# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5762 | 0 | 1.0000 | Evolution of antimicrobial resistance in E. coli biofilm treated with high doses of ciprofloxacin. The evolution of antimicrobial resistance (AMR) has mainly been studied in planktonic bacteria exposed to sub-inhibitory antimicrobial (AM) concentrations. However, in a number of infections that are treated with AMs the bacteria are located in biofilms where they tolerate high doses of AM. In the present study, we continuously exposed biofilm residing E. coli at body temperature to high ciprofloxacin (CIP) concentrations increasing from 4 to 130 times the minimal inhibitory concentration (MIC), i.e., from 0.06 to 2.0 mg/L. After 1 week, the biofilms were full of CIP resistant bacteria. The evolutionary trajectory observed was the same as described in the literature for planktonic bacteria, i.e., starting with a single mutation in the target gene gyrA followed by mutations in parC, gyrB, and parE, as well as in genes for regulation of multidrug efflux pump systems and outer membrane porins. Strains with higher numbers of these mutations also displayed higher MIC values. Furthermore, the evolution of CIP resistance was more rapid, and resulted in strains with higher MIC values, when the bacteria were biofilm residing than when they were in a planktonic suspension. These results may indicate that extensive clinical AM treatment of biofilm-residing bacteria may not only fail to eradicate the infection but also pose an increased risk of AMR development. | 2023 | 37731931 |
| 5761 | 1 | 0.9999 | The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa: Reduced Susceptibility Due to Mutations. Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa. Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps (mexR, mexS, mexZ and nalC) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS, sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant. | 2021 | 34987489 |
| 4510 | 2 | 0.9999 | Environmental concentrations of antibiotics, biocides, and heavy metals fail to induce phenotypic antimicrobial resistance in Escherichia coli. Most anthropogenically affected environments contain mixtures of pollutants from different sources. The impact of these pollutants is usually the combined effect of the individual polluting constituents. However, how these stressors contribute to the development of antimicrobial resistance in environmental microorganisms is poorly understood. Thus, a 30-day exposure experiment to environmental and sub-inhibitory concentrations of oxytetracycline, amoxicillin, zinc, copper, BAC (benzalkonium chloride) 10 and DADMAC (diallyldimethylammonium chloride) 12, was conducted using fully susceptible E. coli ATCC 25922 to ascertain any development of phenotypic or genotypic resistance. Furthermore, wild-type isolates were collected from the same aquatic environment as the stressors, analysed for phenotypic resistance using the disk diffusion method and genotypically through whole genome sequencing. Exposure to the various concentrations and combinations of the stressors did not trigger phenotypic resistance in the experimental bacteria. Furthermore, genotypic analysis of the WGS on the exposed isolates only found the macrolide resistance mdf(A) gene (also present in the control strain) and the disinfectant resistance gene sitABCD. With further analysis for single nucleotide variants (SNV), mutations were detected for 19 genes that encoded for oxidative stress, DNA repair, membrane proteins efflux systems, growth and persister formations except for the robA, a transcription protein subset of the ArcC/XylS family of proteins, which confer multidrug resistance in E. coli. This indicates that exposure to sub-inhibitory concentrations of antibiotics, heavy metals and biocide residues in the aquatic environmental concentrations of the stressors identified in the current study could not induce phenotypic or genotypic resistance but encoded for genes responsible for the development of persistence and tolerance in bacteria, which could be a precursor to the development of resistance in environmental bacteria. | 2023 | 37482346 |
| 4723 | 3 | 0.9998 | Impact of Sublethal Disinfectant Exposure on Antibiotic Resistance Patterns of Pseudomonasaeruginosa. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. OBJECTIVE: The problem of hospital cross-infection due to contamination of disinfectants has been recognized elsewhere. The passage of bacteria through diluted disinfectants may not only bring about phenotypic changes in their antibiograms but also changes in phage susceptibility patterns. Contact with disinfectants in sublethal concentrations allows survival and multiplication of bacteria. METHODS AND MATERIALS: Serial passage, through disinfectants at subminimal inhibitory concentrations, induced antibiotic resistance in 18% of derived phenotypic variants of fifty strains of Pseudomonas aeruginosa which were isolated from diarrheal stools of infants in children's hospital. RESULTS: A proportion of these strains became susceptible to an increased number of antibiotics. The present study revealed that all the isolates were resistant to tetracycline and carbenicillin and 40% of these isolates became sensitive to both antibiotics after exposure to disinfectants. The exposure to disinfectants induced neomycin resistance among two isolates. The resistance patterns were three before disinfectants exposure which increased to be nine different patterns after exposure. No antibiotic resistance was transferred between P. aeruginosa and Escherichia coli K12 as a recipient strain. CONCLUSIONS: Almost 50% of the isolates tested became sensitive to tetracycline, carbenicillin and co-trimoxazole after exposure to disinfectants. The resistance patterns among the 50 isolates were three which changed to be nine different patterns after exposure to disinfectants. Unjustifiable use of disinfectants might give a chance for survival and multiplication of pathogenic bacteria to develop new resistance patterns to antibiotics in use with a short time. These new resistance variants of bacteria which multiply in hospital environment could lead to serious epidemic conflicts particularly the epidemiological reporting and management. | 2025 | 39536720 |
| 4647 | 4 | 0.9998 | Development of Antibiotic Resistance during Simulated Treatment of Pseudomonas aeruginosa in Chemostats. During treatment of infections with antibiotics in critically ill patients in the intensive care resistance often develops. This study aims to establish whether under those conditions this resistance can develop de novo or that genetic exchange between bacteria is by necessity involved. Chemostat cultures of Pseudomonas aeruginosa were exposed to treatment regimes with ceftazidime and meropenem that simulated conditions expected in patient plasma. Development of antibiotic resistance was monitored and mutations in resistance genes were searched for by sequencing PCR products. Even at the highest concentrations that can be expected in patients, sufficient bacteria survived in clumps of filamentous cells to recover and grow out after 3 to 5 days. At the end of a 7 days simulated treatment, the minimal inhibitory concentration (MIC) had increased by a factor between 10 and 10,000 depending on the antibiotic and the treatment protocol. The fitness costs of resistance were minimal. In the resistant strains, only three mutations were observed in genes associated with beta-lactam resistance. The development of resistance often observed during patient treatment can be explained by de novo acquisition of resistance and genetic exchange of resistance genes is not by necessity involved. As far as conclusions based on an in vitro study using P. aeruginosa and only two antibiotics can be generalized, it seems that development of resistance can be minimized by treating with antibiotics in the highest concentration the patient can endure for the shortest time needed to eliminate the infection. | 2016 | 26872140 |
| 4732 | 5 | 0.9998 | A Comparison of Antibiotics' Resistance Patterns of E. coli and B. subtilis in their Biofilms and Planktonic Forms. BACKGROUND: A biofilm refers to a community of microbial cells that adhere to surfaces that are surrounded by an extracellular polymeric substance. Bacteria employ various defence mechanisms, including biofilm formation, to enhance their survival and resistance against antibiotics. OBJECTIVE: The current study aims to investigate the resistance patterns of Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) in both biofilms and their planktonic forms. METHODS: E. coli and B. subtilis were used to compare resistance patterns in biofilms versus planktonic forms of bacteria. An antibiotic disc diffusion test was performed to check the resistance pattern of biofilm and planktonic bacteria against different antibiotics such as penicillin G, streptomycin, and ampicillin. Biofilm formation and its validation were done by using quantitative (microtiter plate assay) and qualitative analysis (Congo red agar media). RESULTS: A study of surface-association curves of E. coli and B. subtilis revealed that surface adhesion in biofilms was continuously constant as compared to their planktonic forms, thereby confirming the increased survival of bacteria in biofilms. Also, biofilms have shown high resistance towards the penicillin G, ampicillin and streptomycin as compared to their planktonic form. CONCLUSION: It is safely inferred that E. coli and B. subtilis, in their biofilms, become increasingly resistant to penicillin G, ampicillin and streptomycin. | 2025 | 39092644 |
| 5757 | 6 | 0.9998 | The expression regulation of recA gene and bacterial class 2 integron-associated genes induced by antibiotics. OBJECTIVE: To investigate the effects and mechanisms of common antibiotics induction on the expression of class 2 integron integrase and variable region resistance genes in bacteria, as well as potential structural mutations. METHODS: Clinical isolates containing non-functional class 2 integrons and functional class 2 integrons were selected. Strains containing non-functional class 2 integrons or functional class 2 integrons were constructed using isolated DNA templates. These strains were subjected to continuous induction with drug concentrations of 1/2 MIC and 1/4 MIC (ciprofloxacin, ampicillin, and kanamycin) and a concentration of 0.2 μg/ml (mitomycin C) over 8 days. The relative expression levels of relevant genes were measured on days 1, 3, and 8. Drug resistance in the experimental strains was assessed before and after induction to identify any differences. Finally, the sequence of the non-functional class 2 integron integrase gene was analyzed for structural changes that occurred as a result of induction. RESULTS: All drugs selected in this study increased the relative expression levels of recA, intI2, dfrA1, sat2, and aadA1. Significant differences in inductive abilities were observed among the drugs. The 1/2 MIC concentrations were more effective than 1/4 MIC concentrations in increasing the relative expression levels of target genes and enhancing the resistance of the experimental strains. The relative expression levels of recA, intI2, and dfrA1 rose on day 1, peaked on day 3, and slightly declined by day 8. Induced strains exhibited increased resistance to the drugs, with the most significant changes observed in the clinical isolates, particularly concerning CIP resistance. Notably, clinical isolate 7b induced with 1/2 MIC KAN exhibited the loss of one base at position 12bp in the integrase sequence. However, none of the four drugs induced mutations at the 444 bp position of class 2 integrons. CONCLUSION: Sub-MIC concentrations of drugs have been shown to induce an increase in the relative expression level of the SOS response-related gene recA, as well as the integrase and resistance genes of class 2 integrons. Continuous induction leads to sustained upregulation of these genes, which stabilizes or slightly decreases upon reaching a plateau. However, the capacity of different drugs to induce expression varies significantly. Short-term antibiotic exposure did not result in critical mutations that convert class 2 integrons into functional forms. | 2025 | 40950603 |
| 6262 | 7 | 0.9998 | Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance. Tigecycline is a glycylcycline antibiotic active against multidrug-resistant bacterial pathogens. The objectives of our study were to examine the potential of the Tet(A), Tet(K), Tet(M), and Tet(X) tetracycline resistance proteins to acquire mutations causing tigecycline resistance and to determine how this affects resistance to earlier classes of tetracyclines. Mutations in all four tet genes caused a significant increase in the tigecycline MIC in Escherichia coli, and strains expressing mutant Tet(A) and Tet(X) variants reached clinically relevant MICs (2 mg/liter and 3 mg/liter, respectively). Mutations predominantly accumulated in transmembrane domains of the efflux pumps, most likely increasing the accommodation of tigecycline as a substrate. All selected Tet(M) mutants contained at least one mutation in the functionally most important loop III of domain IV. Deletion of leucine 505 of this loop led to the highest increase of the tigecycline MIC (0.5 mg/liter) among Tet(M) mutants. It also caused collateral sensitivity to earlier classes of tetracyclines. A majority of the Tet(X) mutants showed increased activity against all three classes of tetracylines. All tested Tet proteins have the potential to acquire mutations leading to increased MICs of tigecycline. As tet genes are widely found in pathogenic bacteria and spread easily by horizontal gene transfer, resistance development by alteration of existing Tet proteins might compromise the future medical use of tigecycline. We predict that Tet(X) might become the most problematic future Tet determinant, since its weak intrinsic tigecycline activity can be mutationally improved to reach clinically relevant levels without collateral loss in activity to other tetracyclines. | 2016 | 26596936 |
| 6276 | 8 | 0.9998 | A shared mechanism of multidrug resistance in laboratory-evolved uropathogenic Escherichia coli. The emergence of multidrug-resistant bacteria poses a significant threat to human health, necessitating a comprehensive understanding of their underlying mechanisms. Uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, is frequently associated with multidrug resistance and recurrent infections. To elucidate the mechanism of resistance of UPEC to beta-lactam antibiotics, we generated ampicillin-resistant UPEC strains through continuous exposure to low and high levels of ampicillin in the laboratory, referred to as Low Amp(R) and High Amp(R), respectively. Whole-genome sequencing revealed that both Low and High Amp(R) strains contained mutations in the marR, acrR, and envZ genes. The High Amp(R) strain exhibited a single additional mutation in the nlpD gene. Using protein modeling and qRT-PCR analyses, we validated the contributions of each mutation in the identified genes to antibiotic resistance in the Amp(R) strains, including a decrease in membrane permeability, increased expression of multidrug efflux pump, and inhibition of cell lysis. Furthermore, the Amp(R) strain does not decrease the bacterial burden in the mouse bladder even after continuous antibiotic treatment in vivo, implicating the increasing difficulty in treating host infections caused by the Amp(R) strain. Interestingly, ampicillin-induced mutations also result in multidrug resistance in UPEC, suggesting a common mechanism by which bacteria acquire cross-resistance to other classes of antibiotics. | 2024 | 38899601 |
| 9921 | 9 | 0.9998 | Identification of Multiple Low-Level Resistance Determinants and Coselection of Motility Impairment upon Sub-MIC Ceftriaxone Exposure in Escherichia coli. Resistance to third-generation cephalosporins among Gram-negative bacteria is a rapidly growing public health threat. Among the most commonly used third-generation cephalosporins is ceftriaxone. Bacterial exposure to sublethal or sub-MIC antibiotic concentrations occurs widely, from environmental residues to intermittently at the site of infection. Quality of ceftriaxone is also a concern, especially in low- and middle-income countries, with medicines having inappropriate active pharmaceutical ingredient (API) content or concentration. While focus has been largely on extended-spectrum β-lactamases and high-level resistance, there are limited data on specific chromosomal mutations and other pathways that contribute to ceftriaxone resistance under these conditions. In this work, Escherichia coli cells were exposed to a broad range of sub-MICs of ceftriaxone and mutants were analyzed using whole-genome sequencing. Low-level ceftriaxone resistance emerged after as low as 10% MIC exposure, with the frequency of resistance development increasing with concentration. Genomic analyses of mutants revealed multiple genetic bases. Mutations were enriched in genes associated with porins (envZ, ompF, ompC, and ompR), efflux regulation (marR), and the outer membrane and metabolism (galU and pgm), but none were associated with the ampC β-lactamase. We also observed selection of mgrB mutations. Notably, pleiotropic effects on motility and cell surface were selected for in multiple independent genes, which may have important consequences. Swift low-level resistance development after exposure to low ceftriaxone concentrations may result in reservoirs of bacteria with relevant mutations for survival and increased resistance. Thus, initiatives for broader surveillance of low-level antibiotic resistance and genomic resistance determinants should be pursued when resources are available. IMPORTANCE Ceftriaxone is a widely consumed antibiotic used to treat bacterial infections. Bacteria, however, are increasingly becoming resistant to ceftriaxone. Most work has focused on known mechanisms associated with high-level ceftriaxone resistance. However, bacteria are extensively exposed to low antibiotic concentrations, and there are limited data on the evolution of ceftriaxone resistance under these conditions. In this work, we observed that bacteria quickly developed low-level resistance due to both novel and previously described mutations in multiple different genes upon exposure to low ceftriaxone concentrations. Additionally, exposure also led to changes in motility and the cell surface, which can impact other processes associated with resistance and infection. Notably, low-level-resistant bacteria would be missed in the clinic, which uses set breakpoints. While they may require increased resources, this work supports continued initiatives for broader surveillance of low-level antibiotic resistance or their resistance determinants, which can serve as predictors of higher risk for clinical resistance. | 2021 | 34787446 |
| 4724 | 10 | 0.9998 | Transcriptomic analysis of sub-MIC Eugenol exposition on antibiotic resistance profile in Multidrug Resistant Enterococcus faecalis E9.8. The spread of multidrug-resistant (MDR) bacteria and their resistance genes along the food chain and the environment has become a global threat aggravated by incorrect disinfection strategies. This study analysed the effect of induction by sub-inhibitory concentrations of eugenol - a major ingredient in clove essential oil commonly used in disinfectant agents - on the phenotypic and genotypic response of MDR Enterococcus faecalis E9.8 strain, selected based on the phenotypic response of other enterococci. Eugenol treatment irreversibly reduced several antibiotics' minimum inhibitory concentration (MIC), confirmed by kinetic studies for kanamycin, erythromycin, and tetracycline. Furthermore, transcriptomic analysis indicated the reversion of antibiotic resistance through direct and indirect measures, such as down-regulation of genes coding for proteins involved in antibiotic resistance, toxin resistance and virulence factors. Regarding antibiotic resistance genes (ARGs), ten differentially expressed genes (five down-regulated and five up-regulated genes) were related to the main transporter families, which present key targets in antibiotic resistance reversion. Our study thus highlights the importance of considering indirectly related genes as targets for antibiotic resistance reversion besides ARGs sensu stricto. These results allow us to propose using eugenol as an antibiotic resistance reversing agent to be included in disinfectant solutions as an excellent alternative to limit the spread of MDR bacteria and their ARGs in the food chain and the environment. | 2025 | 39827501 |
| 4569 | 11 | 0.9998 | Effect of oxygen on antimicrobial resistance genes from a one health perspective. Bacteria must face and adapt to a variety of physicochemical conditions in the environment and during infection. A key condition is the concentration of dissolved oxygen, proportional to the partial pressure of oxygen (PO(2)), which is extremely variable among environmental biogeographical areas and also compartments of the human and animal body. Here, we sought to understand if the phenotype of resistance determinants commonly found in Enterobacterales can be influenced by oxygen pressure. To do so, we have compared the MIC in aerobic and anaerobic conditions of isogenic Escherichia coli strains containing 136 different resistance genes against 8 antibiotic families. Our results show a complex landscape of changes in the performance of resistance genes in anaerobiosis. Certain changes are especially relevant for their intensity and the importance of the antibiotic family, like the large decreases in resistance observed against ertapenem and fosfomycin among bla(VIM) β-lactamases and certain fos genes, respectively; however, the bla(OXA-48) β-lactamase from the clinically relevant pOXA-48 plasmid conferred 4-fold higher ertapenem resistance in anaerobiosis. Strong changes in resistance patterns in anaerobiosis were also conserved in Klebsiella pneumoniae. Our results suggest that anaerobiosis is a relevant aspect that can affect the action and selective power of antibiotics for specific AMRs in different environments. | 2025 | 40286623 |
| 4816 | 12 | 0.9998 | Sub-inhibitory concentrations of colistin and imipenem impact the expression of biofilm-associated genes in Acinetobacter baumannii. Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs. | 2024 | 38489041 |
| 4572 | 13 | 0.9998 | Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains. | 2023 | 36462825 |
| 4573 | 14 | 0.9998 | High pressure processing, acidic and osmotic stress increased resistance to aminoglycosides and tetracyclines and the frequency of gene transfer among strains from commercial starter and protective cultures. This study analyzed the effect of food-related stresses on the expression of antibiotic resistance of starter and protective strains and resistance gene transfer frequency. After exposure to high-pressure processing, acidic and osmotic stress, the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) and/or tetracyclines (tetM) increased. After cold stress, a decrease in the expression level of all tested genes was observed. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. After acidic and osmotic stresses, a significant increase in the frequency of each gene transfer was observed. To the best of the authors' knowledge, this is the first study focused on changes in antibiotic resistance associated with a stress response among starter and protective strains. The results suggest that the physicochemical factors prevailing during food production and storage may affect the phenotype of antibiotic resistance and the level of expression of antibiotic resistance genes among microorganisms. As a result, they can contribute to the spread of antibiotic resistance. This points to the need to verify strains used in the food industry for their antibiotic resistance to prevent them from becoming a reservoir for antibiotic resistance genes. | 2022 | 35953184 |
| 3685 | 15 | 0.9998 | Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. There is concern that antibiotics in the environment can select for and enrich bacteria carrying acquired antibiotic resistance genes, thus increasing the potential of those genes to emerge in a clinical context. A critical question for understanding and managing such risks is what levels of antibiotics are needed to select for resistance in complex bacterial communities. Here, we address this question by examining the phenotypic and genotypic profiles of aquatic communities exposed to ciprofloxacin, also evaluating the within-species selection of resistant E. coli in complex communities. The taxonomic composition was significantly altered at ciprofloxacin exposure concentrations down to 1 μg/L. Shotgun metagenomic analysis indicated that mobile quinolone resistance determinants (qnrD, qnrS and qnrB) were enriched as a direct consequence of ciprofloxacin exposure from 1 μg/L or higher. Only at 5-10 μg/L resistant E.coli increased relative to their sensitive counterparts. These resistant E. coli predominantly harbored non-transferrable, chromosomal triple mutations (gyrA S83 L, D87N and parC S80I), which confer high-level resistance. In a controlled experimental setup such as this, we interpret effects on taxonomic composition and enrichment of mobile quinolone resistance genes as relevant indicators of risk. Hence, the lowest observed effect concentration for resistance selection in complex communities by ciprofloxacin was 1 μg/L and the corresponding no observed effect concentration 0.1 μg/L. These findings can be used to define and implement discharge or surface water limits to reduce risks for selection of antibiotic resistance in the environment. | 2018 | 29704804 |
| 4579 | 16 | 0.9998 | Selection for amoxicillin-, doxycycline-, and enrofloxacin-resistant Escherichia coli at concentrations lower than the ECOFF in broiler-derived cecal fermentations. Antimicrobial resistance (AMR) is an emerging worldwide problem and a health threat for humans and animals. Antimicrobial usage in human and animal medicine or in agriculture results in selection for AMR. The selective concentration of antimicrobial compounds can be lower than the minimum inhibitory concentration and differs between environments, which can be a reason for bacterial resistance. Therefore, knowledge of the minimal selective concentration (MSC), under natural conditions, is essential to understand the selective window of bacteria when exposed to residual antimicrobials. In this study, we estimated the MSCs of three antimicrobials, amoxicillin, doxycycline, and enrofloxacin in a complex microbial community by conducting fermentation assays with cecal material derived from broilers. We examined the phenotypic resistance of Escherichia coli, resistome, and microbiome after 6 and 30 hours of fermenting in the presence of the antimicrobials of interest. The concentrations were estimated to be 10-100 times lower than the epidemiological cut-off values in E. coli for the respective antimicrobials as determined by EUCAST, resulting in an MSC between 0.08 and 0.8 mg/L for amoxicillin, 0.4 and 4 mg/L for doxycycline, and 0.0125 and 0.125 mg/L for enrofloxacin. Additionally, resistome analysis provided an MSC for doxycycline between 0.4 and 4 mg/L, but amoxicillin and enrofloxacin exposure did not induce a significant difference. Our findings indicate at which concentrations there is still selection for antimicrobial-resistant bacteria. This knowledge can be used to manage the risk of the emergence of antimicrobial-resistant bacteria.IMPORTANCEAntimicrobial resistance possibly affects human and animal health, as well as economic prosperity in the future. The rise of antimicrobial-resistant bacteria is a consequence of using antimicrobial compounds in humans and animals selecting for antimicrobial-resistant bacteria. Concentrations reached during treatment are known to be selective for resistant bacteria. However, at which concentrations residues are still selective is important, especially for antimicrobial compounds that remain in the environment at low concentrations. The data in this paper might inform decisions regarding guidelines and regulations for the use of specific antimicrobials. In this study, we are providing these minimal selective concentrations for amoxicillin, doxycycline, and enrofloxacin in complex environments. | 2024 | 39269186 |
| 4739 | 17 | 0.9998 | Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes. OBJECTIVES: Indirect resistance (IR), the ability of an antibiotic-resistant population of bacteria to protect a susceptible population, has been previously observed for β-lactamase-producing bacteria and associated with antimicrobial treatment failures. Here, we determined whether other resistance determinants could cause IR in the presence of five other classes of antibiotics. METHODS: A test was designed to detect IR and 14 antibiotic resistance genes were tested in the presence of 13 antibiotics from six classes. A bioassay was used to measure the ability of resistance-causing enzymes to decrease the concentration of active antibiotics in the medium. RESULTS: We confirmed IR in the presence of β-lactam antibiotics (ampicillin and mecillinam) when TEM-1A was expressed. We found that bacteria expressing antibiotic-modifying or -degrading enzymes Ere(A), Tet(X2) or CatA1 caused IR in the presence of macrolides (erythromycin and clarithromycin), tetracyclines (tetracycline and tigecycline) and chloramphenicol, respectively. IR was not observed with resistance determinants that did not modify or destroy antibiotics or with enzymes modifying aminoglycosides or degrading fosfomycin. IR was dependent on the resistance enzymes decreasing the concentration of active antibiotics in the medium, hence allowing nearby susceptible bacteria to resume growth once the antibiotic concentration fell below their MIC. CONCLUSIONS: IR was not limited to β-lactamase-producing bacteria, but was also caused by resistant bacteria carrying cytoplasmic antibiotic-modifying or -degrading enzymes that catalyse energy-consuming reactions requiring complex cellular cofactors. Our results suggest that IR is common and further emphasizes that coinfecting agents and the human microflora can have a negative impact during antimicrobial therapy. | 2016 | 26467993 |
| 6259 | 18 | 0.9998 | Evidence of an efflux pump in Serratia marcescens. Spontaneous mutants resistant to fluoroquinolones were obtained by exposing Serratia marcescens NIMA (wild-type strain) to increasing concentrations of ciprofloxacin both in liquid and on solid media. Frequencies of mutation ranged from 10(-7) to 10(-9). Active expulsion of antibiotic was explored as a possible mechanism of resistance in mutants as well as changes in topoisomerase target genes. The role of extrusion mechanisms in determining the emergence of multidrug-resistant bacteria was also examined. Mutants resistant to high concentrations of fluoroquinolones had a single mutation in their gyrA QRDR sequences, whereas the moderate resistance in the rest of mutants was due to extrusion of the drug. | 2000 | 10990265 |
| 9922 | 19 | 0.9998 | De novo acquisition of antibiotic resistance in six species of bacteria. Bacteria can become resistant to antibiotics in two ways: by acquiring resistance genes through horizontal gene transfer and by de novo development of resistance upon exposure to non-lethal concentrations. The importance of the second process, de novo build-up, has not been investigated systematically over a range of species and may be underestimated as a result. To investigate the DNA mutation patterns accompanying the de novo antibiotic resistance acquisition process, six bacterial species encountered in the food chain were exposed to step-wise increasing sublethal concentrations of six antibiotics to develop high levels of resistance. Phenotypic and mutational landscapes were constructed based on whole-genome sequencing at two time points of the evolutionary trajectory. In this study, we found that (1) all of the six strains can develop high levels of resistance against most antibiotics; (2) increased resistance is accompanied by different mutations for each bacterium-antibiotic combination; (3) the number of mutations varies widely, with Y. enterocolitica having by far the most; (4) in the case of fluoroquinolone resistance, a mutational pattern of gyrA combined with parC is conserved in five of six species; and (5) mutations in genes coding for efflux pumps are widely encountered in gram-negative species. The overall conclusion is that very similar phenotypic outcomes are instigated by very different genetic changes. The outcome of this study may assist policymakers when formulating practical strategies to prevent development of antimicrobial resistance in human and veterinary health care.IMPORTANCEMost studies on de novo development of antimicrobial resistance have been performed on Escherichia coli. To examine whether the conclusions of this research can be applied to more bacterial species, six species of veterinary importance were made resistant to six antibiotics, each of a different class. The rapid build-up of resistance observed in all six species upon exposure to non-lethal concentrations of antimicrobials indicates a similar ability to adjust to the presence of antibiotics. The large differences in the number of DNA mutations accompanying de novo resistance suggest that the mechanisms and pathways involved may differ. Hence, very similar phenotypes can be the result of various genotypes. The implications of the outcome are to be considered by policymakers in the area of veterinary and human healthcare. | 2025 | 39907470 |