Molecular characterization of resistance and biofilm genes of ESKAPE pathogens isolated from clinical samples: examination of the effect of boric acid on biofilm ability by cell culture method. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
578501.0000Molecular characterization of resistance and biofilm genes of ESKAPE pathogens isolated from clinical samples: examination of the effect of boric acid on biofilm ability by cell culture method. Biofilm formation ranks first among the resistance and virulence factors crucial in forming ESKAPE pathogens. Once biofilm is formed, treating the infection with existing drugs is often futile. Therefore, in this study, resistant ESKAPE pathogens were isolated from intensive care units and sent to Atatürk University Yakutiye Research Hospital Microbiology Laboratory. This study investigated the biofilm formation and molecular characterization of resistant ESKAPE pathogens isolated from intensive care units. The bacteria's biofilm formation abilities, genes responsible for biofilm formation, and resistance characteristics were identified. The effect of boric acid (BA) on resistance and bacterial genes was evaluated by a bacterial infection cell culture model. The highest biofilm formation was observed in Escherichia coli, Enterococcus spp., and Pseudomonas aeruginosa Enterococcus spp. isolates showed the vanA gene in 14.6% and the vanC gene in 61% of the samples. Among Staphylococcus spp. isolates, 48.3% were MSSA, 34.5% were MRCNS, and 17.2% were MRSA. The KPC gene was detected in 50%, the OXA-48 gene in 40%, and the NDM gene in 15% of the isolates. In P. aeruginosa, the LasI and LasR quorum sensing system genes were found in 38.5% and 30.8% of the isolates, respectively. In E. coli isolates, OXA-48 was present in 35%, KPC in 31.7%, and TEM in 12.5%. BA demonstrated significant activity against ESKAPE pathogens. The combined antimicrobial activity of boron compounds showed a decrease in the expression level of the resistance gene. It will be promising for preventing hospital-associated infections.202540025436
578610.9999Characterisation of Bacterial Isolates from Infected Post-Operative Patients in a Malaysian Tertiary Heart Care Centre. Several bacterial species cause post-operative infections, which has been a critical health concern among hospital patients. Our study in this direction is a much-needed exploratory study that was carried out at the National Heart Institute (IJN) of Malaysia to examine the virulence properties of causative bacteria obtained from postoperative patients. The bacterial isolates and data were provided by the IJN. Antibiotic resistance gene patterns, and the ability to form biofilm were investigated for 127 isolates. Klebsiella pneumoniae (36.2%) was the most common isolate collected, which was followed by Pseudomonas aeruginosa (26%), Staphylococcus aureus (23.6%), Streptococcus spp. (8.7%) and Acinetobacter baumannii (5.5%). There were 49 isolates that showed the presence of multidrug resistance genes. The mecA gene was surprisingly found in methicillin-susceptible S. aureus (MSSA), which also carried the ermA gene from those erythromycin-susceptible strains. The phenotypic antibiotic resistance profiles varied greatly between isolates. Findings from the biofilm assay revealed that 44 of the 127 isolates demonstrated the ability to produce biofilms. Our findings provide insights into the possibility of some of these bacteria surviving under antibiotic stress, and some antibiotic resistance genes being silenced.202134574752
578720.9998Investigation of the association of virulence genes and biofilm production with infection and bacterial colonization processes in multidrug-resistant Acinetobacter spp. The aim of this study was to evaluate the phenotypic and molecular patterns of biofilm formation in infection and colonization isolates of Acinetobacter spp. from patients who were admitted in a public hospital of Recife-PE-Brazil in 2018-2019. For the biofilm phenotypic analysis, Acinetobacter spp. isolates were evaluated by the crystal violet staining method; the search of virulence genes (bap, ompA, epsA, csuE and bfmS) was performed by PCR; and the ERIC-PCR was performed for molecular typing. Amongst the 38 Acinetobacter spp. isolates, 20 were isolated from infections and 18 from colonization. The resistance profile pointed that 86.85% (33/38) of the isolates were multidrug-resistant, being three infection isolates, and two colonization isolates resistant to polymyxin B. All the isolates were able to produce biofilm and they had at least one of the investigated virulence genes on their molecular profile, but the bap gene was found in 100% of them. No clones were detected by ERIC-PCR. There was no correlation between biofilm formation and the resistance profile of the bacteria, neither to the molecular profile of the virulence genes. Thus, the ability of Acinetobacter spp. to form biofilm is probably related to the high frequency of virulence genes.202134550209
565830.9998Molecular identification and biofilm formation of aerobic and anaerobic coinfection bacterial isolated from cystic fibrosis patients in southwest Iran from 2014 to 2022. BACKGROUND: Coinfections and resistant bacterial infections are more likely to occur in cystic fibrosis patients because their immune systems are weak. The purpose of this study was to identify by molecular means as well as the formation of biofilm of aerobic and anaerobic coinfection bacteria isolated from cystic fibrosis patients in southwest Iran from 2014 to 2022. METHODS: In this investigation, 130 clinical specimens were collected from 130 CF patients by universal primer. Biofilm formation was investigated using the microtiter plate method. Antibiotic resistance was measured using Vitec 2 device. In addition, identification of methicillin-resistant Staphylococcus aureus using genes mecA was performed. MAIN FINDINGS: In aerobic bacteria, Pseudomonas aeruginosa was detected in (32%) of samples. In anaerobic bacteria (16%) Prevotella spp. was the most frequently isolated anaerobe bacteria found in of the CF patients. In this study, 75% of the bacteria could form biofilms, while 23% were unable to biofilm formation. CONCLUSION: In conclusion, P. aeruginosa was found to be the most frequently isolated bacterium from patients with CF, and many of these bacteria could form biofilms. Additionally, the high prevalence of antibiotic resistance indicates the urgent need for increased attention to antibiotic preparation and patient screening concerning bacterial coinfections and the virulence and adhesion factors of these bacteria. Furthermore, the present study demonstrates that the coinfection of bacteria with high antibiotic resistance and a high capacity for biofilm formation can pose a life-threatening risk to CF patients, mainly due to their weakened immune systems.202337566205
265340.9998The secrets of environmental Pseudomonas aeruginosa in slaughterhouses: Antibiogram profile, virulence, and antibiotic resistance genes. Environmental pollution is a serious problem that can cause sicknesses, fatality, and biological contaminants such as bacteria, which can trigger allergic reactions and infectious illnesses. There is also evidence that environmental pollutants can have an impact on the gut microbiome and contribute to the development of various mental health and metabolic disorders. This study aimed to study the antibiotic resistance and virulence potential of environmental Pseudomonas aeruginosa (P. aeruginosa) isolates in slaughterhouses. A total of 100 samples were collected from different slaughterhouse tools. The samples were identified by cultural and biochemical tests and confirmed by the VITEK 2 system. P. aeruginosa isolates were further confirmed by CHROMagar™ Pseudomonas and genetically by rpsL gene analysis. Molecular screening of virulence genes (fimH, papC, lasB, rhlI, lasI, csgA, toxA, and hly) and antibiotic resistance genes (blaCTX-M, blaAmpC, blaSHV, blaNDM, IMP-1, aac(6')-Ib-, ant(4')IIb, mexY, TEM, tetA, and qnrB) by PCR and testing the antibiotic sensitivity, biofilm formation, and production of pigments, and hemolysin were carried out in all isolated strains. A total of 62 isolates were identified as P. aeruginosa. All P. aeruginosa isolates were multidrug-resistant and most of them have multiple resistant genes. blaCTX-M gene was detected in all strains; 23 (37.1%) strains have the ability for biofilm formation, 33 strains had virulence genes, and 26 isolates from them have more than one virulence genes. There should be probably 60 (96.8%) P. aeruginosa strains that produce pyocyanin pigment. Slaughterhouse tools are sources for multidrug-resistant and virulent pathogenic microorganisms which are a serious health problem. Low-hygienic slaughterhouses could be a reservoir for resistance and virulence genes which could then be transferred to other pathogens.202438091178
196050.9998Phenotypic Investigation and Detection of Biofilm-Associated Genes in Acinetobacter baumannii Isolates, Obtained from Companion Animals. Bacteria of the genus Acinetobacter, especially Acinetobacter baumannii (Ab), have emerged as pathogens of companion animals during the last two decades and are commonly associated with hospitalization and multidrug resistance. A critical factor for the distribution of relevant strains in healthcare facilities, including veterinary facilities, is their adherence to both biotic and abiotic surfaces and the production of biofilms. A group of 41 A. baumannii isolates obtained from canine and feline clinical samples in Greece was subjected to phenotypic investigation of their ability to produce biofilms using the tissue culture plate (TCP) method. All of them (100%) produced biofilms, while 23 isolates (56.1%) were classified as strong producers, 11 (26.8%) as moderate producers, and 7 (17.1%) as weak producers. A correlation between the MDR and XDR phenotypes and weak or moderate biofilm production was identified. Moreover, the presence of four biofilm-associated genes bap, bla(PER), ompA, and csuE was examined by PCR, and they were detected in 100%, 65.9%, 97.6%, and 95.1% of the strains respectively. All isolates carried at least two of the investigated genes, whereas most of the strong biofilm producers carried all four genes. In conclusion, the spread and persistence of biofilm-producing Ab strains in veterinary facilities is a matter of concern, since they are regularly obtained from infected animals, indicating their potential as challenging pathogens for veterinarians due to multidrug resistance and tolerance in conventional eradication measures. Furthermore, considering that companion animals can act as reservoirs of relevant strains, public health concerns emerge.202438787042
231460.9998Imipenem resistance in aerobic gram-negative bacteria. A prospective study was undertaken to observe the emergence of resistance to imipenem, if any, among aerobic gram-negative bacteria. A total of 736 isolates were tested during 1994-95 and less than 1% of them were resistant to imipenem, whereas the next year ('95-'96) the rate increased to 11 of the 903 isolates tested. The resistant isolates during '94-'95 were all Stenotrophomonas maltophilia whereas the spectrum of resistant bacterial species increased in '95-'96 to include Pseudomonas aeruginosa, Burkholderia cepacia, Acinetobacter calcoaceticus, Enterobacter cloacae, Proteus mirabilis and Morganella morganii with a tendency to an increase in the minimum inhibitory concentration (MIC) in the later part of the year. A majority (72%) of the resistant isolates were from patients with burns, and burn wounds were most frequently infected with such organisms. These data suggest that over a period of time aerobic gram-negative bacteria may develop resistance to imipenem and the pool of such bacteria increases with extensive use of the drug. Non-fermentative aerobic bacteria tend to develop resistance faster with widespread dissemination than Enterobacteriaceae. Hospital Burn Units are a potential source of development of such resistance.19989603633
231570.9998The Profile of Bacterial Infections in a Burn Unit during and after the COVID-19 Pandemic Period. Infections represent a major complication for burn-injured patients. The aim of this study was to highlight the changes in the incidence and antimicrobial resistance of bacterial strains isolated from burn patients, at the end of the COVID-19 pandemic, in relation to the antibiotics used during the pandemic. A comparative analysis of the demographic data and the microorganisms identified in the clinical samples of two groups of burn patients admitted to a university hospital in Romania was carried out. The first group consisted of 48 patients and the second of 69 patients, hospitalized in January-August 2020 and 2023, respectively. The bacterial species with the highest incidence were S. aureus, A. baumannii, Pseudomonas spp. The significant changes between 2023 and 2020 are reflected in the increase in the frequency of non-fermentative Gram-negative bacteria, especially S. maltophilia, and the increase in antimicrobial resistance of Pseudomonas and Klebsiella spp. Klebsiella spp. did not change in frequency (7%), but there was a significant increase in the incidence of K. pneumoniae strains with pan-drug resistant behaviour to antibiotics (40%), including colistin. The phenomenon can be explained by the selection of specimens carrying multiple resistance genes, as a result of antibiotic treatment during the COVID-19 period. The post-pandemic antimicrobial resistance detected in burn patients indicates the need for permanent surveillance of the resistance trends, primarily due to the limited therapeutic options available for these patients.202439334997
578480.9998Identification and characterization of bacteria isolated from patients with cystic fibrosis in Jordan. BACKGROUND: Notable emergence of multidrug-resistant bacteria has become increasingly problematic worldwide. Most patients with cystic fibrosis (CF) suffer from chronic persistent infections with frequent occurrence of acute exacerbations. Routine screening of bacterial strains, epidemiological characteristics, and resistance patterns are particularly useful for patient management and maintenance of infection control procedures. METHODS: In this study, 43 pharyngeal samples were taken from patients with CF. Microbiological bacterial culture and identification, antimicrobial susceptibility testings, biofilm formation, including minimum biofilm eradication concentration (MBEC) and PCR for detecting resistance genes were performed. RESULTS: All samples were positive for bacterial growth. The predominant species were Staphylococcus aureus (41.86%; n = 18) and Pseudomonas aeruginosa (39.53%; n = 17). 30% of isolated bacteria were multidrug-resistant, resisting high concentrations of tested antibiotics. Among the 42 biofilm-forming isolates, 23.8% (n = 10) were strong biofilm formers. The occurance of resistance genes varied with blaKPC detected in 71% (n = 17) of all Gram-negative isolates and mecA found in 61% (n = 11) of all S. aureus strains. CONCLUSIONS: The majority of isolated bacteria were S. aureus and P. aeruginosa. The high frequency of antimicrobial resistance, the presence of resistance genes, and biofilm formation highlight the challenge in treatment and infection control measures in patients with CF.KEY MESSAGESStaphylococcus aureus and Pseudomonas aeruginosa are the most prevalent pathogens found in patients with CF in Jordan.Detection of antimicrobial resistance genes in patients with CF confirms that antimicrobial resistance patterns must always be monitored.Biofilm formation significantly increases the tolerance of bacteria to antimicrobial agents.202236264155
578390.9998Molecular Investigation and Virulence Determination of Methicillin and Vancomycin Resistant Clinical Staphylococcus Aureus Isolates. Staphylococcus aureus is an opportunistic pathogen that provides conditions for host invasion due to various virulence factors and plays a role in causing various infections. The pathogenicity of these bacteria may vary depending on the host's susceptibility. This study investigates the sensitivity of S. aureus strains isolated from clinical samples to methicillin and vancomycin, and it evaluates the presence of resistance, virulence and toxin-producing genes, and their expression level in the methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-intermediate S. aureus (VISA) isolates. A cross-sectional study was conducted, encompassing 502 S. aureus isolates obtained from diverse infections over the course of a year. The methicillin and vancomycin sensitivities of the isolates were ascertained by disk diffusion and microdilution broth methods, respectively. The presence of genes associated with resistance, adhesion, and toxin production was subsequently investigated through the implementation of multiplex polymerase chain reaction (PCR) methodology. The expression levels of virulence and resistance genes were detected in resistant and sensitive isolates using real-time quantitative PCR (qPCR). Among the 502 S. aureus isolates, 168 (33.6%) were identified as MRSA. Furthermore, a total of six isolates (1.2%) were identified as VRSA, and two isolates (0.4%) were identified as VISA. The distribution of virulence and resistance-related genes varied among the isolates. The results of the gene expression study demonstrated that the expression levels of the majority of the studied genes were significantly higher in resistant isolates (MRSA and VRSA) compared to sensitive isolates. It is imperative to acknowledge that VRSA and MRSA are regarded as grave hazards to human health. The present study underscores the necessity for enhanced sanitary measures to more effectively control this hospital pathogen, particularly in light of the presence and expression of genes encoding virulence factors in S. aureus isolates.202540980455
5659100.9998Pseudomonas aeruginosa clinical isolates in Egypt: phenotypic, genotypic, and antibiofilm assessment of Pluronic F-127. BACKGROUND: Virulence factors play an important role in developing bacterial resistance leading to the increased severity of Pseudomonas aeruginosa infections. Several genes encoding for virulence factors is coordinated by the quorum sensing (QS) system. In the present study, the prevalence of virulence genes, particularly those involved in controlling biofilm formation, and their correlation with antibiotic resistance patterns was investigated. The ability of the pathogens to form biofilm and the impact of Pluronic F-127 as a potential biofilm inhibitor was assessed. RESULTS: A total of 118 P. aeruginosa clinical isolates were collected. The highest resistance rates were observed against ceftazidime (94%), while colistin was the most effective followed by polymyxin B with sensitivity rate 72% and 59%, respectively. Out of 118 isolates: 111 (94%) were biofilm producers, 24.6% of them were strong. The QS genes; lasR and rhlR, were detected in 85% and 89% of the isolates, respectively, toxA gene in 95% and ampC gene in 69% of the isolates. Pluronic F-127 was confirmed as a biofilm inhibitor in lowest concentration used 1.25 mg/ml which inhibits 78% of strong biofilm forming isolates and has better effect on detachment of established biofilm by 90% of biofilm forming isolates. CONCLUSION: The ability of bacteria to form biofilms contributes greatly to the development of antibiotic resistance, which leads to the occurrence of persistent and chronic bacterial illnesses. Many isolates exhibited moderate to strong biofilm forming ability, which showed a high resistance pattern. The results demonstrated that Pluronic F-127 has a promising level of biofilm inhibition and detachment in most isolates. It has a chance to serve as a substitute means for combating biofilm formation.202540281406
2253110.9998Biofilm Formation and Antibiotic Resistance Profiles in Carbapenemase-Producing Gram-Negative Rods-A Comparative Analysis between Screening and Pathological Isolates. (1) Background: Carbapenem-resistant (CR) bacteria pose a significant global public health challenge due to their ability to evade treatment with beta-lactam antibiotics, including carbapenems. This study investigates the biofilm-forming capabilities of CR clinical bacterial isolates and examines the impact of serum on biofilm formation. Additionally, the study evaluates the resistance profiles and genetic markers for carbapenemase production. (2) Methods: Bacterial isolates were collected from the microbiology laboratory of Mures County Clinical Hospital between October 2022 and September 2023. Pharyngeal and rectal swabs were screened for carbapenem-resistant bacteria using selective media. Lower respiratory tract samples were also analyzed for CR Gram-negative bacteria. The isolates were tested for their ability to form biofilms in the presence and absence of fetal bovine serum at 24 and 48 h. Carbapenemase production was detected phenotypically and confirmed via PCR for relevant genes. (3) Results: Out of 846 screened samples, 4.25% from pharyngeal swabs and 6.38% from rectal swabs tested positive for CR bacteria. Acinetobacter baumannii and Klebsiella pneumoniae were the most common species isolated. Biofilm formation varied significantly between clinical isolates and standard strains, with clinical isolates generally showing higher biofilm production. The presence of serum had no significant effect on biofilm formation in Klebsiella spp., but stimulated biofilm formation for Acinetobacter spp. Carbapenemase genes bla(KPC), bla(OXA-48-like), and bla(NDM) were detected in various isolates, predominantly in Klebsiella spp., but were not the main determinants of carbapenem resistance, at least in screening isolates. (4) Conclusions: This study highlights the variability in biofilm formation among CR clinical isolates and underscores the differences between the bacteria found as carriage versus infection. Both bacterial species and environmental factors variably influence biofilm formation. These insights are crucial for the development of effective treatment and infection control strategies in clinical settings.202439199988
2303120.9998Patterns of Drug-Resistant Bacteria in a General Hospital, China, 2011-2016. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential.201931250593
2316130.9997Clinical Klebsiella pneumoniae isolates and their efflux pump mechanism for antibiotic resistance challenge. BACKGROUND: Klebsiella pneumoniae is a serious pathogen that causes many disorders in humans and animals. Klebsiella pneumoniae, which is one of the most important pathogens in hospitals, often causes many clinical manifestations, including pneumonia, urinary tract infections, and meningitis. Interest in this bacterium has increased due to the increasing incidence of infection caused by it, as well as its high resistance to antibiotics, especially broad-spectrum antibiotics. AIM: This study showed the efflux pump mechanism of clinical K. pneumoniae isolates and antibiotic resistance in samples collected from sheep and human respiratory tract infection in southern Iraq. METHODS: Three hundred samples were collected, and the samples included: 150 nasal swabs from sheep and 150 sputum samples from humans. Through bacteriological and biochemical examinations. The isolates were identified K. pneumoniae isolates were also confirmed by 16S rRNA. Susceptibility testing of the antibiotics used in the study. To determine the phenotypic efflux pump activity, the agar ethidium bromide cartwheel method was used. RESULTS: Of 150 sputum human specimens and 150 nasal swabs from sheep were tested, 25 and 17 K. pneumoniae species isolates from patients and sheep, respectively, for the resistance of the bacteria isolated from humans to antibiotics. The highest rate of resistance was to piperacillin (88%), and the lowest rate was to antibiotics (36%), imipenem. The highest of bacterial susceptibility to the antibiotic imipenem was (44%) and (36%) for levofloxacin, respectively. For the bacterial isolates from sheep, the highest percentage of resistance to rifampin was (82.3%), and the highest percentage of sensitivity was to imipenem and Levofloxacin antibiotics. The results showed that most of the 39 bacterial isolates (92.8%) possessed an efflux pump mechanism. The result of genotyping to identify the efflux pump genes tolC and acrAB revealed that all isolates carried the genes. CONCLUSION: All the isolates were resistant to antibiotics, and the bacterial isolates under study most possess the efflux pump mechanism. All bacteria also have efflux pump genes, and this gives the bacteria more resistance against many antibiotics.202541036356
5791140.9997Revisiting the Frequency and Antimicrobial Resistance Patterns of Bacteria Implicated in Community Urinary Tract Infections. Urinary tract infections (UTIs) are one of the most common infectious diseases at the community level. The continue misuse of antimicrobials is leading to an increase in bacterial resistance, which is a worldwide problem. The objective of this work was to study the incidence and pattern of antimicrobial resistance of the main bacteria responsible for UTI in the community of central and northern Portugal, and establish an appropriate empirical treatment. The urine samples were collected in Avelab—Laboratório Médico de Análises Clínicas over a period of 5 years (2015−2019). The urine cultures were classified as positive when bacterial growth was equal to or higher than 105 CFU/mL, and only for these cases, an antimicrobial susceptibility test was performed. Of the 106,019 samples analyzed, 15,439 had a urinary infection. Urinary infections were more frequent in females (79.6%) than in males (20.4%), affecting more elderly patients (56.9%). Escherichia coli (70.1%) was the most frequent uropathogen, followed by Klebsiella pneumoniae (8.9%). The bacteria responsible for UTI varied according to the patient’s sex, with the greatest differences being observed for Enterococcus faecalis and Pseudomonas aeruginosa, these being more prevalent in men. In general, there was a growth in bacterial resistance as the age of the patients increased. The resistance of bacteria in male patients was, in most cases, statistically different (Chi-Square test, p < 0.05) from that observed for bacteria isolated from female patients, showing, in general, higher resistance in male patients. Although E. coli was the most responsible uropathogen for UTI, it was among the bacteria most susceptible to antibiotics. The isolates of K. pneumoniae, Proteus vulgaris and Enterobacter showed high resistance to the tested antimicrobials. The most common multidrug-resistant (MDR) bacteria implicated in UTI were K. pneumoniae (40.4%) and P. aeruginosa (34.7%), but E. coli, the most responsible bacteria for UTI, showed a MDR of 23.3%. When we compared our results with the results from 10 years ago for the same region, in general, an increase in bacterial resistance was observed. The results of this study confirmed that urinary tract infections are a very common illness, caused frequently by resistant uropathogens, for which the antibiotic resistance profile has varied over a short time, even within a specific region. This indicates that periodically monitoring the microbial resistance of each region is essential in order to select the best empirical antibiotic therapy against these infections, and prevent or decrease the resistance among uropathogenic strains.202235740174
5780150.9997Antibiotic resistance, biofilm formation, and virulence genes of Streptococcus agalactiae serotypes of Indian origin. BACKGROUND: Group B Streptococcus (GBS) is a causative agent of various infections in newborns, immunocompromised (especially diabetic) non-pregnant adults, and pregnant women. Antibiotic resistance profiling can provide insights into the use of antibiotic prophylaxis against potential GBS infections. Virulence factors are responsible for host-bacteria interactions, pathogenesis, and biofilm development strategies. The aim of this study was to determine the biofilm formation capacity, presence of virulence genes, and antibiotic susceptibility patterns of clinical GBS isolates. RESULTS: The resistance rate was highest for penicillin (27%; n = 8 strains) among all the tested antibiotics, which indicates the emergence of penicillin resistance among GBS strains. The susceptibility rate was highest for ofloxacin (93%; n = 28), followed by azithromycin (90%; n = 27). Most GBS strains (70%; n = 21) were strong biofilm producers and the rest (30%; n = 9) were moderate biofilm producers. The most common virulence genes were cylE (97%), pavA (97%), cfb (93%), and lmb (90%). There was a negative association between having a strong biofilm formation phenotype and penicillin susceptibility, according to Spearman's rank correlation analysis. CONCLUSION: About a third of GBS strains exhibited penicillin resistance and there was a negative association between having a strong biofilm formation phenotype and penicillin susceptibility. Further, both the strong and moderate biofilm producers carried most of the virulence genes tested for, and the strong biofilm formation phenotype was not associated with the presence of any virulence genes.202337407919
1705160.9997Formation ability and drug resistance mechanism of Klebsiella pneumoniae biofilm and capsule for multidrug-resistant. This study was to explore the formation ability of biofilm and capsule and the drug resistance mechanism for multidrug-resistant Klebsiella pneumoniae. firstly, 55 strains of K. pneumoniae were screened out from the body fluid specimens of the laboratory. The strains were drug-resistant, and the characteristics of clinical infections of these strains were analyzed. Secondly, all strains were tested for the presence of biofilms and capsules, and then the deoxyribonucleic acid (DNA) genomes of the strains extracted were detected using polymerase chain reaction (PCR) technology. Finally, the serotype genes and virulence genes of the strains were screened, and the relationship between these two genes and the formation of capsules and biofilms was analyzed and compared. A new generation of sequencing technology was applied to analyze the genome structure of K. pneumoniae, comparative genomics technology was adopted to analyze the drug resistance plasmids, and molecular cloning and other methods were utilized to clone the drug resistance-related genes. of the 55 strains of K. pneumoniae isolated clinically, 61.8% came from blood with a total number of 34 strains; 8 strains were from secretion specimens (accounting for 14.5% of the total); and 7 strains were from drainage fluid (accounting for 12.7% of the total), including 2 strains from pus, bile, and pleural fluid, respectively. The strains were tested by PCR, of which iroN virulence genes were the most (34 strains), accounting for 61.8%, followed by wabG and fimH (33 strains, accounting for 60% of the total), followed by magA, K2, K20, K1, and K57. The positive rates of the two virulence genes (fimH and wabG) were higher in positive strains of biofilm. The drug susceptibility results showed that ampicillin and amoxicillin were more resistant to capsule-positive strains than the capsule-negative strains. K. pneumoniae had been able to form a complete capsule and biofilm, the formation rate of biofilm was higher than that of the capsule, and there was an increasing trend. The two serotype genes (K20 and K2) accounted for relatively high proportions, and K. pneumoniae carried relatively more virulence genes (wabG and fimH), which may be closely related to the capsule production of K. pneumoniae. In addition, resistance-related genes were also transferred horizontally in different strains of bacteria, forming a wide range of drug resistance, which brought great difficulties to clinical work.202337953580
5790170.9997Activity Assessment of Antibiotics Used Against Different Bacterial Etiological Agents of UTI in Najaf, Iraq. BACKGROUND & OBJECTIVE: Antibiotic resistance in urinary tract infection (UTI) is increasing nowadays, therefore, the aim of this study was to evaluate the resistance patterns of many pathogens toward several antibiotics that are in common use in our hospitals. METHODS: Subculture and identification of pathogenic bacteria were performed on 1148 hospitals' bacterial primary cultures which were considered positive for UTI. An antibiotic sensitivity test was performed by using the disc diffusion method. The rates of resistance were statistically analyzed and correlated with the types of antibiotics and bacteria. RESULTS: It was found that 1148 out of 2087 urine samples were UTI positive, the majority of cases (76%) were from females (P<0.0001). Escherichia coli and Klebsiella were the most isolated Gram-negative bacteria, while Staphylococcus spp. was the most isolated Gram-positive pathogen. E. coli showed the highest resistance rate among all bacteria, while Streptococcus spp. was the most sensitive. The highest resistance was noticed to be against gentamicin and ampicillin, while the most effective drugs were imipenem and amikacin. There was a significant difference in resistance rates among the different bacterial categories (P<0.0001), while no significant difference was noticed in resistance rates among antibiotics categories (P>0.05). CONCLUSION: Elevated rates of antibiotic resistance were noticed in this study in UTI-causing bacteria; therefore, it is highly important at least to every general hospital to investigate the antibiotic resistance rates occasionally to determine the proper antimicrobial treatment as well as re-evaluate antibiotics which were considered as empirical.202439687449
5539180.9997Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile. Bovine mastitis is a common disease worldwide, and staphylococci are one of the most important etiological factors of this disease. Staphylococcus aureus show adaptability to new conditions, by which monitoring their virulence and antibiotic resistance mechanisms is extremely important, as it can lead to the development of new therapies and prevention programs. In this study, we analyzed Staphylococcus aureus (n = 28) obtained from dairy cattle with subclinical mastitis in Poland. The sensitivity of the isolated strains to antibiotics were confirmed by the disc diffusion method. Additionally, minimum inhibitory concentration values were determined for vancomycin, cefoxitin and oxacillin. Genotyping was performed by two methods: PCR melting profile and MLVF-PCR (multiple-locus variable-number tandem-repeat fingerprinting). Furthermore, the presence of antibiotic resistance and virulence genes were checked using PCR reactions. The analyzed strains showed the greatest resistance to penicillin (57%), oxytetracycline (25%) and tetracycline (18%). Among the analyzed staphylococci, the presence of 9 of 15 selected virulence-related genes was confirmed, of which the icaD, clfB and sea genes were confirmed in all staphylococci. Biofilm was observed in the great majority of the analyzed bacteria (at least 70%). In the case of genotyping among the analyzed staphylococci (combined analysis of results from two methods), 14 patterns were distinguished, of which type 2 was the dominant one (n = 10). This study provides new data that highlights the importance of the dominance of biofilm over antibiotic resistance among the analyzed strains.202236558738
2302190.9997Antibiotic resistance and its correlation with biofilm formation and virulence genes in Klebsiella pneumoniae isolated from wounds. Klebsiella pneumoniae is the most important species of the Klebsiella genus and often causes hospital infections. These bacteria have a high resistance to most of the available drugs, which has caused concern all over the world. In this study, we investigated the antibiotic resistance profile and the ability to produce extended-spectrum beta-lactamase (ESBL) among K. pneumoniae isolates, and then we investigated the relationship between these two factors with biofilm formation and the prevalence of different virulence genes. In this study, 130 isolates of K. pneumoniae isolated from wounds were investigated. The antibiotic resistance of the isolates was evaluated by the disk diffusion method. The microtiter plate method was used to measure biofilm formation. The prevalence of virulence genes was detected by multiplex PCR. Among the examined isolates, 85.3% showed multidrug resistance. 87.6% of the isolates were ESBL-positive. Imipenem, meropenem, and fosfomycin were the most effective drugs. The ability of the isolates to produce biofilm was strong (80%), moderate (12.3%), and weak (7.6%), respectively. fimH, mrKD, entB, and tolC virulence genes were observed in all isolates. High prevalence of antibiotic resistance (especially multidrug resistance), high prevalence of ESBL-producing isolates, the ability of all isolates to biofilm formation, and the presence of fimH, mrKD, entB, and tolC virulence genes in all isolates show the importance of these factors in the pathogenesis of K. pneumoniae isolates in Iraq.202439031267