# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5786 | 0 | 1.0000 | Characterisation of Bacterial Isolates from Infected Post-Operative Patients in a Malaysian Tertiary Heart Care Centre. Several bacterial species cause post-operative infections, which has been a critical health concern among hospital patients. Our study in this direction is a much-needed exploratory study that was carried out at the National Heart Institute (IJN) of Malaysia to examine the virulence properties of causative bacteria obtained from postoperative patients. The bacterial isolates and data were provided by the IJN. Antibiotic resistance gene patterns, and the ability to form biofilm were investigated for 127 isolates. Klebsiella pneumoniae (36.2%) was the most common isolate collected, which was followed by Pseudomonas aeruginosa (26%), Staphylococcus aureus (23.6%), Streptococcus spp. (8.7%) and Acinetobacter baumannii (5.5%). There were 49 isolates that showed the presence of multidrug resistance genes. The mecA gene was surprisingly found in methicillin-susceptible S. aureus (MSSA), which also carried the ermA gene from those erythromycin-susceptible strains. The phenotypic antibiotic resistance profiles varied greatly between isolates. Findings from the biofilm assay revealed that 44 of the 127 isolates demonstrated the ability to produce biofilms. Our findings provide insights into the possibility of some of these bacteria surviving under antibiotic stress, and some antibiotic resistance genes being silenced. | 2021 | 34574752 |
| 5787 | 1 | 0.9999 | Investigation of the association of virulence genes and biofilm production with infection and bacterial colonization processes in multidrug-resistant Acinetobacter spp. The aim of this study was to evaluate the phenotypic and molecular patterns of biofilm formation in infection and colonization isolates of Acinetobacter spp. from patients who were admitted in a public hospital of Recife-PE-Brazil in 2018-2019. For the biofilm phenotypic analysis, Acinetobacter spp. isolates were evaluated by the crystal violet staining method; the search of virulence genes (bap, ompA, epsA, csuE and bfmS) was performed by PCR; and the ERIC-PCR was performed for molecular typing. Amongst the 38 Acinetobacter spp. isolates, 20 were isolated from infections and 18 from colonization. The resistance profile pointed that 86.85% (33/38) of the isolates were multidrug-resistant, being three infection isolates, and two colonization isolates resistant to polymyxin B. All the isolates were able to produce biofilm and they had at least one of the investigated virulence genes on their molecular profile, but the bap gene was found in 100% of them. No clones were detected by ERIC-PCR. There was no correlation between biofilm formation and the resistance profile of the bacteria, neither to the molecular profile of the virulence genes. Thus, the ability of Acinetobacter spp. to form biofilm is probably related to the high frequency of virulence genes. | 2021 | 34550209 |
| 5785 | 2 | 0.9999 | Molecular characterization of resistance and biofilm genes of ESKAPE pathogens isolated from clinical samples: examination of the effect of boric acid on biofilm ability by cell culture method. Biofilm formation ranks first among the resistance and virulence factors crucial in forming ESKAPE pathogens. Once biofilm is formed, treating the infection with existing drugs is often futile. Therefore, in this study, resistant ESKAPE pathogens were isolated from intensive care units and sent to Atatürk University Yakutiye Research Hospital Microbiology Laboratory. This study investigated the biofilm formation and molecular characterization of resistant ESKAPE pathogens isolated from intensive care units. The bacteria's biofilm formation abilities, genes responsible for biofilm formation, and resistance characteristics were identified. The effect of boric acid (BA) on resistance and bacterial genes was evaluated by a bacterial infection cell culture model. The highest biofilm formation was observed in Escherichia coli, Enterococcus spp., and Pseudomonas aeruginosa Enterococcus spp. isolates showed the vanA gene in 14.6% and the vanC gene in 61% of the samples. Among Staphylococcus spp. isolates, 48.3% were MSSA, 34.5% were MRCNS, and 17.2% were MRSA. The KPC gene was detected in 50%, the OXA-48 gene in 40%, and the NDM gene in 15% of the isolates. In P. aeruginosa, the LasI and LasR quorum sensing system genes were found in 38.5% and 30.8% of the isolates, respectively. In E. coli isolates, OXA-48 was present in 35%, KPC in 31.7%, and TEM in 12.5%. BA demonstrated significant activity against ESKAPE pathogens. The combined antimicrobial activity of boron compounds showed a decrease in the expression level of the resistance gene. It will be promising for preventing hospital-associated infections. | 2025 | 40025436 |
| 5539 | 3 | 0.9999 | Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile. Bovine mastitis is a common disease worldwide, and staphylococci are one of the most important etiological factors of this disease. Staphylococcus aureus show adaptability to new conditions, by which monitoring their virulence and antibiotic resistance mechanisms is extremely important, as it can lead to the development of new therapies and prevention programs. In this study, we analyzed Staphylococcus aureus (n = 28) obtained from dairy cattle with subclinical mastitis in Poland. The sensitivity of the isolated strains to antibiotics were confirmed by the disc diffusion method. Additionally, minimum inhibitory concentration values were determined for vancomycin, cefoxitin and oxacillin. Genotyping was performed by two methods: PCR melting profile and MLVF-PCR (multiple-locus variable-number tandem-repeat fingerprinting). Furthermore, the presence of antibiotic resistance and virulence genes were checked using PCR reactions. The analyzed strains showed the greatest resistance to penicillin (57%), oxytetracycline (25%) and tetracycline (18%). Among the analyzed staphylococci, the presence of 9 of 15 selected virulence-related genes was confirmed, of which the icaD, clfB and sea genes were confirmed in all staphylococci. Biofilm was observed in the great majority of the analyzed bacteria (at least 70%). In the case of genotyping among the analyzed staphylococci (combined analysis of results from two methods), 14 patterns were distinguished, of which type 2 was the dominant one (n = 10). This study provides new data that highlights the importance of the dominance of biofilm over antibiotic resistance among the analyzed strains. | 2022 | 36558738 |
| 5780 | 4 | 0.9998 | Antibiotic resistance, biofilm formation, and virulence genes of Streptococcus agalactiae serotypes of Indian origin. BACKGROUND: Group B Streptococcus (GBS) is a causative agent of various infections in newborns, immunocompromised (especially diabetic) non-pregnant adults, and pregnant women. Antibiotic resistance profiling can provide insights into the use of antibiotic prophylaxis against potential GBS infections. Virulence factors are responsible for host-bacteria interactions, pathogenesis, and biofilm development strategies. The aim of this study was to determine the biofilm formation capacity, presence of virulence genes, and antibiotic susceptibility patterns of clinical GBS isolates. RESULTS: The resistance rate was highest for penicillin (27%; n = 8 strains) among all the tested antibiotics, which indicates the emergence of penicillin resistance among GBS strains. The susceptibility rate was highest for ofloxacin (93%; n = 28), followed by azithromycin (90%; n = 27). Most GBS strains (70%; n = 21) were strong biofilm producers and the rest (30%; n = 9) were moderate biofilm producers. The most common virulence genes were cylE (97%), pavA (97%), cfb (93%), and lmb (90%). There was a negative association between having a strong biofilm formation phenotype and penicillin susceptibility, according to Spearman's rank correlation analysis. CONCLUSION: About a third of GBS strains exhibited penicillin resistance and there was a negative association between having a strong biofilm formation phenotype and penicillin susceptibility. Further, both the strong and moderate biofilm producers carried most of the virulence genes tested for, and the strong biofilm formation phenotype was not associated with the presence of any virulence genes. | 2023 | 37407919 |
| 2363 | 5 | 0.9998 | Analysis of distribution and antibiotic resistance of Gram-positive bacteria isolated from a tertiary-care hospital in southern China: an 8-year retrospective study. OBJECTIVE: Due to the severe drug resistance situation of Gram-negative bacteria, especially Gram-negative enterobacter, relatively little attention has been paid to the changes in Gram-positive bacteria species and drug resistance. Therefore, this study analyzed the prevalence and drug resistance of Gram-positive bacteria in a general tertiary-care hospital from 2014 to 2021, in order to discover the changes in Gram-positive bacteria distribution and drug resistance that cannot be easily identified, inform clinicians in their respective regions when selecting antimicrobial agents, and to provide the basis for the diagnosis of Gram-positive bacterial infection, and for the comprehensive and multi-pronged prevention and control of drug-resistant bacteria. METHODS: A retrospective study was conducted on Gram-positive bacteria isolated from patients presented to a general tertiary-care hospital from January 2014 to December 2021. A total of 15,217 Gram-positive strains were analyzed. RESULTS: During the 8-year period, the total number and the species of Gram-positive bacteria isolated from clinic increased continuously. The seven most common species were Streptococcus pneumoniae (21.2%), Staphylococcus aureus (15.9%), Enterococcus faecium (20.6%), Enterococcus faecalis (14.0%), and Staphylococcus epidermidis (7.8%), Staphylococcus haemolyticus (4.8%), Streptococcus agalactiae (3.6%). The isolation rates of Staphylococcus aureus and Streptococcus agalactiae increased, and the isolation rate of Enterococcus faecium decreased. The resistance rates of Staphylococcus aureus to erythromycin, clindamycin, tetracycline, rifampicin and furantoin decreased obviously. The resistance rates of Streptococcus pneumoniae to cefepime (non-meningitis) and ceftriaxone (meningitis) decreased significantly. The resistance rates of Enterococcus faecium to penicillin, ampicillin, erythromycin, levofloxacin, ciprofloxacin and furantoin rose rapidly from 50.3, 47.6, 71.5, 44.9, 52.3, and 37.5% in 2014 to 93.1, 91.6, 84.9, 86.8, 86.8, and 60.0% in 2021, respectively. CONCLUSION: The total number and the species of Gram-positive bacteria isolated during the 8-year period increased continuously. Streptococcus pneumoniae and Staphylococcus aureus are the main causes of positive bacterial infections in this hospital. The resistance rates of Enterococcus faecium to a variety of commonly used antibiotics increased significantly. Therefore, it is very important to monitor the distribution of bacteria and their resistance to antibiotics to timely evaluate and identify changes in drug resistance that are not easily detected. | 2023 | 37840716 |
| 5783 | 6 | 0.9998 | Molecular Investigation and Virulence Determination of Methicillin and Vancomycin Resistant Clinical Staphylococcus Aureus Isolates. Staphylococcus aureus is an opportunistic pathogen that provides conditions for host invasion due to various virulence factors and plays a role in causing various infections. The pathogenicity of these bacteria may vary depending on the host's susceptibility. This study investigates the sensitivity of S. aureus strains isolated from clinical samples to methicillin and vancomycin, and it evaluates the presence of resistance, virulence and toxin-producing genes, and their expression level in the methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-intermediate S. aureus (VISA) isolates. A cross-sectional study was conducted, encompassing 502 S. aureus isolates obtained from diverse infections over the course of a year. The methicillin and vancomycin sensitivities of the isolates were ascertained by disk diffusion and microdilution broth methods, respectively. The presence of genes associated with resistance, adhesion, and toxin production was subsequently investigated through the implementation of multiplex polymerase chain reaction (PCR) methodology. The expression levels of virulence and resistance genes were detected in resistant and sensitive isolates using real-time quantitative PCR (qPCR). Among the 502 S. aureus isolates, 168 (33.6%) were identified as MRSA. Furthermore, a total of six isolates (1.2%) were identified as VRSA, and two isolates (0.4%) were identified as VISA. The distribution of virulence and resistance-related genes varied among the isolates. The results of the gene expression study demonstrated that the expression levels of the majority of the studied genes were significantly higher in resistant isolates (MRSA and VRSA) compared to sensitive isolates. It is imperative to acknowledge that VRSA and MRSA are regarded as grave hazards to human health. The present study underscores the necessity for enhanced sanitary measures to more effectively control this hospital pathogen, particularly in light of the presence and expression of genes encoding virulence factors in S. aureus isolates. | 2025 | 40980455 |
| 5537 | 7 | 0.9998 | Four novel Acinetobacter lwoffii strains isolated from the milk of cows in China with subclinical mastitis. BACKGROUND: Acinetobacter lwoffii (A. lwoffii) is a Gram-negative bacteria common in the environment, and it is the normal flora in human respiratory and digestive tracts. The bacteria is a zoonotic and opportunistic pathogen that causes various infections, including nosocomial infections. The aim of this study was to identify A. lwoffii strains isolated from bovine milk with subclinical mastitis in China and get a better understanding of its antimicrobial susceptibility and resistance profile. This is the first study to analyze the drug resistance spectrum and corresponding mechanisms of A. lwoffii isolated in raw milk. RESULTS: Four A. lwoffii strains were isolated by PCR method. Genetic evolution analysis using the neighbor-joining method showed that the four strains had a high homology with Acinetobacter lwoffii. The strains were resistant to several antibiotics and carried 17 drug-resistance genes across them. Specifically, among 23 antibiotics, the strains were completely susceptible to 6 antibiotics, including doxycycline, erythromycin, polymyxin, clindamycin, imipenem, and meropenem. In addition, the strains showed variable resistance patterns. A total of 17 resistance genes, including plasmid-mediated resistance genes, were detected across the four strains. These genes mediated resistance to 5 classes of antimicrobials, including beta-lactam, aminoglycosides, fluoroquinolones, tetracycline, sulfonamides, and chloramphenicol. CONCLUSION: These findings indicated that multi-drug resistant Acinetobacter lwoffii strains exist in raw milk of bovine with subclinical mastitis. Acinetobacter lwoffii are widespread in natural environmental samples, including water, soil, bathtub, soap box, skin, pharynx, conjunctiva, saliva, gastrointestinal tract, and vaginal secretions. The strains carry resistance genes in mobile genetic elements to enhance the spread of these genes. Therefore, more attention should be paid to epidemiological surveillance and drug resistant A. lwoffii. | 2024 | 38918815 |
| 5788 | 8 | 0.9998 | Shifting of Distribution and Changing of Antibiotic Resistance in Gram-Positive Bacteria from Bile of Patients with Acute Cholangitis. BACKGROUND: Gram-negative bacteria are the predominant pathogens responsible for biliary infections; however, the prevalence of Gram-positive bacteria is currently increasing. Investigating the bacterial spectrum and evolving antibiotic resistance patterns of Gram-positive bacteria is crucial for optimizing the management of acute cholangitis, particularly in the context of the global rise in antibiotic resistance. METHODS: This retrospective analysis focused on Gram-positive bacteria isolated from the bile of patients undergoing biliary drainage with acute cholangitis at our hospital from January 1, 2018, to March 31, 2024. In total, 342 strains of Gram-positive bacteria were examined. RESULTS: The main Gram-positive bacteria detected included Enterococcus (57.23%), Staphylococcus (23.41%), and Streptococcus (13.01%). The most common species detected were Enterococcus faecium (36.42%), Enterococcus faecalis (14.16%), and Staphylococcus epidermidis (7.80%). Trend analysis revealed a decrease in the proportion of Enterococcus and an increase in Streptococcus. Additionally, the detection rate of methicillin-resistant Staphylococcus (MRS) showed a significant rise. Gram-positive bacteria exhibited high resistance to erythromycin and penicillin but remained highly susceptible to linezolid and vancomycin. Further, resistance to quinolones among Gram-positive bacteria was notably elevated. CONCLUSION: The bacterial spectrum and antibiotic resistance patterns of Gram-positive bacteria in acute cholangitis have undergone significant changes. Penicillin is not recommended for the treatment of Gram-positive bacterial infections. Antibiotic resistance should be closely monitored when using quinolones. Particular attention is warranted regarding the markedly increasing antibiotic resistance of Enterococcus faecium. | 2025 | 40034266 |
| 1705 | 9 | 0.9998 | Formation ability and drug resistance mechanism of Klebsiella pneumoniae biofilm and capsule for multidrug-resistant. This study was to explore the formation ability of biofilm and capsule and the drug resistance mechanism for multidrug-resistant Klebsiella pneumoniae. firstly, 55 strains of K. pneumoniae were screened out from the body fluid specimens of the laboratory. The strains were drug-resistant, and the characteristics of clinical infections of these strains were analyzed. Secondly, all strains were tested for the presence of biofilms and capsules, and then the deoxyribonucleic acid (DNA) genomes of the strains extracted were detected using polymerase chain reaction (PCR) technology. Finally, the serotype genes and virulence genes of the strains were screened, and the relationship between these two genes and the formation of capsules and biofilms was analyzed and compared. A new generation of sequencing technology was applied to analyze the genome structure of K. pneumoniae, comparative genomics technology was adopted to analyze the drug resistance plasmids, and molecular cloning and other methods were utilized to clone the drug resistance-related genes. of the 55 strains of K. pneumoniae isolated clinically, 61.8% came from blood with a total number of 34 strains; 8 strains were from secretion specimens (accounting for 14.5% of the total); and 7 strains were from drainage fluid (accounting for 12.7% of the total), including 2 strains from pus, bile, and pleural fluid, respectively. The strains were tested by PCR, of which iroN virulence genes were the most (34 strains), accounting for 61.8%, followed by wabG and fimH (33 strains, accounting for 60% of the total), followed by magA, K2, K20, K1, and K57. The positive rates of the two virulence genes (fimH and wabG) were higher in positive strains of biofilm. The drug susceptibility results showed that ampicillin and amoxicillin were more resistant to capsule-positive strains than the capsule-negative strains. K. pneumoniae had been able to form a complete capsule and biofilm, the formation rate of biofilm was higher than that of the capsule, and there was an increasing trend. The two serotype genes (K20 and K2) accounted for relatively high proportions, and K. pneumoniae carried relatively more virulence genes (wabG and fimH), which may be closely related to the capsule production of K. pneumoniae. In addition, resistance-related genes were also transferred horizontally in different strains of bacteria, forming a wide range of drug resistance, which brought great difficulties to clinical work. | 2023 | 37953580 |
| 5791 | 10 | 0.9998 | Revisiting the Frequency and Antimicrobial Resistance Patterns of Bacteria Implicated in Community Urinary Tract Infections. Urinary tract infections (UTIs) are one of the most common infectious diseases at the community level. The continue misuse of antimicrobials is leading to an increase in bacterial resistance, which is a worldwide problem. The objective of this work was to study the incidence and pattern of antimicrobial resistance of the main bacteria responsible for UTI in the community of central and northern Portugal, and establish an appropriate empirical treatment. The urine samples were collected in Avelab—Laboratório Médico de Análises Clínicas over a period of 5 years (2015−2019). The urine cultures were classified as positive when bacterial growth was equal to or higher than 105 CFU/mL, and only for these cases, an antimicrobial susceptibility test was performed. Of the 106,019 samples analyzed, 15,439 had a urinary infection. Urinary infections were more frequent in females (79.6%) than in males (20.4%), affecting more elderly patients (56.9%). Escherichia coli (70.1%) was the most frequent uropathogen, followed by Klebsiella pneumoniae (8.9%). The bacteria responsible for UTI varied according to the patient’s sex, with the greatest differences being observed for Enterococcus faecalis and Pseudomonas aeruginosa, these being more prevalent in men. In general, there was a growth in bacterial resistance as the age of the patients increased. The resistance of bacteria in male patients was, in most cases, statistically different (Chi-Square test, p < 0.05) from that observed for bacteria isolated from female patients, showing, in general, higher resistance in male patients. Although E. coli was the most responsible uropathogen for UTI, it was among the bacteria most susceptible to antibiotics. The isolates of K. pneumoniae, Proteus vulgaris and Enterobacter showed high resistance to the tested antimicrobials. The most common multidrug-resistant (MDR) bacteria implicated in UTI were K. pneumoniae (40.4%) and P. aeruginosa (34.7%), but E. coli, the most responsible bacteria for UTI, showed a MDR of 23.3%. When we compared our results with the results from 10 years ago for the same region, in general, an increase in bacterial resistance was observed. The results of this study confirmed that urinary tract infections are a very common illness, caused frequently by resistant uropathogens, for which the antibiotic resistance profile has varied over a short time, even within a specific region. This indicates that periodically monitoring the microbial resistance of each region is essential in order to select the best empirical antibiotic therapy against these infections, and prevent or decrease the resistance among uropathogenic strains. | 2022 | 35740174 |
| 5784 | 11 | 0.9998 | Identification and characterization of bacteria isolated from patients with cystic fibrosis in Jordan. BACKGROUND: Notable emergence of multidrug-resistant bacteria has become increasingly problematic worldwide. Most patients with cystic fibrosis (CF) suffer from chronic persistent infections with frequent occurrence of acute exacerbations. Routine screening of bacterial strains, epidemiological characteristics, and resistance patterns are particularly useful for patient management and maintenance of infection control procedures. METHODS: In this study, 43 pharyngeal samples were taken from patients with CF. Microbiological bacterial culture and identification, antimicrobial susceptibility testings, biofilm formation, including minimum biofilm eradication concentration (MBEC) and PCR for detecting resistance genes were performed. RESULTS: All samples were positive for bacterial growth. The predominant species were Staphylococcus aureus (41.86%; n = 18) and Pseudomonas aeruginosa (39.53%; n = 17). 30% of isolated bacteria were multidrug-resistant, resisting high concentrations of tested antibiotics. Among the 42 biofilm-forming isolates, 23.8% (n = 10) were strong biofilm formers. The occurance of resistance genes varied with blaKPC detected in 71% (n = 17) of all Gram-negative isolates and mecA found in 61% (n = 11) of all S. aureus strains. CONCLUSIONS: The majority of isolated bacteria were S. aureus and P. aeruginosa. The high frequency of antimicrobial resistance, the presence of resistance genes, and biofilm formation highlight the challenge in treatment and infection control measures in patients with CF.KEY MESSAGESStaphylococcus aureus and Pseudomonas aeruginosa are the most prevalent pathogens found in patients with CF in Jordan.Detection of antimicrobial resistance genes in patients with CF confirms that antimicrobial resistance patterns must always be monitored.Biofilm formation significantly increases the tolerance of bacteria to antimicrobial agents. | 2022 | 36264155 |
| 2302 | 12 | 0.9998 | Antibiotic resistance and its correlation with biofilm formation and virulence genes in Klebsiella pneumoniae isolated from wounds. Klebsiella pneumoniae is the most important species of the Klebsiella genus and often causes hospital infections. These bacteria have a high resistance to most of the available drugs, which has caused concern all over the world. In this study, we investigated the antibiotic resistance profile and the ability to produce extended-spectrum beta-lactamase (ESBL) among K. pneumoniae isolates, and then we investigated the relationship between these two factors with biofilm formation and the prevalence of different virulence genes. In this study, 130 isolates of K. pneumoniae isolated from wounds were investigated. The antibiotic resistance of the isolates was evaluated by the disk diffusion method. The microtiter plate method was used to measure biofilm formation. The prevalence of virulence genes was detected by multiplex PCR. Among the examined isolates, 85.3% showed multidrug resistance. 87.6% of the isolates were ESBL-positive. Imipenem, meropenem, and fosfomycin were the most effective drugs. The ability of the isolates to produce biofilm was strong (80%), moderate (12.3%), and weak (7.6%), respectively. fimH, mrKD, entB, and tolC virulence genes were observed in all isolates. High prevalence of antibiotic resistance (especially multidrug resistance), high prevalence of ESBL-producing isolates, the ability of all isolates to biofilm formation, and the presence of fimH, mrKD, entB, and tolC virulence genes in all isolates show the importance of these factors in the pathogenesis of K. pneumoniae isolates in Iraq. | 2024 | 39031267 |
| 5538 | 13 | 0.9998 | Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. Mastitis of dairy cattle is one of the most frequently diagnosed diseases worldwide. The main etiological agents of mastitis are bacteria of the genus Streptococcus spp., in which several antibiotic resistance mechanisms have been identified. However, detailed studies addressing this problem have not been conducted in northeastern Poland. Therefore, the aim of our study was to analyze, on phenotypic and genotypic levels, the antibiotic resistance pattern of Streptococcus spp. isolated from clinical cases of mastitis from dairy cattle in this region of Poland. The research was conducted using 135 strains of Streptococcus (Streptococcus uberis, n = 53; Streptococcus dysgalactiae, n = 41; Streptococcus agalactiae, n = 27; other streptococci, n = 14). The investigation of the antimicrobial susceptibility to 8 active substances applied in therapy in the analyzed region, as well as a selected bacteriocin (nisin), was performed using the minimum inhibitory concentration method. The presence of selected resistance genes (n = 14) was determined via PCR. We also investigated the correlation between the presence of resistance genes and the antimicrobial susceptibility of the examined strains in vitro. The highest observed resistance of Streptococcus spp. was toward gentamicin, kanamycin, and tetracycline, whereas the highest susceptibility occurred toward penicillin, enrofloxacin, and marbofloxacin. Additionally, the tested bacteriocin showed high efficacy. The presence of 13 analyzed resistance genes was observed in the examined strains [gene mef(A) was not detected]. In most strains, at least one resistance gene, mainly responsible for resistance to tetracyclines [tet(M), tet(K), tet(L)], was observed. However, a relationship between the presence of a given resistance gene and antimicrobial susceptibility on the phenotypic level was not always observed. | 2017 | 28601447 |
| 1960 | 14 | 0.9998 | Phenotypic Investigation and Detection of Biofilm-Associated Genes in Acinetobacter baumannii Isolates, Obtained from Companion Animals. Bacteria of the genus Acinetobacter, especially Acinetobacter baumannii (Ab), have emerged as pathogens of companion animals during the last two decades and are commonly associated with hospitalization and multidrug resistance. A critical factor for the distribution of relevant strains in healthcare facilities, including veterinary facilities, is their adherence to both biotic and abiotic surfaces and the production of biofilms. A group of 41 A. baumannii isolates obtained from canine and feline clinical samples in Greece was subjected to phenotypic investigation of their ability to produce biofilms using the tissue culture plate (TCP) method. All of them (100%) produced biofilms, while 23 isolates (56.1%) were classified as strong producers, 11 (26.8%) as moderate producers, and 7 (17.1%) as weak producers. A correlation between the MDR and XDR phenotypes and weak or moderate biofilm production was identified. Moreover, the presence of four biofilm-associated genes bap, bla(PER), ompA, and csuE was examined by PCR, and they were detected in 100%, 65.9%, 97.6%, and 95.1% of the strains respectively. All isolates carried at least two of the investigated genes, whereas most of the strong biofilm producers carried all four genes. In conclusion, the spread and persistence of biofilm-producing Ab strains in veterinary facilities is a matter of concern, since they are regularly obtained from infected animals, indicating their potential as challenging pathogens for veterinarians due to multidrug resistance and tolerance in conventional eradication measures. Furthermore, considering that companion animals can act as reservoirs of relevant strains, public health concerns emerge. | 2024 | 38787042 |
| 2303 | 15 | 0.9998 | Patterns of Drug-Resistant Bacteria in a General Hospital, China, 2011-2016. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential. | 2019 | 31250593 |
| 2316 | 16 | 0.9998 | Clinical Klebsiella pneumoniae isolates and their efflux pump mechanism for antibiotic resistance challenge. BACKGROUND: Klebsiella pneumoniae is a serious pathogen that causes many disorders in humans and animals. Klebsiella pneumoniae, which is one of the most important pathogens in hospitals, often causes many clinical manifestations, including pneumonia, urinary tract infections, and meningitis. Interest in this bacterium has increased due to the increasing incidence of infection caused by it, as well as its high resistance to antibiotics, especially broad-spectrum antibiotics. AIM: This study showed the efflux pump mechanism of clinical K. pneumoniae isolates and antibiotic resistance in samples collected from sheep and human respiratory tract infection in southern Iraq. METHODS: Three hundred samples were collected, and the samples included: 150 nasal swabs from sheep and 150 sputum samples from humans. Through bacteriological and biochemical examinations. The isolates were identified K. pneumoniae isolates were also confirmed by 16S rRNA. Susceptibility testing of the antibiotics used in the study. To determine the phenotypic efflux pump activity, the agar ethidium bromide cartwheel method was used. RESULTS: Of 150 sputum human specimens and 150 nasal swabs from sheep were tested, 25 and 17 K. pneumoniae species isolates from patients and sheep, respectively, for the resistance of the bacteria isolated from humans to antibiotics. The highest rate of resistance was to piperacillin (88%), and the lowest rate was to antibiotics (36%), imipenem. The highest of bacterial susceptibility to the antibiotic imipenem was (44%) and (36%) for levofloxacin, respectively. For the bacterial isolates from sheep, the highest percentage of resistance to rifampin was (82.3%), and the highest percentage of sensitivity was to imipenem and Levofloxacin antibiotics. The results showed that most of the 39 bacterial isolates (92.8%) possessed an efflux pump mechanism. The result of genotyping to identify the efflux pump genes tolC and acrAB revealed that all isolates carried the genes. CONCLUSION: All the isolates were resistant to antibiotics, and the bacterial isolates under study most possess the efflux pump mechanism. All bacteria also have efflux pump genes, and this gives the bacteria more resistance against many antibiotics. | 2025 | 41036356 |
| 5790 | 17 | 0.9998 | Activity Assessment of Antibiotics Used Against Different Bacterial Etiological Agents of UTI in Najaf, Iraq. BACKGROUND & OBJECTIVE: Antibiotic resistance in urinary tract infection (UTI) is increasing nowadays, therefore, the aim of this study was to evaluate the resistance patterns of many pathogens toward several antibiotics that are in common use in our hospitals. METHODS: Subculture and identification of pathogenic bacteria were performed on 1148 hospitals' bacterial primary cultures which were considered positive for UTI. An antibiotic sensitivity test was performed by using the disc diffusion method. The rates of resistance were statistically analyzed and correlated with the types of antibiotics and bacteria. RESULTS: It was found that 1148 out of 2087 urine samples were UTI positive, the majority of cases (76%) were from females (P<0.0001). Escherichia coli and Klebsiella were the most isolated Gram-negative bacteria, while Staphylococcus spp. was the most isolated Gram-positive pathogen. E. coli showed the highest resistance rate among all bacteria, while Streptococcus spp. was the most sensitive. The highest resistance was noticed to be against gentamicin and ampicillin, while the most effective drugs were imipenem and amikacin. There was a significant difference in resistance rates among the different bacterial categories (P<0.0001), while no significant difference was noticed in resistance rates among antibiotics categories (P>0.05). CONCLUSION: Elevated rates of antibiotic resistance were noticed in this study in UTI-causing bacteria; therefore, it is highly important at least to every general hospital to investigate the antibiotic resistance rates occasionally to determine the proper antimicrobial treatment as well as re-evaluate antibiotics which were considered as empirical. | 2024 | 39687449 |
| 2350 | 18 | 0.9998 | Antibiotic Resistance Profiles and MLST Typing of Staphylococcus Aureus Clone Associated with Skin and Soft Tissue Infections in a Hospital of China. OBJECTIVE: To analyze the antibiotic resistance profile, virulence genes, and molecular typing of Staphylococcus aureus (S. aureus) strains isolated in skin and soft tissue infections at the First Affiliated Hospital, Gannan Medical University, to better understand the molecular epidemiological characteristics of S. aureus. METHODS: In 2023, 65 S. aureus strains were isolated from patients with skin and soft tissue infections. Strain identification and susceptibility tests were performed using VITEK 2 and gram-positive bacteria identification cards. DNA was extracted using a DNA extraction kit, and all genes were amplified using polymerase chain reaction. Multilocus sequence typing (MLST) was used for molecular typing. RESULTS: In this study, of the 65 S. aureus strains were tested for their susceptibility to 16 antibiotics, the highest resistance rate to penicillin G was 95.4%. None of the staphylococcal isolates showed resistance to ceftaroline, daptomycin, linezolid, tigecycline, teicoplanin, or vancomycin. fnbA was the most prevalent virulence gene (100%) in S. aureus strains isolated in skin and soft tissue infections, followed by arcA (98.5%). Statistical analyses showed that the resistance rates of methicillin-resistant S. aureus isolates to various antibiotics were significantly higher than those of methicillin-susceptible S. aureus isolates. Fifty sequence types (STs), including 44 new ones, were identified by MLST. CONCLUSION: In this study, the high resistance rate to penicillin G and the high carrying rate of virulence gene fnbA and arcA of S.aureus were determine, and 44 new STs were identified, which may be associated with the geographical location of southern Jiangxi and local trends in antibiotic use. The study of the clonal lineage and evolutionary relationships of S. aureus in these regions may help in understanding the molecular epidemiology and provide the experimental basis for pathogenic bacteria prevention and treatment. | 2024 | 38933775 |
| 2314 | 19 | 0.9998 | Imipenem resistance in aerobic gram-negative bacteria. A prospective study was undertaken to observe the emergence of resistance to imipenem, if any, among aerobic gram-negative bacteria. A total of 736 isolates were tested during 1994-95 and less than 1% of them were resistant to imipenem, whereas the next year ('95-'96) the rate increased to 11 of the 903 isolates tested. The resistant isolates during '94-'95 were all Stenotrophomonas maltophilia whereas the spectrum of resistant bacterial species increased in '95-'96 to include Pseudomonas aeruginosa, Burkholderia cepacia, Acinetobacter calcoaceticus, Enterobacter cloacae, Proteus mirabilis and Morganella morganii with a tendency to an increase in the minimum inhibitory concentration (MIC) in the later part of the year. A majority (72%) of the resistant isolates were from patients with burns, and burn wounds were most frequently infected with such organisms. These data suggest that over a period of time aerobic gram-negative bacteria may develop resistance to imipenem and the pool of such bacteria increases with extensive use of the drug. Non-fermentative aerobic bacteria tend to develop resistance faster with widespread dissemination than Enterobacteriaceae. Hospital Burn Units are a potential source of development of such resistance. | 1998 | 9603633 |