-nucleotide alterations were located in intergenic regions. Using scanning electron microscopy, it was determined that the colistin-resistant mutant had a shorter cell length than the parental isolate, and filamented cells were found when both isolates were exposed to the inhibitory concentration of colistin. When the isolates were treated with inhibitory concentrations of colistin, more than 80% of the genes were upregulated, including genes associated with antioxidative stress response pathways. The results elucidate the morphological difference between the colistin-susceptible and -resistant isolates and different colistin-mediated responses in A. baumannii isolates depending on their susceptibility to this drug. | 2024 | 39203486 |
| 5814 | 7 | 0.9993 | Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are one of the factors which can contribute to limiting the development and evolution of antibiotic resistance in bacteria. There are three genomic loci of CRISPR-Cas in Enterococcus faecalis. In this study, we aimed to assess correlation of the CRISPR-Cas system distribution with the acquisition of antibiotic resistance among E. faecalis isolates. A total of 151 isolates of E. faecalis were collected from urinary tract infections (UTI) and dental-root canal (DRC). All isolates were screened for phenotypic antibiotic resistance. In addition, antibiotic resistance genes and CRISPR loci were screened by using polymerase chain reaction. Genomic background of the isolates was identified by random amplified polymorphic DNA (RAPD)-PCR. The number of multidrug-resistant E. faecalis strains were higher in UTI isolates than in DRC isolates. RAPD-PCR confirmed that genomic background was diverse in UTI and DRC isolates used in this study. CRISPR loci were highly accumulated in gentamycin-, teicoplanin-, erythromycin-, and tetracycline-susceptible strains. In concordance with drug susceptibility, smaller number of CRISPR loci were identified in vanA, tetM, ermB, aac6'-aph(2"), aadE, and ant(6) positive strains. These data indicate a negative correlation between CRISPR-cas loci and antibiotic resistance, as well as, carriage of antibiotic resistant genes in both of UTI and DRC isolates. | 2021 | 34321002 |
| 5499 | 8 | 0.9993 | Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes. In food, bacteria carrying antibiotic resistance genes could play a prominent role in the spread of resistance. Staphylococcus equorum populations can become large in a number of fermented foods, yet the antibiotic resistance properties of this species have been little studied. In this work, the resistance/susceptibility (R/S) profile of S. equorum strains (n = 30) from cheese to 16 antibiotics was determined by broth microdilution. The minimum inhibitory concentration (MIC) for all antibiotics was low in most strains, although higher MICs compatible with acquired genes were also noted. Genome analysis of 13 strains showed the S. equorum resistome to be composed of intrinsic mechanisms, acquired mutations, and acquired genes. As such, a plasmidic cat gene providing resistance to chloramphenicol was found in one strain; this was able to provide resistance to Staphylococcus aureus after electroporation. An msr(A) polymorphic gene was identified in five strains. The Mrs(A) variants were associated with variable resistance to erythromycin. However, the genetic data did not always correlate with the phenotype. As such, all strains harbored a polymorphic fosB/fosD gene, although only one acquired copy was associated with strong resistance to fosfomycin. Similarly, a plasmid-associated blaR1-blaZI operon encoding a penicillinase system was identified in five ampicillin- and penicillin G-susceptible strains. Identified genes not associated with phenotypic resistance further included mph(C) in two strains and norA in all strains. The antibiotic R/S status and gene content of S. equorum strains intended to be employed in food systems should be carefully determined. | 2023 | 37511416 |
| 5653 | 9 | 0.9993 | Coagulase-Negative Staphylococci Determined as Blood Culture Contamination Have High Virulence Characteristic Including Transfer of Antibiotic Resistance Determinants to Staphylococcus aureus and Escherichia coli. This study aimed to evaluate the virulence of 36 clinical isolates estimated as blood culture contaminants (BCCs). MALDI-TOF MS classified all isolates as coagulase-negative staphylococci (CoNS) with the highest percentage of S. epidermidis (77.78%). All tested strains formed biofilms with greater ability at room temperature than 37 °C. CoNS were sensitive to vancomycin (0% resistance) and had relatively low resistance to linezolid and rifampicin (8.33 and 22.22% resistance). The highest resistance was observed for penicillin (94.44%). Moreover, we observed the transfer of antibiotic resistance genes from the tested CoNS to S. aureus and even to E. coli, although with lower efficiency. CoNS in planktonic form were completely combated by antiseptics after 10 and 60 s exposition, and activity against biofilms was time-dependent. The complete elimination of biofilms was observed after a 180 s exposure to Kodan and CITROclorex, and this exposure to Rivanol and Octenidyne showed still viable cells (>0.9 log CFU/mL). Our findings showed that a careful selection of antiseptics and extending the exposure time before blood collection can reduce the occurrence of blood culture contamination. However, our most important finding is the indication that CoNS naturally occurring on human skin and mucous membranes exhibit antibiotic resistance, and what is more, determinants of antibiotic resistance are transferred to both closely related Gram-positive bacteria and phylogenetically distant Gram-negative bacteria. Thus, our findings shed new light on CoNS-they indicate the necessity of their control due to the effective transfer of mobile genetic elements harboring antibiotic resistance genes, which may contribute to the spread of resistance genes and deepening the antibiotic crisis. | 2025 | 40362661 |
| 5783 | 10 | 0.9993 | Molecular Investigation and Virulence Determination of Methicillin and Vancomycin Resistant Clinical Staphylococcus Aureus Isolates. Staphylococcus aureus is an opportunistic pathogen that provides conditions for host invasion due to various virulence factors and plays a role in causing various infections. The pathogenicity of these bacteria may vary depending on the host's susceptibility. This study investigates the sensitivity of S. aureus strains isolated from clinical samples to methicillin and vancomycin, and it evaluates the presence of resistance, virulence and toxin-producing genes, and their expression level in the methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-intermediate S. aureus (VISA) isolates. A cross-sectional study was conducted, encompassing 502 S. aureus isolates obtained from diverse infections over the course of a year. The methicillin and vancomycin sensitivities of the isolates were ascertained by disk diffusion and microdilution broth methods, respectively. The presence of genes associated with resistance, adhesion, and toxin production was subsequently investigated through the implementation of multiplex polymerase chain reaction (PCR) methodology. The expression levels of virulence and resistance genes were detected in resistant and sensitive isolates using real-time quantitative PCR (qPCR). Among the 502 S. aureus isolates, 168 (33.6%) were identified as MRSA. Furthermore, a total of six isolates (1.2%) were identified as VRSA, and two isolates (0.4%) were identified as VISA. The distribution of virulence and resistance-related genes varied among the isolates. The results of the gene expression study demonstrated that the expression levels of the majority of the studied genes were significantly higher in resistant isolates (MRSA and VRSA) compared to sensitive isolates. It is imperative to acknowledge that VRSA and MRSA are regarded as grave hazards to human health. The present study underscores the necessity for enhanced sanitary measures to more effectively control this hospital pathogen, particularly in light of the presence and expression of genes encoding virulence factors in S. aureus isolates. | 2025 | 40980455 |
| 5045 | 11 | 0.9993 | Emergence of colistin-resistance in extremely drug-resistant Acinetobacter baumannii containing a novel pmrCAB operon during colistin therapy of wound infections. BACKGROUND: Colistin resistance is of concern since it is increasingly needed to treat infections caused by bacteria resistant to all other antibiotics and has been associated with poorer outcomes. Longitudinal data from in vivo series are sparse. METHODS: Under a quality-improvement directive to intensify infection-control measures, extremely drug-resistant (XDR) bacteria undergo phenotypic and molecular analysis. RESULTS: Twenty-eight XDR Acinetobacter baumannii isolates were longitudinally recovered during colistin therapy. Fourteen were susceptible to colistin, and 14 were resistant to colistin. Acquisition of colistin resistance did not alter resistance to other antibiotics. Isolates had low minimum inhibitory concentrations of an investigational aminoglycoside, belonged to multi-locus sequence type 94, were indistinguishable by pulsed-field gel electrophoresis and optical mapping, and harbored a novel pmrC1A1B allele. Colistin resistance was associated with point mutations in the pmrA1 and/or pmrB genes. Additional pmrC homologs, designated eptA-1 and eptA-2, were at distant locations from the operon. Compared with colistin-susceptible isolates, colistin-resistant isolates displayed significantly enhanced expression of pmrC1A1B, eptA-1, and eptA-2; lower growth rates; and lowered fitness. Phylogenetic analysis suggested that colistin resistance emerged from a single progenitor colistin-susceptible isolate. CONCLUSIONS: We provide insights into the in vivo evolution of colistin resistance in a series of XDR A. baumannii isolates recovered during therapy of infections and emphasize the importance of antibiotic stewardship and surveillance. | 2013 | 23812239 |
| 5769 | 12 | 0.9993 | Analysis of Nucleotide Sequences Similarity and Protein Prediction of Some Resistance Genes in Escherichia coli Isolated from Iraqi Patients with Urinary Tract Infections. Antibiotic resistance leads to a dramatic increase in the morbidity and mortality caused by infectious diseases. Even though estimates vary widely, the economic cost of antimicrobial-resistant bacteria is on a rise. The current aimed to identify the antimicrobial resistance of Escherichia coli (E. coli). In fact, this study focused on the recent deep-learning methods (sequencing) to investigate E. coli antibiotic resistance and their protein sequences. To evaluate antibiotic resistance, the sequencing method could be considered the method of choice. The E. coli was identified by either specific biochemical tests or polymerase chain reaction (PCR) using the 16S rRNA gene. The results of aadA1 gene sequences demonstrated 10 nucleic acid substitutions throughout, as compared to the reference NCBI database (MG385063). Out of the 10 nucleic acid substitutions, 9 missense effects were observed. While the dfrA1 gene sequences illustrated 20 nucleic acid substitutions throughout, compared to the reference NCBI database (KY706080), out of the 20 nucleic acid substitutions, 8 missense effects were observed. Furthermore, the sul1 gene sequences displayed 20 nucleic acid substitutions throughout, in comparison with the reference NCBI database (CP069561), and out of the 20 nucleic acid substitutions, 12 missense effects were detected. The cat1 gene sequences showed 14 nucleic acid substitutions throughout, compared to the reference NCBI database (NC017660), and out of the 14 nucleic acid substitutions, 8 missense effects were observed. The precise point (Missense) mutation in four genes (aadA1, dfrA1, sul1, and cat1) in the expected sequence is interpreted to be the target site of a site-specific recombination mechanism that led to antibiotics resistance in E. coli isolates. | 2022 | 36618275 |
| 6250 | 13 | 0.9993 | High prevalence of heteroresistance in Staphylococcus aureus is caused by a multitude of mutations in core genes. Heteroresistance (HR) is an enigmatic phenotype where, in a main population of susceptible cells, small subpopulations of resistant cells exist. This is a cause for concern, as this small subpopulation is difficult to detect by standard antibiotic susceptibility tests, and upon antibiotic exposure the resistant subpopulation may increase in frequency and potentially lead to treatment complications or failure. Here, we determined the prevalence and mechanisms of HR for 40 clinical Staphylococcus aureus isolates, against 6 clinically important antibiotics: daptomycin, gentamicin, linezolid, oxacillin, teicoplanin, and vancomycin. High frequencies of HR were observed for gentamicin (69.2%), oxacillin (27%), daptomycin (25.6%), and teicoplanin (15.4%) while none of the isolates showed HR toward linezolid or vancomycin. Point mutations in various chromosomal core genes, including those involved in membrane and peptidoglycan/teichoic acid biosynthesis and transport, tRNA charging, menaquinone and chorismite biosynthesis and cyclic-di-AMP biosynthesis, were the mechanisms responsible for generating the resistant subpopulations. This finding is in contrast to gram-negative bacteria, where increased copy number of bona fide resistance genes via tandem gene amplification is the most prevalent mechanism. This difference can be explained by the observation that S. aureus has a low content of resistance genes and absence of the repeat sequences that allow tandem gene amplification of these genes as compared to gram-negative species. | 2024 | 38175839 |
| 5945 | 14 | 0.9993 | Mechanisms of linezolid resistance among coagulase-negative staphylococci determined by whole-genome sequencing. Linezolid resistance is uncommon among staphylococci, but approximately 2% of clinical isolates of coagulase-negative staphylococci (CoNS) may exhibit resistance to linezolid (MIC, ≥8 µg/ml). We performed whole-genome sequencing (WGS) to characterize the resistance mechanisms and genetic backgrounds of 28 linezolid-resistant CoNS (21 Staphylococcus epidermidis isolates and 7 Staphylococcus haemolyticus isolates) obtained from blood cultures at a large teaching health system in California between 2007 and 2012. The following well-characterized mutations associated with linezolid resistance were identified in the 23S rRNA: G2576U, G2447U, and U2504A, along with the mutation C2534U. Mutations in the L3 and L4 riboproteins, at sites previously associated with linezolid resistance, were also identified in 20 isolates. The majority of isolates harbored more than one mutation in the 23S rRNA and L3 and L4 genes. In addition, the cfr methylase gene was found in almost half (48%) of S. epidermidis isolates. cfr had been only rarely identified in staphylococci in the United States prior to this study. Isolates of the same sequence type were identified with unique mutations associated with linezolid resistance, suggesting independent acquisition of linezolid resistance in each isolate. IMPORTANCE: Linezolid is one of a limited number of antimicrobials available to treat drug-resistant Gram-positive bacteria, but resistance has begun to emerge. We evaluated the genomes of 28 linezolid-resistant staphylococci isolated from patients. Multiple mutations in the rRNA and associated proteins previously associated with linezolid resistance were found in the isolates investigated, underscoring the multifocal nature of resistance to linezolid in Staphylococcus. Importantly, almost half the S. epidermidis isolates studied harbored a plasmid-borne cfr RNA methylase gene, suggesting that the incidence of cfr may be higher in the United States than previously documented. This finding has important implications for infection control practices in the United States. Further, cfr is commonly detected in bacteria isolated from livestock, where the use of phenicols, lincosamides, and pleuromutilins in veterinary medicine may provide selective pressure and lead to maintenance of this gene in animal bacteria. | 2014 | 24915435 |
| 5467 | 15 | 0.9993 | Whole genome sequencing-based classification of human-related Haemophilus species and detection of antimicrobial resistance genes. BACKGROUND: Bacteria belonging to the genus Haemophilus cause a wide range of diseases in humans. Recently, H. influenzae was classified by the WHO as priority pathogen due to the wide spread of ampicillin resistant strains. However, other Haemophilus spp. are often misclassified as H. influenzae. Therefore, we established an accurate and rapid whole genome sequencing (WGS) based classification and serotyping algorithm and combined it with the detection of resistance genes. METHODS: A gene presence/absence-based classification algorithm was developed, which employs the open-source gene-detection tool SRST2 and a new classification database comprising 36 genes, including capsule loci for serotyping. These genes were identified using a comparative genome analysis of 215 strains belonging to ten human-related Haemophilus (sub)species (training dataset). The algorithm was evaluated on 1329 public short read datasets (evaluation dataset) and used to reclassify 262 clinical Haemophilus spp. isolates from 250 patients (German cohort). In addition, the presence of antibiotic resistance genes within the German dataset was evaluated with SRST2 and correlated with results of traditional phenotyping assays. RESULTS: The newly developed algorithm can differentiate between clinically relevant Haemophilus species including, but not limited to, H. influenzae, H. haemolyticus, and H. parainfluenzae. It can also identify putative haemin-independent H. haemolyticus strains and determine the serotype of typeable Haemophilus strains. The algorithm performed excellently in the evaluation dataset (99.6% concordance with reported species classification and 99.5% with reported serotype) and revealed several misclassifications. Additionally, 83 out of 262 (31.7%) suspected H. influenzae strains from the German cohort were in fact H. haemolyticus strains, some of which associated with mouth abscesses and lower respiratory tract infections. Resistance genes were detected in 16 out of 262 datasets from the German cohort. Prediction of ampicillin resistance, associated with bla(TEM-1D), and tetracycline resistance, associated with tetB, correlated well with available phenotypic data. CONCLUSIONS: Our new classification database and algorithm have the potential to improve diagnosis and surveillance of Haemophilus spp. and can easily be coupled with other public genotyping and antimicrobial resistance databases. Our data also point towards a possible pathogenic role of H. haemolyticus strains, which needs to be further investigated. | 2022 | 35139905 |
| 5825 | 16 | 0.9993 | Polymerase Chain Reaction (PCR) Profiling of Extensively Drug-Resistant (XDR) Pathogenic Bacteria in Pulmonary Tuberculosis Patients. Introduction Pulmonary tuberculosis (TB) remains a global health concern, exacerbated by the emergence of extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis. This study employs advanced molecular techniques, specifically polymerase chain reaction (PCR) profiling, to comprehensively characterize the genetic landscape of XDR pathogenic bacteria in patients diagnosed with pulmonary TB. The objective of the study is to elucidate the genes that are associated with drug resistance in pulmonary TB strains through the application of PCR and analyze specific genetic loci that contribute to the development of resistance against multiple drugs. Materials and methods A total of 116 clinical samples suspected of TB were collected from the tertiary healthcare setting of Saveetha Medical College and Hospitals for the identification of MTB, which includes sputum (n = 35), nasal swabs (n = 17), blood (n = 44), and bronchoalveolar lavage (BAL) (n = 20). The collected specimens were processed and subjected to DNA extraction. As per the protocol, reconstitution of the DNA pellet was carried out. The reconstituted DNA was stored at -20 °C for the PCR assay. From the obtained positive sample specimens, XDR pulmonary TB specimens were focused on the targeted genes, specifically the rpoB gene for rifampicin resistance, inhA, and katG gene for thepromoter region for isoniazid resistance. Results Out of a total of 116 samples obtained, 53 tested positive for pulmonary TB, indicative of a mycobacterial infection. Among these positive cases, 43 patients underwent treatment at a tertiary healthcare facility. Subsequently, a PCR assay was performed with the extracted DNA for the target genes rpoB, inhA, and katG. Specifically, 22 sputum samples exhibited gene expression for rpoB, inhA, and katG, while nine nasal swabs showed expression of the rpoB and inhA genes. Additionally, rpoB gene expression was detected in seven blood specimens, and both rpoB and inhA genes were expressed in five BAL samples. Conclusion The swift diagnosis and efficient treatment of XDR-TB can be facilitated by employing advanced and rapid molecular tests and oral medication regimens. Utilizing both newly developed and repurposed anti-TB drugs like pretomanid, bedaquiline, linezolid, and ethionamide. Adhering to these current recommendations holds promise for managing XDR-TB effectively. Nevertheless, it is significant to conduct well-designed clinical trials and studies to further evaluate the efficacy of new agents and shorter treatment regimens, thus ensuring continuous improvement in the management of this challenging condition. | 2024 | 38953074 |
| 5823 | 17 | 0.9992 | Comparing Patient Risk Factor-, Sequence Type-, and Resistance Locus Identification-Based Approaches for Predicting Antibiotic Resistance in Escherichia coli Bloodstream Infections. Rapid diagnostic tests for antibiotic resistance that identify the presence or absence of antibiotic resistance genes/loci are increasingly being developed. However, these approaches usually neglect other sources of predictive information which could be identified over shorter time periods, including patient epidemiologic risk factors for antibiotic resistance and markers of lineage. Using a data set of 414 Escherichia coli isolates recovered from separate episodes of bacteremia at a single academic institution in Toronto, Ontario, Canada, between 2010 and 2015, we compared the potential predictive ability of three approaches (epidemiologic risk factor-, pathogen sequence type [ST]-, and resistance gene identification-based approaches) for classifying phenotypic resistance to three antibiotics representing classes of broad-spectrum antimicrobial therapy (ceftriaxone [a 3rd-generation cephalosporin], ciprofloxacin [a fluoroquinolone], and gentamicin [an aminoglycoside]). We used logistic regression models to generate model receiver operating characteristic (ROC) curves. Predictive discrimination was measured using apparent and corrected (bootstrapped) areas under the curves (AUCs). Epidemiologic risk factor-based models based on two simple risk factors (prior antibiotic exposure and recent prior susceptibility of Gram-negative bacteria) provided a modest predictive discrimination, with AUCs ranging from 0.65 to 0.74. Sequence type-based models demonstrated strong discrimination (AUCs, 0.83 to 0.94) across all three antibiotic classes. The addition of epidemiologic risk factors to sequence type significantly improved the ability to predict resistance for all antibiotics (P < 0.05). Resistance gene identification-based approaches provided the highest degree of discrimination (AUCs, 0.88 to 0.99), with no statistically significant benefit being achieved by adding the patient epidemiologic predictors. In summary, sequence type or other lineage-based approaches could produce an excellent discrimination of antibiotic resistance and may be improved by incorporating readily available patient epidemiologic predictors but are less discriminatory than identification of the presence of known resistance loci. | 2019 | 30894438 |
| 5982 | 18 | 0.9992 | Genetic diversity of penicillin-binding protein 2B and 2X genes from Streptococcus pneumoniae in South Africa. Streptococcus pneumoniae (the pneumococcus) is believed to have developed resistance to penicillin by the production of altered forms of penicillin-binding proteins (PBPs) that have decreased affinity for penicillin. Sixty-eight clinical isolates of serogroup 6 and 19 pneumococci (MICs, < 0.015 to 8 micrograms/ml) were randomly selected from hospitals across South Africa which are at substantial geographic distance from each other. The polymerase chain reaction was used to isolate the penicillin-binding domain of PBPs 2B and 2X from the chromosomal DNAs of the bacteria; the purified PBP DNA was digested with restriction enzymes, the fragments were end-labelled and separated on polyacrylamide gels, and the DNA fingerprints were visualized following autoradiography. Fingerprint analysis revealed that at least 19 PBP 2B gene variants occur in the serogroup 6 and 19 pneumococci. The PBP 2B gene revealed a uniform profile among penicillin-susceptible isolates, with variation from this profile occurring only in isolates for which MICs were > or = 0.06 micrograms/ml. Analysis of the PBP 2X gene revealed a greater diversity in the population with 26 variant genes, including some diversity among susceptible isolates. Discrete profiles of both genes were found only within narrow bands of the penicillin MIC, so that the gene pattern predicted the MIC. PBP 2X gene variation and the lack of variability among PBP 2B genes in pneumococci inhibited at low MICs confirm that PBP 2X alteration may be responsible for low-level penicillin resistance, while alterations in both PBP 2B and PBP 2X are required for high-level resistance. The extensive diversity of PBP genes in South African serogroup 6 and 19 strains suggests that altered PBP genes have arisen frequently in this population. | 1993 | 8239609 |
| 4747 | 19 | 0.9992 | Linezolid versus vancomycin in vitro activity against methicillin-resistant Staphylococcus aureus biofilms. Most microorganisms as well as bacteria live in a community under natural conditions. Bacteria adopted to biofilm mode of life more than 3 billion years ago to survive extreme, harsh environments. They become harmful when they acquire resistance to antibiotics and overcome the standard therapies, which is most commonly found in hospitals. Therefore, many studies have been published regarding antimicrobial resistance (AMR). Staphylococcus aureus is a dangerous pathogen, ubiquitously prevalent as a commensal and opportunistic microorganism in human populations. Methicillin-resistant Staphylococcus aureus (MRSA) is considered one of the major medical problems worldwide since they are frequent colonizers of implanted medical devices causing a variety of hospital-acquired infections. For many years, vancomycin has been the drug of choice for MRSA whereas linezolid is considered the last resort drug. This comparative, cross-sectional study investigated the effects of linezolid on biofilm formation in vitro compared to vancomycin across 85 MRSA isolates. To our knowledge, this is the first study to report high levels of linezolid resistance in MRSA in Iraq. In this brief report, 5 MRSA strains showed resistance to linezolid, with minimum inhibitory concentration (MIC) values of 256 μg/ml. The exact same isolates exhibited vancomycin resistance with MIC values of 1024 μg/ml. All linezolid-resistant MRSA (LR-MRSA) strains demonstrated biofilm formation ability. Additionally, linezolid inhibited the expression of adhesion-related genes cna and clfB. The authors concluded that linezolid exerts a comparable effect to vancomycin in biofilm treatment. | 2025 | 39947358 |