# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5768 | 0 | 1.0000 | The resistance mechanism of Escherichia coli induced by ampicillin in laboratory. BACKGROUND: Multi-drug-resistant Escherichia coli poses a great threat to human health, especially resistant to ampicillin (AMP), but the mechanism of drug resistance is not very clear. PURPOSE: To understand the mechanism of resistance of E. coli to beta-lactam antibiotics by inducing drug resistance of sensitive bacteria in laboratory. METHODS: Clinical sensitive E. coli strain was induced into resistance strain by 1/2 minimum inhibitive concentration (MIC) induced trails of AMP. The drug resistance spectrum was measured by modified K-B susceptibility test. Whole-genome sequencing analysis was used to analyze primary sensitive strain, and resequencing was used to analyze induced strains. Protein tertiary structure encoded by the gene containing single nucleotide polymorphism (SNP) was analyzed by bioinformatics. RESULTS: After 315 hrs induced, the MIC value of E. coli 15743 reached to 256 µg/mL, 64 times higher than that of the sensitive bacteria. During the induction process, the bacterial resistance process is divided into two stages. The rate of drug resistance occurs rapidly before reaching the critical concentration of 32 µg/mL, and then the resistance rate slows down. Sequencing of the genome of resistant strain showed that E. coli 15743 drug-resistant strain with the MIC values of 32 and 256 µg/mL contained four and eight non-synonymous SNPs, respectively. These non-synonymous SNPs were distributed in the genes of frdD, ftsI, acrB, OmpD, marR, VgrG, and envZ. CONCLUSION: These studies will improve our understanding of the molecular mechanism of AMP resistance of E. coli, and may provide the basis for prevention and control of multi-drug-resistant bacteria and generation of new antibiotics to treat E. coli infection. | 2019 | 31571941 |
| 5766 | 1 | 0.9998 | Ceftazidime resistance in Pseudomonas aeruginosa is multigenic and complex. Pseudomonas aeruginosa causes a wide range of severe infections. Ceftazidime, a cephalosporin, is a key antibiotic for treating infections but a significant proportion of isolates are ceftazidime-resistant. The aim of this research was to identify mutations that contribute to resistance, and to quantify the impacts of individual mutations and mutation combinations. Thirty-five mutants with reduced susceptibility to ceftazidime were evolved from two antibiotic-sensitive P. aeruginosa reference strains PAO1 and PA14. Mutations were identified by whole genome sequencing. The evolved mutants tolerated ceftazidime at concentrations between 4 and 1000 times that of the parental bacteria, with most mutants being ceftazidime resistant (minimum inhibitory concentration [MIC] ≥ 32 mg/L). Many mutants were also resistant to meropenem, a carbapenem antibiotic. Twenty-eight genes were mutated in multiple mutants, with dacB and mpl being the most frequently mutated. Mutations in six key genes were engineered into the genome of strain PAO1 individually and in combinations. A dacB mutation by itself increased the ceftazidime MIC by 16-fold although the mutant bacteria remained ceftazidime sensitive (MIC < 32 mg/L). Mutations in ampC, mexR, nalC or nalD increased the MIC by 2- to 4-fold. The MIC of a dacB mutant was increased when combined with a mutation in ampC, rendering the bacteria resistant, whereas other mutation combinations did not increase the MIC above those of single mutants. To determine the clinical relevance of mutations identified through experimental evolution, 173 ceftazidime-resistant and 166 sensitive clinical isolates were analysed for the presence of sequence variants that likely alter function of resistance-associated genes. dacB and ampC sequence variants occur most frequently in both resistant and sensitive clinical isolates. Our findings quantify the individual and combinatorial effects of mutations in different genes on ceftazidime susceptibility and demonstrate that the genetic basis of ceftazidime resistance is complex and multifactorial. | 2023 | 37192202 |
| 5836 | 2 | 0.9997 | Identification of Pseudomonas aeruginosa genes associated with antibiotic susceptibility. Pseudomonas aeruginosa causes acute and chronic infections in humans and these infections are difficult to treat due to the bacteria's high-level of intrinsic and acquired resistance to antibiotics. To address this problem, it is crucial to investigate the molecular mechanisms of antibiotic resistance in this organism. In this study, a P. aeruginosa transposon insertion library of 17000 clones was constructed and screened for altered susceptibility to seven antibiotics. Colonies grown on agar plates containing antibiotics at minimum inhibitory concentrations (MICs) and those unable to grow at 1/2 MIC were collected. The transposon-disrupted genes in 43 confirmed mutants that showed at least a three-fold increase or a two-fold decrease in susceptibility to at least one antibiotic were determined by semi-random PCR and subsequent sequencing analysis. In addition to nine genes known to be associated with antibiotic resistance, including mexI, mexB and mexR, 24 new antibiotic resistance-associated genes were identified, including a fimbrial biogenesis gene pilY1 whose disruption resulted in a 128-fold increase in the MIC of carbenicillin. Twelve of the 43 genes identified were of unknown function. These genes could serve as targets to control or reverse antibiotic resistance in this important human pathogen. | 2010 | 20953948 |
| 5769 | 3 | 0.9997 | Analysis of Nucleotide Sequences Similarity and Protein Prediction of Some Resistance Genes in Escherichia coli Isolated from Iraqi Patients with Urinary Tract Infections. Antibiotic resistance leads to a dramatic increase in the morbidity and mortality caused by infectious diseases. Even though estimates vary widely, the economic cost of antimicrobial-resistant bacteria is on a rise. The current aimed to identify the antimicrobial resistance of Escherichia coli (E. coli). In fact, this study focused on the recent deep-learning methods (sequencing) to investigate E. coli antibiotic resistance and their protein sequences. To evaluate antibiotic resistance, the sequencing method could be considered the method of choice. The E. coli was identified by either specific biochemical tests or polymerase chain reaction (PCR) using the 16S rRNA gene. The results of aadA1 gene sequences demonstrated 10 nucleic acid substitutions throughout, as compared to the reference NCBI database (MG385063). Out of the 10 nucleic acid substitutions, 9 missense effects were observed. While the dfrA1 gene sequences illustrated 20 nucleic acid substitutions throughout, compared to the reference NCBI database (KY706080), out of the 20 nucleic acid substitutions, 8 missense effects were observed. Furthermore, the sul1 gene sequences displayed 20 nucleic acid substitutions throughout, in comparison with the reference NCBI database (CP069561), and out of the 20 nucleic acid substitutions, 12 missense effects were detected. The cat1 gene sequences showed 14 nucleic acid substitutions throughout, compared to the reference NCBI database (NC017660), and out of the 14 nucleic acid substitutions, 8 missense effects were observed. The precise point (Missense) mutation in four genes (aadA1, dfrA1, sul1, and cat1) in the expected sequence is interpreted to be the target site of a site-specific recombination mechanism that led to antibiotics resistance in E. coli isolates. | 2022 | 36618275 |
| 5985 | 4 | 0.9997 | Alternative quinolone-resistance pathway caused by simultaneous horizontal gene transfer in Haemophilus influenzae. BACKGROUND: Quinolone-resistant bacteria are known to emerge via the accumulation of mutations in a stepwise manner. Recent studies reported the emergence of quinolone low-susceptible Haemophilus influenzae ST422 isolates harbouring two relevant mutations, although ST422 isolates harbouring one mutation were never identified. OBJECTIVES: To investigate if GyrA and ParC from quinolone low-susceptible isolates can be transferred horizontally and simultaneously to susceptible isolates. METHODS: Genomic DNA was extracted from an H. influenzae isolate harbouring amino acid substitutions in both gyrA and parC and mixed with clinical isolates. The emergence of resistant isolates was compared, and WGS analysis was performed. RESULTS: By adding the genomic DNA harbouring both mutated gyrA and parC, resistant bacteria exhibiting recombination at gyrA only or both gyrA and parC loci were obtained on nalidixic acid and pipemidic acid plates, and the frequency was found to increase with the amount of DNA. Recombination events in gyrA only and in both gyrA and parC occurred with at least 1 and 1-100 ng of DNA, respectively. The genome sequence of a representative strain showed recombination events throughout the genome. The MIC of quinolone for the resulting strains was found to be similar to that of the donor. Although the recombination efficacy was different among the various strains, all strains used in this study obtained multiple genes simultaneously. CONCLUSIONS: These findings indicate that H. influenzae can simultaneously obtain more than two mutated genes. This mechanism of horizontal transfer could be an alternative pathway for attaining quinolone resistance. | 2022 | 36124853 |
| 6264 | 5 | 0.9997 | Multi-drug resistance pattern and genome-wide SNP detection in levofloxacin-resistant uropathogenic Escherichia coli strains. OBJECTIVES: Antibiotic treatment is extremely stressful for bacteria and has profound effects on their viability. Such administration induces physiological changes in bacterial cells, with considerable impact on their genome structure that induces mutations throughout the entire genome. This study investigated drug resistance profiles and structural changes in the entire genome of uropathogenic Escherichia coli (UPEC) strains isolated from six adapted clones that had evolved under laboratory conditions. METHODS: Eight UPEC strains, including two parental strains and six adapted clones, with different fluoroquinolone resistance levels originally isolated from two patients were used. The minimum inhibitory concentration (MIC) of 28 different antibiotics including levofloxacin was determined for each of the eight strains. In addition, the effects of mutations acquired with increased drug resistance in the levofloxacin-resistant strains on expression of genes implicated to be involved in drug resistance were examined. RESULTS: Of the eight UPEC strains used to test the MIC of 28 different antibiotics, two highly fluoroquinolone-resistant strains showed increased MIC in association with many of the antibiotics. As drug resistance increased, some genes acquired mutations, including the transcriptional regulator acrR and DNA-binding transcriptional repressor marR. Two strain groups with genetically different backgrounds (GUC9 and GFCS1) commonly acquired mutations in acrR and marR. Notably, acquired mutations related to efflux pump upregulation also contributed to increases in MIC for various antibiotics other than fluoroquinolone. CONCLUSIONS: The present results obtained using strains with artificially acquired drug resistance clarify the underlying mechanism of resistance to fluoroquinolones and other types of antibiotics. | 2024 | 38041251 |
| 5838 | 6 | 0.9997 | Alteration in the Morphological and Transcriptomic Profiles of Acinetobacter baumannii after Exposure to Colistin. Acinetobacter baumannii is often highly resistant to multiple antimicrobials, posing a risk of treatment failure, and colistin is a "last resort" for treatment of the bacterial infection. However, colistin resistance is easily developed when the bacteria are exposed to the drug, and a comprehensive analysis of colistin-mediated changes in colistin-susceptible and -resistant A. baumannii is needed. In this study, using an isogenic pair of colistin-susceptible and -resistant A. baumannii isolates, alterations in morphologic and transcriptomic characteristics associated with colistin resistance were revealed. Whole-genome sequencing showed that the resistant isolate harbored a PmrB(L208F) mutation conferring colistin resistance, and all other single-nucleotide alterations were located in intergenic regions. Using scanning electron microscopy, it was determined that the colistin-resistant mutant had a shorter cell length than the parental isolate, and filamented cells were found when both isolates were exposed to the inhibitory concentration of colistin. When the isolates were treated with inhibitory concentrations of colistin, more than 80% of the genes were upregulated, including genes associated with antioxidative stress response pathways. The results elucidate the morphological difference between the colistin-susceptible and -resistant isolates and different colistin-mediated responses in A. baumannii isolates depending on their susceptibility to this drug. | 2024 | 39203486 |
| 5765 | 7 | 0.9997 | Expression of Pseudomonas aeruginosa Antibiotic Resistance Genes Varies Greatly during Infections in Cystic Fibrosis Patients. The lungs of individuals with cystic fibrosis (CF) become chronically infected with Pseudomonas aeruginosa that is difficult to eradicate by antibiotic treatment. Two key P. aeruginosa antibiotic resistance mechanisms are the AmpC β-lactamase that degrades β-lactam antibiotics and MexXYOprM, a three-protein efflux pump that expels aminoglycoside antibiotics from the bacterial cells. Levels of antibiotic resistance gene expression are likely to be a key factor in antibiotic resistance but have not been determined during infection. The aims of this research were to investigate the expression of the ampC and mexX genes during infection in patients with CF and in bacteria isolated from the same patients and grown under laboratory conditions. P. aeruginosa isolates from 36 CF patients were grown in laboratory culture and gene expression measured by reverse transcription-quantitative PCR (RT-qPCR). The expression of ampC varied over 20,000-fold and that of mexX over 2,000-fold between isolates. The median expression levels of both genes were increased by the presence of subinhibitory concentrations of antibiotics. To measure P. aeruginosa gene expression during infection, we carried out RT-qPCR using RNA extracted from fresh sputum samples obtained from 31 patients. The expression of ampC varied over 4,000-fold, while mexX expression varied over 100-fold, between patients. Despite these wide variations, median levels of expression of ampC in bacteria in sputum were similar to those in laboratory-grown bacteria. The expression of mexX was higher in sputum than in laboratory-grown bacteria. Overall, our data demonstrate that genes that contribute to antibiotic resistance can be highly expressed in patients, but there is extensive isolate-to-isolate and patient-to-patient variation. | 2018 | 30201819 |
| 5763 | 8 | 0.9997 | Development of in vitro resistance to fluoroquinolones in Pseudomonas aeruginosa. Fluoroquinolone resistance in Pseudomonas aeruginosa typically arises through site-specific mutations and overexpression of efflux pumps. In this study, we investigated the dynamics of different resistance mechanisms in P. aeruginosa populations that have evolved under fluoroquinolone pressure, as well as the interactions between these mechanisms in evolutionary trajectories. Bacteria of strain ATCC27853 were selected under different concentrations of ciprofloxacin and levofloxacin for six parallel lineages, followed by amplification of four target genes in the quinolone-resistance determining region (QRDR) and Sanger sequencing to identify the mutations. The expression of four efflux pump proteins was evaluated by real-time polymerase chain reaction using the relative quantitation method, with the ATCC27853 strain used as a control. We found that ciprofloxacin killed P. aeruginosa sooner than did levofloxacin. Further, we identified five different mutations in three subunits of QRDRs, with gyrA as the main mutated gene associated with conferring fluoroquinolone resistance. Additionally, we found a larger number of mutations appearing at 2 mg/L and 4 mg/L of ciprofloxacin and levofloxacin, respectively. Moreover, we identified the main efflux pump being expressed as MexCD-OprJ, with initial overexpression observed at 0.25 mg/L and 0.5 mg/L of ciprofloxacin and levofloxacin, respectively. These results demonstrated gyrA(83) mutation and MexCD-OprJ overexpression as the primary mechanism conferring ciprofloxacin and levofloxacin resistance in P. aeruginosa. In addition, we also show that ciprofloxacin exhibited a stronger ability to kill the bacteria while potentially rendering it more susceptible to resistance. | 2020 | 32758289 |
| 5754 | 9 | 0.9996 | Efflux pump inhibitor CCCP to rescue colistin susceptibility in mcr-1 plasmid-mediated colistin-resistant strains and Gram-negative bacteria. OBJECTIVES: Efflux in bacteria is a ubiquitous mechanism associated with resistance to antimicrobials agents. Efflux pump inhibitors (EPIs) have been developed to inhibit efflux mechanisms and could be a good alternative to reverse colistin resistance, but only CCCP has shown good activity. The aim of our study was to identify CCCP activity in a collection of 93 Gram-negative bacteria with known and unknown colistin resistance mechanisms including isolates with mcr-1 plasmid-mediated colistin resistance. METHODS: Colistin MIC was evaluated with and without CCCP and the fold decrease of colistin MIC was calculated for each strain. In order to evaluate the effect of this combination, a time-kill study was performed on five strains carrying different colistin resistance mechanisms. RESULTS: Overall, CCCP was able to reverse colistin resistance for all strains tested. The effect of CCCP was significantly greater on intrinsically colistin-resistant bacteria (i.e. Proteus spp., Serratia marcescens, Morganella morganii and Providencia spp.) than on other Enterobacteriaceae (P < 0.0001). The same was true for bacteria with a heteroresistance mechanism compared to bacteria with other colistin resistance mechanisms (P < 0.0001). A time-kill study showed the combination was bacteriostatic on strains tested. CONCLUSIONS: These results suggest an efflux mechanism, especially on intrinsically resistant bacteria and Enterobacter spp., but further analysis is needed to identify the molecular support of this mechanism. EPIs could be an alternative for restoring colistin activity in Gram-negative bacteria. Further work is necessary to identify new EPIs that could be used in humans. | 2018 | 29718423 |
| 5758 | 10 | 0.9996 | RND pump inhibition: in-silico and in-vitro study by Eugenol on clinical strain of E. coli and P. aeruginosa. Multidrug-resistant (MDR) gram-negative bacteria pose significant challenges to the public health. Various factors are involved in the development and spread of MDR strains, including the overuse and misuse of antibiotics, the lack of new antibiotics being developed, and etc. Efflux pump is one of the most important factors in the emergence of antibiotic resistance in bacteria. Aiming at the introduction of novel plant antibiotic, we investigated the effect of eugenol on the MexA and AcrA efflux pumps in Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). Molecular docking was performed using PachDock Server 1.3. The effect of eugenol on bacteria was determined by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A cartwheel test was also performed to evaluate efflux pump inhibition. Finally, the expression of the MexA and AcrA genes was examined by real-time PCR. The results of molecular docking showed that eugenol interacted with MexA and AcrA pumps at - 29.28 and - 28.59 Kcal.mol(-1), respectively. The results of the antibiogram test indicated that the antibiotic resistance of the treated bacteria decreased significantly (p < 0.05). The results of the cartwheel test suggested the inhibition of efflux pump activity in P. aeruginosa and E. coli. Analysis of the genes by real-time PCR demonstrated that the expression of MexA and AcrA genes was significantly reduced, compared to untreated bacteria (p < 0.001). The findings suggest, among other things, that eugenol may make P. aeruginosa and E. coli more sensitive to antibiotics and that it could be used as an inhibitor to prevent bacteria from becoming resistant to antibiotics. | 2023 | 37587975 |
| 6262 | 11 | 0.9996 | Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance. Tigecycline is a glycylcycline antibiotic active against multidrug-resistant bacterial pathogens. The objectives of our study were to examine the potential of the Tet(A), Tet(K), Tet(M), and Tet(X) tetracycline resistance proteins to acquire mutations causing tigecycline resistance and to determine how this affects resistance to earlier classes of tetracyclines. Mutations in all four tet genes caused a significant increase in the tigecycline MIC in Escherichia coli, and strains expressing mutant Tet(A) and Tet(X) variants reached clinically relevant MICs (2 mg/liter and 3 mg/liter, respectively). Mutations predominantly accumulated in transmembrane domains of the efflux pumps, most likely increasing the accommodation of tigecycline as a substrate. All selected Tet(M) mutants contained at least one mutation in the functionally most important loop III of domain IV. Deletion of leucine 505 of this loop led to the highest increase of the tigecycline MIC (0.5 mg/liter) among Tet(M) mutants. It also caused collateral sensitivity to earlier classes of tetracyclines. A majority of the Tet(X) mutants showed increased activity against all three classes of tetracylines. All tested Tet proteins have the potential to acquire mutations leading to increased MICs of tigecycline. As tet genes are widely found in pathogenic bacteria and spread easily by horizontal gene transfer, resistance development by alteration of existing Tet proteins might compromise the future medical use of tigecycline. We predict that Tet(X) might become the most problematic future Tet determinant, since its weak intrinsic tigecycline activity can be mutationally improved to reach clinically relevant levels without collateral loss in activity to other tetracyclines. | 2016 | 26596936 |
| 5759 | 12 | 0.9996 | The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Urinary tract infections (UTIs) are common bacterial infections caused mainly by enteric bacteria. Numerous virulence factors assist bacteria in the colonization of the bladder. Bacterial efflux pumps also contribute to bacterial communication and to biofilm formation. In this study, the phenotypic and genetic antibiotic resistance of clinical UTI pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were determined by disk diffusion method and polymerase chain reaction (PCR). Following this, different classes of antibiotics were evaluated for their antibacterial activity at pH 5, 6, 7 and 8 by a microdilution method. Gentamicin (GEN) was the most potent antibacterial agent against E. coli strains. The effect of GEN on the relative expression of marR and sdiA genes was evaluated by quantitative PCR. The slightly acidic pH (pH 6) and GEN treatment induced the upregulation of marR antibiotic resistance and sdiA QS activator genes in both E. coli strains. Consequently, bacteria had become more susceptible to GEN. It can be concluded that antibiotic activity is pH dependent and so the artificial manipulation of urinary pH can contribute to a more effective therapy of multidrug resistant bacterial infections. | 2021 | 34943643 |
| 5840 | 13 | 0.9996 | Detection of point mutations associated with antibiotic resistance in Pseudomonas aeruginosa. Excessive use of broad-spectrum antibiotics in hospitals has led to the emergence of highly resistant strains of Pseudomonas aeruginosa. To reduce the selection pressure for resistance, it is important to determine the antibiotic susceptibility pattern of bacteria so that hospital patients can be treated with more narrow-spectrum and target-specific antibiotics. This study describes the development of a technique for detecting point muations in the fluoroquinolone resistance-determining region of the gyrA and parC genes as well as the efflux regulatory genes mexR, mexZ and mexOZ that are associated with fluoroquinolone and aminoglycoside resistance. The assay is based on a short DNA sequencing method using multiplex-fast polymerase chain reaction (PCR) and Pyrosequencing for amplification and sequencing of the selected genes. Fifty-nine clinical isolates of P. aeruginosa were examined for mutations in the abovementioned genes. Mutations related to antibiotic resistance were detected in codons 83 and 87 of gyrA and codon 126 of the mexR regulatory gene. Results of this study suggest Pyrosequencing as a substitute for traditional methods as it provides a rapid and reliable technique for determining the antibiotic resistance pattern of a given bacterial strain in <1 h. | 2009 | 19656662 |
| 5837 | 14 | 0.9996 | The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials. | 2017 | 28198411 |
| 4739 | 15 | 0.9996 | Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes. OBJECTIVES: Indirect resistance (IR), the ability of an antibiotic-resistant population of bacteria to protect a susceptible population, has been previously observed for β-lactamase-producing bacteria and associated with antimicrobial treatment failures. Here, we determined whether other resistance determinants could cause IR in the presence of five other classes of antibiotics. METHODS: A test was designed to detect IR and 14 antibiotic resistance genes were tested in the presence of 13 antibiotics from six classes. A bioassay was used to measure the ability of resistance-causing enzymes to decrease the concentration of active antibiotics in the medium. RESULTS: We confirmed IR in the presence of β-lactam antibiotics (ampicillin and mecillinam) when TEM-1A was expressed. We found that bacteria expressing antibiotic-modifying or -degrading enzymes Ere(A), Tet(X2) or CatA1 caused IR in the presence of macrolides (erythromycin and clarithromycin), tetracyclines (tetracycline and tigecycline) and chloramphenicol, respectively. IR was not observed with resistance determinants that did not modify or destroy antibiotics or with enzymes modifying aminoglycosides or degrading fosfomycin. IR was dependent on the resistance enzymes decreasing the concentration of active antibiotics in the medium, hence allowing nearby susceptible bacteria to resume growth once the antibiotic concentration fell below their MIC. CONCLUSIONS: IR was not limited to β-lactamase-producing bacteria, but was also caused by resistant bacteria carrying cytoplasmic antibiotic-modifying or -degrading enzymes that catalyse energy-consuming reactions requiring complex cellular cofactors. Our results suggest that IR is common and further emphasizes that coinfecting agents and the human microflora can have a negative impact during antimicrobial therapy. | 2016 | 26467993 |
| 5764 | 16 | 0.9996 | Aminoglycoside-Modifying Enzymes Are Sufficient to Make Pseudomonas aeruginosa Clinically Resistant to Key Antibiotics. Aminoglycosides are widely used to treat infections of Pseudomonas aeruginosa. Genes encoding aminoglycoside-modifying enzymes (AMEs), acquired by horizontal gene transfer, are commonly associated with aminoglycoside resistance, but their effects have not been quantified. The aim of this research was to determine the extent to which AMEs increase the antibiotic tolerance of P. aeruginosa. Bioinformatics analysis identified AME-encoding genes in 48 out of 619 clinical isolates of P. aeruginosa, with ant(2')-Ia and aac(6')-Ib3, which are associated with tobramcyin and gentamicin resistance, being the most common. These genes and aph(3')-VIa (amikacin resistance) were deleted from antibiotic-resistant strains. Antibiotic minimum inhibitory concentrations (MICs) were reduced by up to 64-fold, making the mutated bacteria antibiotic-sensitive in several cases. Introduction of the same genes into four antibiotic-susceptible P. aeruginosa strains increased the MIC by up to 128-fold, making the bacteria antibiotic-resistant in all cases. The cloned genes also increased the MIC in mutants lacking the MexXY-OprM efflux pump, which is an important contributor to aminoglycoside resistance, demonstrating that AMEs and this efflux pump act independently in determining levels of aminoglycoside tolerance. Quantification of the effects of AMEs on antibiotic susceptibility demonstrates the large effect that these enzymes have on antibiotic resistance. | 2022 | 35884138 |
| 6263 | 17 | 0.9996 | Gene-Gene Interactions Dictate Ciprofloxacin Resistance in Pseudomonas aeruginosa and Facilitate Prediction of Resistance Phenotype from Genome Sequence Data. Ciprofloxacin is one of the most widely used antibiotics for treating Pseudomonas aeruginosa infections. However, P. aeruginosa acquires mutations that confer ciprofloxacin resistance, making treatment more difficult. Resistance is multifactorial, with mutations in multiple genes influencing the resistance phenotype. However, the contributions of individual mutations and mutation combinations to the amounts of ciprofloxacin that P. aeruginosa can tolerate are not well understood. Engineering P. aeruginosa strain PAO1 to contain mutations in any one of the resistance-associated genes gyrA, nfxB, rnfC, parC, and parE showed that only gyrA mutations increased the MIC for ciprofloxacin. Mutations in parC and parE increased the MIC of a gyrA mutant, making the bacteria ciprofloxacin resistant. Mutations in nfxB and rnfC increased the MIC, conferring resistance, only if both were mutated in a gyrA background. Mutations in all of gyrA, nfxB, rnfC, and parC/E further increased the MIC. These findings reveal an epistatic network of gene-gene interactions in ciprofloxacin resistance. We used this information to predict ciprofloxacin resistance/susceptibility for 274 isolates of P. aeruginosa from their genome sequences. Antibiotic susceptibility profiles were predicted correctly for 84% of the isolates. The majority of isolates for which prediction was unsuccessful were ciprofloxacin resistant, demonstrating the involvement of additional as yet unidentified genes and mutations in resistance. Our data show that gene-gene interactions can play an important role in antibiotic resistance and can be successfully incorporated into models predicting resistance phenotype. | 2021 | 33875431 |
| 4746 | 18 | 0.9996 | Correlation of QRDR mutations and MIC levels in fluoroquinolone-resistant Staphylococcus aureus clinical isolates. Antimicrobial resistance is a global health problem. Among various antibiotic-resistant bacteria, Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA), is a clinically important pathogen responsible for serious infections because of its multidrug resistance (MDR) and association with high mortality rates. The MDR nature of MRSA, including resistance to macrolides, aminoglycosides, fluoroquinolones, and tetracyclines, limits therapeutic choices and poses significant challenges in clinical management. This study aimed to analyze the correlation between mutations in the quinolone resistance-determining region (QRDR) and the minimum inhibitory concentration (MIC) of fluoroquinolone drugs, such as ciprofloxacin and levofloxacin, in MRSA and methicillin-sensitive S. aureus (MSSA). A total of 63 S. aureus clinical strains were isolated from blood samples of sepsis patients. DNA sequence analysis was performed using gDNA extracted from all S. aureus clinical isolates to identify mutations in the QRDR of gyrA, gyrB, parC, and parE. The MICs of antimicrobials were determined by the broth microdilution method. Among these genes, only mutations in parC showed a statistically significant positive correlation with elevated MIC levels, underscoring the primary role of parC in mediating resistance in our clinical isolates. Notably, all isolates exhibited a substitution at serine 80 (S80) in parC, and those harboring simultaneous substitutions at both S80 and glutamic acid 84 (E84) demonstrated markedly increased MIC values for both drugs. These findings reinforce previously reported associations between dual mutations and high-level fluoroquinolone resistance, while highlighting the distinct contribution of parC among the QRDR genes analyzed in this study. Furthermore, we found that the most frequent mutation in the QRDR was the cytosine-to-thymine mutation.IMPORTANCEAntimicrobial resistance is a growing global health crisis, making bacterial infections harder to treat. Staphylococcus aureus, especially MRSA, is a major concern due to its resistance to multiple antibiotics, including fluoroquinolones like ciprofloxacin and levofloxacin. Our study highlights how specific genetic mutations in the quinolone resistance-determining region (QRDR) influence fluoroquinolone resistance. We found that mutations in the parC gene, particularly substitutions at serine 80 (S80) and glutamic acid 84 (E84), significantly increase resistance. Understanding these mutations helps predict antibiotic resistance and may guide more effective treatment strategies. By identifying key genetic changes that drive fluoroquinolone resistance, our research contributes to developing improved diagnostic tools and targeted therapies to combat drug-resistant S. aureus infections. This knowledge is crucial for clinicians and researchers working to control the spread of antibiotic-resistant bacteria and improve patient outcomes. | 2025 | 41081515 |
| 1760 | 19 | 0.9996 | Proteomic analysis of clinical isolate of Stenotrophomonas maltophilia with blaNDM-1, blaL1 and blaL2 β-lactamase genes under imipenem treatment. The co-occurrence of L1 and AmpR-L2 with bla(NDM-1) gene with an upstream 250-bp promoter was detected in a clinical isolate of Stenotrophomonas maltophilia DCPS-01, which was resistant to all β-lactams and sensitive only to colistin and fluoroquinolones. To investigate expression of resistance genes and the molecular mechanisms of bacteria resistance to carbapenems, proteomic profiles of the isolate was passaged with and without the drug by using 2D-PAGE. The results showed that 33 genes exhibiting a ≥3-fold change were identified as candidates that may help S. maltophilia survive drug selection. Strikingly, L1 was expressed more highly in cells grown with imipenem, and the abundant NDM-1 further increased, while very little L2 was detected even following induction. Specific activities for β-lactamase revealed that L2 remained at constitutive low levels (10.6 U/mg), while L1 and NDM-1 showed clear activity (69.8 U/mg). Our data support that imipenem could specifically and reversibly induce L1 and NDM-1, which together played key roles in drug resistance in DCPS-01. Although NDM-1 mediated resistance to carbapenems has been found in very few cases, to our knowledge, this is the first proteomics research of S. maltophilia with NDM-1, giving very broad-spectrum antibiotic resistance profiles. | 2012 | 22702735 |