Identification and characterization of bacteria isolated from patients with cystic fibrosis in Jordan. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
578401.0000Identification and characterization of bacteria isolated from patients with cystic fibrosis in Jordan. BACKGROUND: Notable emergence of multidrug-resistant bacteria has become increasingly problematic worldwide. Most patients with cystic fibrosis (CF) suffer from chronic persistent infections with frequent occurrence of acute exacerbations. Routine screening of bacterial strains, epidemiological characteristics, and resistance patterns are particularly useful for patient management and maintenance of infection control procedures. METHODS: In this study, 43 pharyngeal samples were taken from patients with CF. Microbiological bacterial culture and identification, antimicrobial susceptibility testings, biofilm formation, including minimum biofilm eradication concentration (MBEC) and PCR for detecting resistance genes were performed. RESULTS: All samples were positive for bacterial growth. The predominant species were Staphylococcus aureus (41.86%; n = 18) and Pseudomonas aeruginosa (39.53%; n = 17). 30% of isolated bacteria were multidrug-resistant, resisting high concentrations of tested antibiotics. Among the 42 biofilm-forming isolates, 23.8% (n = 10) were strong biofilm formers. The occurance of resistance genes varied with blaKPC detected in 71% (n = 17) of all Gram-negative isolates and mecA found in 61% (n = 11) of all S. aureus strains. CONCLUSIONS: The majority of isolated bacteria were S. aureus and P. aeruginosa. The high frequency of antimicrobial resistance, the presence of resistance genes, and biofilm formation highlight the challenge in treatment and infection control measures in patients with CF.KEY MESSAGESStaphylococcus aureus and Pseudomonas aeruginosa are the most prevalent pathogens found in patients with CF in Jordan.Detection of antimicrobial resistance genes in patients with CF confirms that antimicrobial resistance patterns must always be monitored.Biofilm formation significantly increases the tolerance of bacteria to antimicrobial agents.202236264155
230910.9998Antimicrobial Resistance Patterns of Pathogens Isolated from Patients with Wound Infection at a Teaching Hospital in Vietnam. PURPOSE: At a teaching Hospital in Vietnam, the persistently high incidence of diagnosed wound infection poses ongoing challenges to treatment. This study seeks to explore the causative agents of wound infection and their antimicrobial and multidrug resistance patterns. METHODS: A cross-sectional study was conducted at the Department of Microbiology, Military Hospital 103, Vietnam. Data on microorganisms that caused wound infection and their antimicrobial resistance patterns was recorded from hospitalized patients from 2014 to 2021. Using the chi-square test, we analyzed the initial isolation from wound infection specimens collected from individual patients. RESULTS: Over a third (34.9%) of wound infection samples yielded bacterial cultures. Staphylococcus aureus was the most prevalent bacteria, followed by Pseudomonas aeruginosa. Worryingly high resistance rates were observed for several antibiotics, particularly among Gram-negative bacteria. Ampicillin displayed the highest resistance (91.9%), while colistin and ertapenem remained the most effective. In Gram-positive bacteria, glycopeptides like teicoplanin and vancomycin (0% and 3.3% resistance, respectively) were most effective, but their use was limited. Clindamycin and tetracycline showed decreasing effectiveness. Resistance rates differed between surgical and non-surgical wards, highlighting the complex dynamics of antimicrobial resistance within hospitals. Multidrug resistance (MDR) was substantial, with Gram-negative bacteria exhibiting a 63.6% MDR rate. Acinetobacter baumannii showed the highest MDR rate (88.0%). CONCLUSION: This study investigated wound infection characteristics, antibiotic resistance patterns of common bacteria, and variations by hospital ward. S. aureus was the most prevalent bacteria, and concerning resistance rates were observed, particularly among Gram-negative bacteria. These findings highlight the prevalence of multidrug resistance in wound infections, emphasizing the importance of infection control measures and judicious antibiotic use.202439139624
231820.9998Distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analysis of integron resistance genes in respiratory tract isolates of uninfected patients. BACKGROUND: We studied the distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analyzed the integron resistance genes in respiratory tract isolates of uninfected patients. METHODS: Retrospective analysis was used to select sputum samples from 400 lung cancer patients after chemotherapy admitted in Fuyang People's Hospital from July 2017 to July 2019. Culture, isolation and identification of strains were conducted in accordance with the national clinical examination operating procedures. RESULTS: A total of 134 strains were identified. In 120 patients with pulmonary infection, 114 strains were cultured. Twenty strains of klebsiella pneumoniae were cultured in 280 patients without pulmonary infection. Among the 134 strains, the detection rate of gram-negative bacteria was 79.10%. The first four strains were Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Haemophilus influenzae. The gram-positive bacteria detection rate was 4.47%, mainly Staphylococcus aureus and Streptococcus. The fungus detection rate was 16.42%. The drug sensitivity results showed that the resistance rate of gram-negative bacillus to penicillin and cephalosporin was higher, and were more sensitive to carbapenem, piperacillin tazobactam and cefoperazone sulbactam. Gram-positive cocci were resistant to penicillin, macrolide and clindamycin, and sensitive to linezolid, vancomycin and rifampicin. All strains of fungal culture were candida albicans, which were sensitive to common antifungal drugs. Among the 20 strains of klebsiella pneumoniae cultured in sputum specimens of non-infected patients with lung cancer undergoing chemotherapy, 2 strains were integron-positive strains, and all of them were class I integrons. CONCLUSIONS: Lung cancer patients after chemotherapy have a high resistance to commonly used antimicrobial drugs, so it is necessary to detect the resistance of pathogenic microorganisms in clinical practice. The strains carried by patients with lung cancer without pulmonary infection during chemotherapy can isolate type I integrons, suggesting that the spread of drug resistance at gene level should be closely detected.202032944333
235630.9998Occurrence of Multiple-Drug Resistance Bacteria and Their Antimicrobial Resistance Patterns in Burn Infections from Southwest of Iran. Burn infection continues to be a major issue of concern globally and causes more harm to developing countries. This study aimed to identify the aerobic bacteriological profiles and antimicrobial resistance patterns of burn infections in three hospitals in Abadan, southwest Iran. The cultures of various clinical samples obtained from 325 burn patients were investigated from January to December 2019. All bacterial isolates were identified based on the standard microbiological procedures. Antibiotic susceptibility tests were performed according to the CLSI. A total of 287 bacterial species were isolated from burn patients. Pseudomonas aeruginosa was the most frequent bacterial isolate in Gram-negative bacteria and S. epidermidis was the most frequent species isolated in Gram-positive bacteria. The maximum resistance was found to ampicillin, gentamicin, ciprofloxacin, while in Gram-negative bacteria, the maximum resistance was found to imipenem, gentamicin, ciprofloxacin, ceftazidime, and amikacin. The occurrence of multidrug resistance phenotype was as follows: P. aeruginosa (30.3%), Enterobacter spp (11.1%), Escherichia coli (10.5%), Citrobacter spp (2.1%), S. epidermidis (2.8%), S. aureus, and S. saprophyticus (0.7%). Owing to the diverse range of bacteria that cause burn wound infection, regular investigation, and diagnosis of common bacteria and their resistance patterns is recommended to determine the proper antibiotic regimen for appropriate therapy.202234236077
578640.9998Characterisation of Bacterial Isolates from Infected Post-Operative Patients in a Malaysian Tertiary Heart Care Centre. Several bacterial species cause post-operative infections, which has been a critical health concern among hospital patients. Our study in this direction is a much-needed exploratory study that was carried out at the National Heart Institute (IJN) of Malaysia to examine the virulence properties of causative bacteria obtained from postoperative patients. The bacterial isolates and data were provided by the IJN. Antibiotic resistance gene patterns, and the ability to form biofilm were investigated for 127 isolates. Klebsiella pneumoniae (36.2%) was the most common isolate collected, which was followed by Pseudomonas aeruginosa (26%), Staphylococcus aureus (23.6%), Streptococcus spp. (8.7%) and Acinetobacter baumannii (5.5%). There were 49 isolates that showed the presence of multidrug resistance genes. The mecA gene was surprisingly found in methicillin-susceptible S. aureus (MSSA), which also carried the ermA gene from those erythromycin-susceptible strains. The phenotypic antibiotic resistance profiles varied greatly between isolates. Findings from the biofilm assay revealed that 44 of the 127 isolates demonstrated the ability to produce biofilms. Our findings provide insights into the possibility of some of these bacteria surviving under antibiotic stress, and some antibiotic resistance genes being silenced.202134574752
235450.9998Resistance profiles of Staphylococcus aureus isolates against frequently used antibiotics at private sector laboratories in Jordan. BACKGROUND AND OBJECTIVES: Staphylococcus aureus (S. aureus) is one of the most important pathogens, responsible for a range of infections. This study aimed to assess resistance patterns in S. aureus isolates obtained from certain private-sector laboratories against commonly used antimicrobial agents. MATERIALS AND METHODS: The process involved collecting various samples from several private laboratories and then identifying S. aureus isolates using biochemical characterization. The antibiotic susceptibility of these isolates was determined by disc diffusion method. Furthermore, Rt-PCR was employed to identify two genes namely the methicillin/oxacillin resistance genes (mecA), and (SCCmec). RESULTS: The findings of the current study exhibited that females constituted a larger proportion of the participants (59.1%) compared to males (40.9%), with a mean participant age of 40.82 years. Gram-positive bacteria were more prevalent (71.3%) than Gram-negative bacteria (18.3%), with S. aureus being the most frequent isolate (60.9%). Urine samples represented the highest collected sample type (47.8%). Out of the 115 bacterial isolates, 85.2% exhibited multidrug resistance to antibiotics such as cefazolin, gentamicin, vancomycin, and ceftazidime. Clindamycin was the most effective antibiotic, with a sensitivity rate of 62.9%, followed by teicoplanin and meropenem, each with a sensitivity rate of 52.9%. Methicillin-resistant Staphylococcus aureus (MRSA) strains were susceptabile to vancomycin and teicoplanin. The methicillin/oxacillin resistant isolates showed significant association with mecA and SCCA genes. CONCLUSION: This study highlighted the multi-drug resistance in S. aureus isolates, stressing the need for stringent antibiotic stewardship, continuous surveillance, and further research into alternative treatments, including novel antibiotics and combination therapy, to combat resistant strains.202540337673
230860.9998Trends of Antibiotic Resistance in Multidrug-Resistant Pathogens Isolated from Blood Cultures in a Four-Year Period. BACKGROUND: Multidrug-resistant organisms cause serious infections with significant morbidity and mortality in the worldwide. These organisms have been identified as urgent and serious threats by CDC. The aim of this study was to determine the prevalence and changes of antibiotic resistance of multidrug-resistant pathogens isolated from blood cultures over a four-year period in a tertiary-care hospital. METHODS: Blood cultures were incubated in a blood culture system. Positive signalling blood cultures were subcultured on 5% sheep-blood agar. Identification of isolated bacteria was performed using conventional or automated identification systems. Antibiotic susceptibility tests were performed by disc diffusion and/or gradient test methods, if necessary, by automated systems. The CLSI guidelines were used for interpretation of antibiotic susceptibility testing of bacteria. RESULTS: The most frequently isolated Gram-negative bacteria was Escherichia coli (33.4%) followed by Klebsiella pneumoniae (21.5%). ESBL positivity was 47% for E. coli, 66% for K. pneumoniae. Among E. coli, K. pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates, carbapenem resistance was 4%, 41%, 37%, and 62%, respectively. Carbapenem resistance of K. pneumoniae isolates has increased from 25% to 57% over the years, and the highest rate (57%) occured during the pandemic period. It is noteworthy that the aminoglycoside resistance in E. coli isolates gradually increased from 2017 to 2021. The rate of methicillin-resistant S. aureus (MRSA) was found to be 35.5%. CONCLUSIONS: Increased carbapenem resistance in K. pneumoniae and A. baumannii isolates is noteworthy, but carbapenem resistance in P. aeruginosa decreased. It is of great importance for each hospital to monitor the increase in resistance in clinically important bacteria, especially isolated from invasive samples, in order to take the necessary precautions in a timely manner. Future studies involving clinical data of patients and bacterial resistance genes are warranted.202337307126
578770.9998Investigation of the association of virulence genes and biofilm production with infection and bacterial colonization processes in multidrug-resistant Acinetobacter spp. The aim of this study was to evaluate the phenotypic and molecular patterns of biofilm formation in infection and colonization isolates of Acinetobacter spp. from patients who were admitted in a public hospital of Recife-PE-Brazil in 2018-2019. For the biofilm phenotypic analysis, Acinetobacter spp. isolates were evaluated by the crystal violet staining method; the search of virulence genes (bap, ompA, epsA, csuE and bfmS) was performed by PCR; and the ERIC-PCR was performed for molecular typing. Amongst the 38 Acinetobacter spp. isolates, 20 were isolated from infections and 18 from colonization. The resistance profile pointed that 86.85% (33/38) of the isolates were multidrug-resistant, being three infection isolates, and two colonization isolates resistant to polymyxin B. All the isolates were able to produce biofilm and they had at least one of the investigated virulence genes on their molecular profile, but the bap gene was found in 100% of them. No clones were detected by ERIC-PCR. There was no correlation between biofilm formation and the resistance profile of the bacteria, neither to the molecular profile of the virulence genes. Thus, the ability of Acinetobacter spp. to form biofilm is probably related to the high frequency of virulence genes.202134550209
236380.9998Analysis of distribution and antibiotic resistance of Gram-positive bacteria isolated from a tertiary-care hospital in southern China: an 8-year retrospective study. OBJECTIVE: Due to the severe drug resistance situation of Gram-negative bacteria, especially Gram-negative enterobacter, relatively little attention has been paid to the changes in Gram-positive bacteria species and drug resistance. Therefore, this study analyzed the prevalence and drug resistance of Gram-positive bacteria in a general tertiary-care hospital from 2014 to 2021, in order to discover the changes in Gram-positive bacteria distribution and drug resistance that cannot be easily identified, inform clinicians in their respective regions when selecting antimicrobial agents, and to provide the basis for the diagnosis of Gram-positive bacterial infection, and for the comprehensive and multi-pronged prevention and control of drug-resistant bacteria. METHODS: A retrospective study was conducted on Gram-positive bacteria isolated from patients presented to a general tertiary-care hospital from January 2014 to December 2021. A total of 15,217 Gram-positive strains were analyzed. RESULTS: During the 8-year period, the total number and the species of Gram-positive bacteria isolated from clinic increased continuously. The seven most common species were Streptococcus pneumoniae (21.2%), Staphylococcus aureus (15.9%), Enterococcus faecium (20.6%), Enterococcus faecalis (14.0%), and Staphylococcus epidermidis (7.8%), Staphylococcus haemolyticus (4.8%), Streptococcus agalactiae (3.6%). The isolation rates of Staphylococcus aureus and Streptococcus agalactiae increased, and the isolation rate of Enterococcus faecium decreased. The resistance rates of Staphylococcus aureus to erythromycin, clindamycin, tetracycline, rifampicin and furantoin decreased obviously. The resistance rates of Streptococcus pneumoniae to cefepime (non-meningitis) and ceftriaxone (meningitis) decreased significantly. The resistance rates of Enterococcus faecium to penicillin, ampicillin, erythromycin, levofloxacin, ciprofloxacin and furantoin rose rapidly from 50.3, 47.6, 71.5, 44.9, 52.3, and 37.5% in 2014 to 93.1, 91.6, 84.9, 86.8, 86.8, and 60.0% in 2021, respectively. CONCLUSION: The total number and the species of Gram-positive bacteria isolated during the 8-year period increased continuously. Streptococcus pneumoniae and Staphylococcus aureus are the main causes of positive bacterial infections in this hospital. The resistance rates of Enterococcus faecium to a variety of commonly used antibiotics increased significantly. Therefore, it is very important to monitor the distribution of bacteria and their resistance to antibiotics to timely evaluate and identify changes in drug resistance that are not easily detected.202337840716
231690.9998Clinical Klebsiella pneumoniae isolates and their efflux pump mechanism for antibiotic resistance challenge. BACKGROUND: Klebsiella pneumoniae is a serious pathogen that causes many disorders in humans and animals. Klebsiella pneumoniae, which is one of the most important pathogens in hospitals, often causes many clinical manifestations, including pneumonia, urinary tract infections, and meningitis. Interest in this bacterium has increased due to the increasing incidence of infection caused by it, as well as its high resistance to antibiotics, especially broad-spectrum antibiotics. AIM: This study showed the efflux pump mechanism of clinical K. pneumoniae isolates and antibiotic resistance in samples collected from sheep and human respiratory tract infection in southern Iraq. METHODS: Three hundred samples were collected, and the samples included: 150 nasal swabs from sheep and 150 sputum samples from humans. Through bacteriological and biochemical examinations. The isolates were identified K. pneumoniae isolates were also confirmed by 16S rRNA. Susceptibility testing of the antibiotics used in the study. To determine the phenotypic efflux pump activity, the agar ethidium bromide cartwheel method was used. RESULTS: Of 150 sputum human specimens and 150 nasal swabs from sheep were tested, 25 and 17 K. pneumoniae species isolates from patients and sheep, respectively, for the resistance of the bacteria isolated from humans to antibiotics. The highest rate of resistance was to piperacillin (88%), and the lowest rate was to antibiotics (36%), imipenem. The highest of bacterial susceptibility to the antibiotic imipenem was (44%) and (36%) for levofloxacin, respectively. For the bacterial isolates from sheep, the highest percentage of resistance to rifampin was (82.3%), and the highest percentage of sensitivity was to imipenem and Levofloxacin antibiotics. The results showed that most of the 39 bacterial isolates (92.8%) possessed an efflux pump mechanism. The result of genotyping to identify the efflux pump genes tolC and acrAB revealed that all isolates carried the genes. CONCLUSION: All the isolates were resistant to antibiotics, and the bacterial isolates under study most possess the efflux pump mechanism. All bacteria also have efflux pump genes, and this gives the bacteria more resistance against many antibiotics.202541036356
2207100.9998Precision medicine in practice: unravelling the prevalence and antibiograms of urine cultures for informed decision making in federal tertiary care- a guide to empirical antibiotics therapy. BACKGROUND AND OBJECTIVES: Urinary tract infections (UTIs), one of the most prevalent bacterial infections, are facing limited treatment options due to escalating concern of antibiotic resistance. Urine cultures significantly help in identification of etiological agents responsible for these infections. Assessment of antibiotic susceptibility patterns of these bacteria aids in tackling the emerging concern of antibiotic resistance and establishment of empirical therapy guidelines. Our aim was to determine various agents responsible for urinary tract infections and to assess their antibiotic susceptibility patterns. MATERIALS AND METHODS: This cross-sectional study was performed over a period of six months from January 2023 to July 2023 in Department of Microbiology of Pakistan Institute of Medical Sciences (PIMS). RESULTS: Out of 2957 positive samples, Gram negative bacteria were the most prevalent in 1939 (65.6%) samples followed by Gram positive bacteria in 418 (14.1%) and Candida spp. in 269 (9.1%) samples. In gram negative bacteria, Escherichia coli (E. coli) was the most prevalent bacteria isolated from 1070 samples (55.2%) followed by Klebsiella pneumoniae in 397 samples (20.5%). In Gram positive bacteria, Enterococcus spp. was the most common bacteria in 213 samples (51%) followed by Staphylococcus aureus in 120 samples (28.7%). Amikacin was the most sensitive drug (91%) for Gram negative bacteria. Gram positive bacteria were most susceptible to linezolid (97%-100%). CONCLUSION: The generation of a hospital tailored antibiogram is essential for the effective management of infections and countering antibiotic resistance. By adopting antimicrobial stewardship strategies by deeper understanding of sensitivity patterns, we can effectively combat antibiotic resistance.202439267930
2362110.9998Distribution of pathogenic bacteria and antimicrobial sensitivity of eye infections in Suzhou. AIM: To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs. METHODS: The clinical data of 155 patients were retrospectively collected in this study, and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed. RESULTS: Among the 155 patients (age from 12 to 87 years old, with an average age of 57, 99 males and 56 females) with eye infections (160 eyes: 74 in the left eye, 76 in the right eye and 5 in both eyes, all of which were exogenous), 71 (45.81%) strains were gram-positive bacteria, 23 (14.84%) strains were gram-negative bacteria and 61 (39.35%) strains were fungi. Gram-positive bacteria were highly resistant to penicillin and erythromycin (78.87% and 46.48% respectively), but least resistant to vancomycin at 0. Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole (100% and 95.65% respectively), but least resistant to meropenem at 0. Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences (P<0.05) in the resistance of both to cefoxitin, cotrimoxazole, levofloxacin, cefuroxime, ceftriaxone and ceftazidime, and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria. The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva, cornea, aqueous humor or vitreous body and other eye parts. Besides, Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections. CONCLUSION: Gram-positive bacteria are the dominant bacteria in eye infections, followed by gram-negative bacteria and fungi. Considering the resistance of gram-negative bacteria to multiple drugs, monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.202438638249
2355120.9998Causative bacteria and antibiotic resistance in neonatal sepsis. BACKGROUND: Neonatal sepsis is characterised by bacteraemia and clinical symptoms caused by microorganisms and their toxic products. Gram negative bacteria are the commonest causes of neonatal Sepsis. The resistance to the commonly used antibiotics is alarmingly high. The major reason for emerging resistance against antibiotics is that doctors often do not take blood cultures before starting antibiotics. We have carried out this study to find out various bacteria causing neonatal sepsis and their susceptibility to antibiotics for better management of neonatal sepsis. METHODS: A total of 130 neonates with sepsis who were found to be blood culture positive were taken in this study. Culture/sensitivity was done, isolated organisms identified and their sensitivity/resistance was noted against different antibiotics. Data were arranged in terms of frequencies and percentage. RESULTS: Out of 130 culture proven cases of neonatal sepsis, gram negative bacteria were found in 71 (54.6%) cases and gram positive bacteria in 59 (45.4%) cases. Staphylococcus aureus was the most common bacteria found in 35 (26.9%) cases followed by Escherichia coli in 30 (23.1%) cases. Acinetobacter species, Staphylococcus epidermidis, Klebseila, Streptococci, Enterobacter cloacae and Morexella species were found in 17 (13.1%), 17 (13.1%), 13 (10%), 7 (5.4%), 6 (4.6%), and 5 (3.8%) cases respectively. In most of the cases causative organisms were found to be resistant to commonly used antibiotics like ampicillin, amoxicillin, cefotaxime, and ceftriaxone (77.7%, 81.5%, 63.1%, and 66.9% respectively). There was comparatively less (56.9%) resistance to ceftazidime. Gentamicin had resistance in 55.1% cases, while amikacin and tobramycin had relatively less resistance (17.4% and 34.8% cases respectively). Quinolones and imipenem had relatively less resistance. Vancomycin was found to be effective in 100% cases of Staphylococcus group. CONCLUSION: Staphylococcus aureus are the most common gram positive bacteria and Escherichia coli are the most common gram negative bacteria causing neonatal sepsis. Resistance to commonly used antibiotics is alarmingly increasing. Continued surveillance is mandatory to assess the resistance pattern at a certain level.201224669633
5785130.9998Molecular characterization of resistance and biofilm genes of ESKAPE pathogens isolated from clinical samples: examination of the effect of boric acid on biofilm ability by cell culture method. Biofilm formation ranks first among the resistance and virulence factors crucial in forming ESKAPE pathogens. Once biofilm is formed, treating the infection with existing drugs is often futile. Therefore, in this study, resistant ESKAPE pathogens were isolated from intensive care units and sent to Atatürk University Yakutiye Research Hospital Microbiology Laboratory. This study investigated the biofilm formation and molecular characterization of resistant ESKAPE pathogens isolated from intensive care units. The bacteria's biofilm formation abilities, genes responsible for biofilm formation, and resistance characteristics were identified. The effect of boric acid (BA) on resistance and bacterial genes was evaluated by a bacterial infection cell culture model. The highest biofilm formation was observed in Escherichia coli, Enterococcus spp., and Pseudomonas aeruginosa Enterococcus spp. isolates showed the vanA gene in 14.6% and the vanC gene in 61% of the samples. Among Staphylococcus spp. isolates, 48.3% were MSSA, 34.5% were MRCNS, and 17.2% were MRSA. The KPC gene was detected in 50%, the OXA-48 gene in 40%, and the NDM gene in 15% of the isolates. In P. aeruginosa, the LasI and LasR quorum sensing system genes were found in 38.5% and 30.8% of the isolates, respectively. In E. coli isolates, OXA-48 was present in 35%, KPC in 31.7%, and TEM in 12.5%. BA demonstrated significant activity against ESKAPE pathogens. The combined antimicrobial activity of boron compounds showed a decrease in the expression level of the resistance gene. It will be promising for preventing hospital-associated infections.202540025436
5789140.9998Antibiotic Resistance and Biofilm Formation in Enterococcus spp. Isolated from Urinary Tract Infections. Background: A urinary tract infection (UTI) resulting from multidrug-resistant (MDR) enterococci is a common disease with few therapeutic options. About 15% of urinary tract infections are caused by biofilm-producing Enterococcus spp. Therefore, the objective of this study was to identify the MDR enterococci associated with UTIs and assess their potential to produce biofilms. Methods: Thirty Enterococcus isolates were obtained from urine samples collected from UTI patients at King Abdulaziz Specialist Hospital in Taif, Saudi Arabia. The antimicrobial resistance profiles of the isolates were evaluated using disk diffusion techniques against 15 antimicrobial agents. Two techniques, Congo red agar (CRA) and a microtiter plate (MTP), were used to assess the potential of the isolates to produce biofilms. The enterococcal isolates were screened for biofilm-related genes, esp; ebpA; and ebpB, using the PCR method. Results: The molecular identification of the collected bacteria revealed the presence of 73.3% Enterococcus faecalis and 26.6% Enterococcus faecium. The antibiotic susceptibility test revealed that all the tested Enterococcus spp. were resistant to all antimicrobials except for linezolid and tigecycline. Additionally, by employing the CRA and MTP techniques, 76.6% and 100% of the Enterococcus isolates were able to generate biofilms, respectively. In terms of the association between the antibiotic resistance and biofilm’s formation, it was observed that isolates capable of creating strong biofilms were extremely resistant to most of the antibiotics tested. The obtained data showed that all the tested isolates had biofilm-encoding genes. Conclusions: Our research revealed that the biofilm-producing enterococci bacteria that causes urinary tract infections were resistant to antibiotics. Therefore, it is necessary to seek other pharmacological treatments if antibiotic medicine fails.202236678381
5788150.9998Shifting of Distribution and Changing of Antibiotic Resistance in Gram-Positive Bacteria from Bile of Patients with Acute Cholangitis. BACKGROUND: Gram-negative bacteria are the predominant pathogens responsible for biliary infections; however, the prevalence of Gram-positive bacteria is currently increasing. Investigating the bacterial spectrum and evolving antibiotic resistance patterns of Gram-positive bacteria is crucial for optimizing the management of acute cholangitis, particularly in the context of the global rise in antibiotic resistance. METHODS: This retrospective analysis focused on Gram-positive bacteria isolated from the bile of patients undergoing biliary drainage with acute cholangitis at our hospital from January 1, 2018, to March 31, 2024. In total, 342 strains of Gram-positive bacteria were examined. RESULTS: The main Gram-positive bacteria detected included Enterococcus (57.23%), Staphylococcus (23.41%), and Streptococcus (13.01%). The most common species detected were Enterococcus faecium (36.42%), Enterococcus faecalis (14.16%), and Staphylococcus epidermidis (7.80%). Trend analysis revealed a decrease in the proportion of Enterococcus and an increase in Streptococcus. Additionally, the detection rate of methicillin-resistant Staphylococcus (MRS) showed a significant rise. Gram-positive bacteria exhibited high resistance to erythromycin and penicillin but remained highly susceptible to linezolid and vancomycin. Further, resistance to quinolones among Gram-positive bacteria was notably elevated. CONCLUSION: The bacterial spectrum and antibiotic resistance patterns of Gram-positive bacteria in acute cholangitis have undergone significant changes. Penicillin is not recommended for the treatment of Gram-positive bacterial infections. Antibiotic resistance should be closely monitored when using quinolones. Particular attention is warranted regarding the markedly increasing antibiotic resistance of Enterococcus faecium.202540034266
2253160.9998Biofilm Formation and Antibiotic Resistance Profiles in Carbapenemase-Producing Gram-Negative Rods-A Comparative Analysis between Screening and Pathological Isolates. (1) Background: Carbapenem-resistant (CR) bacteria pose a significant global public health challenge due to their ability to evade treatment with beta-lactam antibiotics, including carbapenems. This study investigates the biofilm-forming capabilities of CR clinical bacterial isolates and examines the impact of serum on biofilm formation. Additionally, the study evaluates the resistance profiles and genetic markers for carbapenemase production. (2) Methods: Bacterial isolates were collected from the microbiology laboratory of Mures County Clinical Hospital between October 2022 and September 2023. Pharyngeal and rectal swabs were screened for carbapenem-resistant bacteria using selective media. Lower respiratory tract samples were also analyzed for CR Gram-negative bacteria. The isolates were tested for their ability to form biofilms in the presence and absence of fetal bovine serum at 24 and 48 h. Carbapenemase production was detected phenotypically and confirmed via PCR for relevant genes. (3) Results: Out of 846 screened samples, 4.25% from pharyngeal swabs and 6.38% from rectal swabs tested positive for CR bacteria. Acinetobacter baumannii and Klebsiella pneumoniae were the most common species isolated. Biofilm formation varied significantly between clinical isolates and standard strains, with clinical isolates generally showing higher biofilm production. The presence of serum had no significant effect on biofilm formation in Klebsiella spp., but stimulated biofilm formation for Acinetobacter spp. Carbapenemase genes bla(KPC), bla(OXA-48-like), and bla(NDM) were detected in various isolates, predominantly in Klebsiella spp., but were not the main determinants of carbapenem resistance, at least in screening isolates. (4) Conclusions: This study highlights the variability in biofilm formation among CR clinical isolates and underscores the differences between the bacteria found as carriage versus infection. Both bacterial species and environmental factors variably influence biofilm formation. These insights are crucial for the development of effective treatment and infection control strategies in clinical settings.202439199988
2313170.9998Evaluated gene expressions of Metallo beta lactamase genes GIM and , VIM, SPM in Pseudomonas aeruginosa clinical isolates. Pseudomonas aeruginosa is considered as one of the human health care problems, P. aeruginosa's carbapenem resistance emerges by several different mechanisms, some of which include carbapenems genes. P. aeruginosa's carbapenem resistance is a significant health concern, So this study aims to evaluate MBL gene expressions. The study was conducted at the Department of Microbiology, AL-Mahmoodia Hospital, over one year from January to December 2022. The samples were collected from patients with different clinical sources (Burn, Urine, Wound, Sputum, Ear, and Blood), from different ages while. Samples were collected from three hospitals in Baghdad including Al-Yarmouk Teaching Hospital, AL-Mahmmodiya Hospital, and Child's Central Teaching Hospital. A study analyzed 55 P. aeruginosa strains from various clinical sources, the study utilizes the chemical characterization, VITEK 2 system, 16s rRNA, antibiogram sensitivity tests, antibiotic susceptibility using eight antibiotics, including Amikacin, Ciprofloxacin, Levofloxacin, Imipenem Meropenem, Piperacillin, Cefepim and Aztreonam. The test of bacterial susceptibility revealed that each isolate was highly resistant to piperacillin, which are 96.36%, and lower resistance to Ciprofloxacin, which are 32%. Phenotypic screening carbapenem resistance methods combined the disk synergy test and conventional PCR that were used to detect isolates by using 16 S rRNA. This proves that the bacteria is P. aeruginosa and computed by measuring gene expression of the target genes (GIM, VIM, SPM) by using the real-time PCR, which is employed for twenty-five isolates. The result indicates that the expression level of the VIM gene is highly regulated in carbapenem-resistance isolates compared to control isolates that is 1.00. While the expression level of gene GIM and SPM is downregulated in carbapenem-resistance isolates compared to control isolates that is 6. The carbapenem VIM and GIM, SPM (class B) genes are essential for resistance in P. aeruginosa induced by chromosomal changes that modify membrane permeability efflux pump overexpression for genes. As a result, many studies require for discovering new strategies to reduce the threat to public health through preventing the spread of these isolates via tight infections, control measures, and the reduction of the danger to public health.202337917414
2349180.9998DETECTION OF MECA AND NUC GENES OF MULTI-DRUG RESISTANT STAPHYLOCOCCUS AUREUS ISOLATED FROM DIFFERENT CLINICAL SAMPLES. BACKGROUND: During this study, six isolates of multiple antibiotic resistant Staphylococcus aureus bacteria were obtained from different clinical specimens (burn swabs, urinary tract infections, wound swabs): three isolates from burns, two isolates from urinary tract infections, and one isolate from wound swabs. They were obtained from private laboratories in Baghdad from 1/1/2023 to 3/15/2023. METHOD: The diagnosis of these isolates was confirmed using the Vitek2 device. A susceptibility test was conducted on ten antibiotics, and S. aureus bacteria showed resistance to most antibiotics, polymerase chain reaction was done to mecA and Nuc gene by conventional PCR. RESULTS: The results of the molecular detection of the MecA gene showed that all isolates of multi-drug-resistant S. aureus possess this gene. In contrast, the results of the molecular detection of the nuc gene showed that only isolates No. 1 and No. 4 carry this gene, while the rest of the isolates do not carry this gene. CONCLUSION: S. aureus are resistant to antibiotics because they possess resistance genes such as the mecA gene.202439724880
2303190.9997Patterns of Drug-Resistant Bacteria in a General Hospital, China, 2011-2016. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential. Drug-resistant bacteria has been a threat to public life and property. We described the trends and changes in antibiotic resistance of important pathogens in a general hospital in Zhengzhou, China from 2011 to 2016, to control antimicrobial-resistant bacteria in hospital and provide support to clinicians and decision-making departments. Five dominant bacteria were enrolled based on the data from the general hospital during 6 years. The results of antimicrobial susceptibility testing were interpreted according to Clinical and Laboratory Standards Institute (CLSI). From 2011 to 2016, a total of 19,260 strains of bacteria were isolated, of which Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii accounted for 51.98%. The resistance rate of K. pneumoniae and E. coli to carbapenem was less than 15%, but resistance of K. pneumoniae to carbapenems increased with time and resistance of E. coli to meropenem increased. The rate of extended-spectrum beta-lactamase (ESBL) production among K. pneumoniae and E. coli was decreasing. For most antibiotics, the resistance rate of ESBL-positive isolates was higher than that of ESBL-negative isolates, excluding carbapenems and cefoxitin. For S. aureus, the rate of methicillin-resistant S. aureus (MRSA) was stable. Resistance of S. aureus to mostly antibiotics decreased with time. Besides polymyxin B, P. aeruginosa and A. baumannii showed high resistance to other antibiotics. For A. baumannii, the resistance rate to mostly antibiotics was increasing. The bacteria showed high levels of resistance and multiple drug resistance. Continuous surveillance and optimizing the use of antibiotics are essential.201931250593