# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5758 | 0 | 1.0000 | RND pump inhibition: in-silico and in-vitro study by Eugenol on clinical strain of E. coli and P. aeruginosa. Multidrug-resistant (MDR) gram-negative bacteria pose significant challenges to the public health. Various factors are involved in the development and spread of MDR strains, including the overuse and misuse of antibiotics, the lack of new antibiotics being developed, and etc. Efflux pump is one of the most important factors in the emergence of antibiotic resistance in bacteria. Aiming at the introduction of novel plant antibiotic, we investigated the effect of eugenol on the MexA and AcrA efflux pumps in Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). Molecular docking was performed using PachDock Server 1.3. The effect of eugenol on bacteria was determined by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A cartwheel test was also performed to evaluate efflux pump inhibition. Finally, the expression of the MexA and AcrA genes was examined by real-time PCR. The results of molecular docking showed that eugenol interacted with MexA and AcrA pumps at - 29.28 and - 28.59 Kcal.mol(-1), respectively. The results of the antibiogram test indicated that the antibiotic resistance of the treated bacteria decreased significantly (p < 0.05). The results of the cartwheel test suggested the inhibition of efflux pump activity in P. aeruginosa and E. coli. Analysis of the genes by real-time PCR demonstrated that the expression of MexA and AcrA genes was significantly reduced, compared to untreated bacteria (p < 0.001). The findings suggest, among other things, that eugenol may make P. aeruginosa and E. coli more sensitive to antibiotics and that it could be used as an inhibitor to prevent bacteria from becoming resistant to antibiotics. | 2023 | 37587975 |
| 5754 | 1 | 0.9998 | Efflux pump inhibitor CCCP to rescue colistin susceptibility in mcr-1 plasmid-mediated colistin-resistant strains and Gram-negative bacteria. OBJECTIVES: Efflux in bacteria is a ubiquitous mechanism associated with resistance to antimicrobials agents. Efflux pump inhibitors (EPIs) have been developed to inhibit efflux mechanisms and could be a good alternative to reverse colistin resistance, but only CCCP has shown good activity. The aim of our study was to identify CCCP activity in a collection of 93 Gram-negative bacteria with known and unknown colistin resistance mechanisms including isolates with mcr-1 plasmid-mediated colistin resistance. METHODS: Colistin MIC was evaluated with and without CCCP and the fold decrease of colistin MIC was calculated for each strain. In order to evaluate the effect of this combination, a time-kill study was performed on five strains carrying different colistin resistance mechanisms. RESULTS: Overall, CCCP was able to reverse colistin resistance for all strains tested. The effect of CCCP was significantly greater on intrinsically colistin-resistant bacteria (i.e. Proteus spp., Serratia marcescens, Morganella morganii and Providencia spp.) than on other Enterobacteriaceae (P < 0.0001). The same was true for bacteria with a heteroresistance mechanism compared to bacteria with other colistin resistance mechanisms (P < 0.0001). A time-kill study showed the combination was bacteriostatic on strains tested. CONCLUSIONS: These results suggest an efflux mechanism, especially on intrinsically resistant bacteria and Enterobacter spp., but further analysis is needed to identify the molecular support of this mechanism. EPIs could be an alternative for restoring colistin activity in Gram-negative bacteria. Further work is necessary to identify new EPIs that could be used in humans. | 2018 | 29718423 |
| 5760 | 2 | 0.9998 | Downregulation of Klebsiella pneumoniae RND efflux pump genes following indole signal produced by Escherichia coli. BACKGROUND: More than a century has passed since it was discovered that many bacteria produce indole, but research into the actual biological roles of this molecule is just now beginning. The influence of indole on bacterial virulence was extensively investigated in indole-producing bacteria like Escherichia coli. To gain a deeper comprehension of its functional role, this study investigated how indole at concentrations of 0.5-1.0 mM found in the supernatant of Escherichia coli stationary phase culture was able to alter the virulence of non-indole-producing bacteria, such as Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae, which are naturally exposed to indole in mixed infections with Escherichia coli. RESULTS: Biofilm formation, antimicrobial susceptibility, and efflux pump activity were the three phenotypic tests that were assessed. Indole was found to influence antibiotic susceptibly of Pseudomonas aeruginosa, Proteus mirabilis and Klebsiella pneumoniae to ciprofloxacin, imipenem, ceftriaxone, ceftazidime, and amikacin through significant reduction in MIC with fold change ranged from 4 to 16. Biofilm production was partially abrogated in both 32/45 Pseudomonas aeruginosa and all eight Proteus mirabilis, while induced biofilm production was observed in 30/40 Klebsiella pneumoniae. Moreover, acrAB and oqxAB, which encode four genes responsible for resistance-nodulation-division multidrug efflux pumps in five isolates of Klebsiella pneumoniae were investigated genotypically using quantitative real-time (qRT)-PCR. This revealed that all four genes exhibited reduced expression indicated by 2^-ΔΔCT < 1 in indole-treated isolates compared to control group. CONCLUSION: The outcomes of qRT-PCR investigation of efflux pump expression have established a novel clear correlation of the molecular mechanism that lies beneath the influence of indole on bacterial antibiotic tolerance. This research provides novel perspectives on the various mechanisms and diverse biological functions of indole signaling and how it impacts the pathogenicity of non-indole-producing bacteria. | 2024 | 39182027 |
| 5759 | 3 | 0.9998 | The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Urinary tract infections (UTIs) are common bacterial infections caused mainly by enteric bacteria. Numerous virulence factors assist bacteria in the colonization of the bladder. Bacterial efflux pumps also contribute to bacterial communication and to biofilm formation. In this study, the phenotypic and genetic antibiotic resistance of clinical UTI pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were determined by disk diffusion method and polymerase chain reaction (PCR). Following this, different classes of antibiotics were evaluated for their antibacterial activity at pH 5, 6, 7 and 8 by a microdilution method. Gentamicin (GEN) was the most potent antibacterial agent against E. coli strains. The effect of GEN on the relative expression of marR and sdiA genes was evaluated by quantitative PCR. The slightly acidic pH (pH 6) and GEN treatment induced the upregulation of marR antibiotic resistance and sdiA QS activator genes in both E. coli strains. Consequently, bacteria had become more susceptible to GEN. It can be concluded that antibiotic activity is pH dependent and so the artificial manipulation of urinary pH can contribute to a more effective therapy of multidrug resistant bacterial infections. | 2021 | 34943643 |
| 6251 | 4 | 0.9997 | Overexpression of Resistance-Nodulation-Division Efflux Pump Genes Contributes to Multidrug Resistance in Aeromonas hydrophila Clinical Isolates. Aeromonas hydrophila is a Gram-negative bacterium that is a critical causative agent of infections in fish and is occasionally responsible for human infections following contact with contaminated water or food. Currently, the extensive use of antibiotics in clinical practice has led to increased number of isolates of multidrug-resistant (MDR) Aeromonas and has posed a serious public health challenge. The efflux pump system is a critical mechanism of antibiotic resistance in most Gram-negative bacteria. However, the role of resistance-nodulation-division (RND)-type efflux pumps in MDR A. hydrophila is not fully understood. We aimed to evaluate the contribution of the RND efflux pump system to MDR A. hydrophila clinical isolates. PCR results indicated a considerable variation in the presence of RND efflux pump genes in clinical isolates compared to that of the environmental reference strain ATCC7966(T). Compared to non-MDR clinical isolates, the expression levels of three putative RND efflux pump genes, AHA0021, AHA1320, and AheB, were significantly elevated in MDR strains. The minimal inhibitory concentrations of piperacillin/tazobactam, imipenem, erythromycin, and polymyxin B were significantly reduced by phenylalanine-arginine β-naphthylamide (PAβN), further supporting the contribution of the RND efflux system in MDR A. hydrophila. We provided evidence supporting the contribution of the RND efflux system to multidrug resistance in A. hydrophila clinical isolates. Further studies are warranted to elucidate the detailed mechanisms that confer intrinsic resistance to antimicrobials in A. hydrophila. | 2022 | 34609911 |
| 5764 | 5 | 0.9997 | Aminoglycoside-Modifying Enzymes Are Sufficient to Make Pseudomonas aeruginosa Clinically Resistant to Key Antibiotics. Aminoglycosides are widely used to treat infections of Pseudomonas aeruginosa. Genes encoding aminoglycoside-modifying enzymes (AMEs), acquired by horizontal gene transfer, are commonly associated with aminoglycoside resistance, but their effects have not been quantified. The aim of this research was to determine the extent to which AMEs increase the antibiotic tolerance of P. aeruginosa. Bioinformatics analysis identified AME-encoding genes in 48 out of 619 clinical isolates of P. aeruginosa, with ant(2')-Ia and aac(6')-Ib3, which are associated with tobramcyin and gentamicin resistance, being the most common. These genes and aph(3')-VIa (amikacin resistance) were deleted from antibiotic-resistant strains. Antibiotic minimum inhibitory concentrations (MICs) were reduced by up to 64-fold, making the mutated bacteria antibiotic-sensitive in several cases. Introduction of the same genes into four antibiotic-susceptible P. aeruginosa strains increased the MIC by up to 128-fold, making the bacteria antibiotic-resistant in all cases. The cloned genes also increased the MIC in mutants lacking the MexXY-OprM efflux pump, which is an important contributor to aminoglycoside resistance, demonstrating that AMEs and this efflux pump act independently in determining levels of aminoglycoside tolerance. Quantification of the effects of AMEs on antibiotic susceptibility demonstrates the large effect that these enzymes have on antibiotic resistance. | 2022 | 35884138 |
| 5755 | 6 | 0.9997 | Effects of Efflux Pump Inhibitors on Colistin Resistance in Multidrug-Resistant Gram-Negative Bacteria. We tested the effects of various putative efflux pump inhibitors on colistin resistance in multidrug-resistant Gram-negative bacteria. Addition of 10 mg/liter cyanide 3-chlorophenylhydrazone (CCCP) to the test medium could significantly decrease the MICs of colistin-resistant strains. Time-kill assays showed CCCP could reverse colistin resistance and inhibit the regrowth of the resistant subpopulation, especially in Acinetobacter baumannii and Stenotrophomonas maltophilia These results suggest colistin resistance in Gram-negative bacteria can be suppressed and reversed by CCCP. | 2016 | 26953203 |
| 5752 | 7 | 0.9997 | Cefoxitin inhibits the formation of biofilm involved in antimicrobial resistance MDR Escherichia coli. The study investigates the relationship between biofilm formation and antibiotic resistance in Escherichia coli (E. coli) isolated from calves. Using biochemical and molecular methods, we identified the isolates and assessed their biofilm-forming ability through an improved crystal violet staining method. The minimum inhibitory concentrations (MICs) of 18 antibiotics against the isolates were determined using the broth microdilution method. The impact of cefoxitin on biofilm formation was analyzed using laser scanning confocal microscopy (LSCM). Additionally, qRT-PCR was employed to evaluate the expression levels of biofilm-related genes (luxS, motA, fliA, pfs, and csgD) in response to varying cefoxitin concentrations. Results indicated a significant correlation between antimicrobial resistance (AMR) and biofilm formation ability. Cefoxitin effectively reduced biofilm formation of multidrug-resistant E. coli isolates at 1/2 and 1 MIC, with enhanced inhibition at higher concentrations. The QS-related genes luxS, pfs, motA, and fliA were downregulated, leading to decreased csgD expression. At 1/2 MIC, csgD expression was significantly reduced. In conclusion, cefoxitin inhibits biofilm formation in multidrug-resistant E. coli by down-regulating key genes, offering a potential strategy to mitigate resistance and control infections in calves caused by biofilm-positive E. coli isolates. | 2025 | 40122078 |
| 5765 | 8 | 0.9997 | Expression of Pseudomonas aeruginosa Antibiotic Resistance Genes Varies Greatly during Infections in Cystic Fibrosis Patients. The lungs of individuals with cystic fibrosis (CF) become chronically infected with Pseudomonas aeruginosa that is difficult to eradicate by antibiotic treatment. Two key P. aeruginosa antibiotic resistance mechanisms are the AmpC β-lactamase that degrades β-lactam antibiotics and MexXYOprM, a three-protein efflux pump that expels aminoglycoside antibiotics from the bacterial cells. Levels of antibiotic resistance gene expression are likely to be a key factor in antibiotic resistance but have not been determined during infection. The aims of this research were to investigate the expression of the ampC and mexX genes during infection in patients with CF and in bacteria isolated from the same patients and grown under laboratory conditions. P. aeruginosa isolates from 36 CF patients were grown in laboratory culture and gene expression measured by reverse transcription-quantitative PCR (RT-qPCR). The expression of ampC varied over 20,000-fold and that of mexX over 2,000-fold between isolates. The median expression levels of both genes were increased by the presence of subinhibitory concentrations of antibiotics. To measure P. aeruginosa gene expression during infection, we carried out RT-qPCR using RNA extracted from fresh sputum samples obtained from 31 patients. The expression of ampC varied over 4,000-fold, while mexX expression varied over 100-fold, between patients. Despite these wide variations, median levels of expression of ampC in bacteria in sputum were similar to those in laboratory-grown bacteria. The expression of mexX was higher in sputum than in laboratory-grown bacteria. Overall, our data demonstrate that genes that contribute to antibiotic resistance can be highly expressed in patients, but there is extensive isolate-to-isolate and patient-to-patient variation. | 2018 | 30201819 |
| 5766 | 9 | 0.9997 | Ceftazidime resistance in Pseudomonas aeruginosa is multigenic and complex. Pseudomonas aeruginosa causes a wide range of severe infections. Ceftazidime, a cephalosporin, is a key antibiotic for treating infections but a significant proportion of isolates are ceftazidime-resistant. The aim of this research was to identify mutations that contribute to resistance, and to quantify the impacts of individual mutations and mutation combinations. Thirty-five mutants with reduced susceptibility to ceftazidime were evolved from two antibiotic-sensitive P. aeruginosa reference strains PAO1 and PA14. Mutations were identified by whole genome sequencing. The evolved mutants tolerated ceftazidime at concentrations between 4 and 1000 times that of the parental bacteria, with most mutants being ceftazidime resistant (minimum inhibitory concentration [MIC] ≥ 32 mg/L). Many mutants were also resistant to meropenem, a carbapenem antibiotic. Twenty-eight genes were mutated in multiple mutants, with dacB and mpl being the most frequently mutated. Mutations in six key genes were engineered into the genome of strain PAO1 individually and in combinations. A dacB mutation by itself increased the ceftazidime MIC by 16-fold although the mutant bacteria remained ceftazidime sensitive (MIC < 32 mg/L). Mutations in ampC, mexR, nalC or nalD increased the MIC by 2- to 4-fold. The MIC of a dacB mutant was increased when combined with a mutation in ampC, rendering the bacteria resistant, whereas other mutation combinations did not increase the MIC above those of single mutants. To determine the clinical relevance of mutations identified through experimental evolution, 173 ceftazidime-resistant and 166 sensitive clinical isolates were analysed for the presence of sequence variants that likely alter function of resistance-associated genes. dacB and ampC sequence variants occur most frequently in both resistant and sensitive clinical isolates. Our findings quantify the individual and combinatorial effects of mutations in different genes on ceftazidime susceptibility and demonstrate that the genetic basis of ceftazidime resistance is complex and multifactorial. | 2023 | 37192202 |
| 5836 | 10 | 0.9997 | Identification of Pseudomonas aeruginosa genes associated with antibiotic susceptibility. Pseudomonas aeruginosa causes acute and chronic infections in humans and these infections are difficult to treat due to the bacteria's high-level of intrinsic and acquired resistance to antibiotics. To address this problem, it is crucial to investigate the molecular mechanisms of antibiotic resistance in this organism. In this study, a P. aeruginosa transposon insertion library of 17000 clones was constructed and screened for altered susceptibility to seven antibiotics. Colonies grown on agar plates containing antibiotics at minimum inhibitory concentrations (MICs) and those unable to grow at 1/2 MIC were collected. The transposon-disrupted genes in 43 confirmed mutants that showed at least a three-fold increase or a two-fold decrease in susceptibility to at least one antibiotic were determined by semi-random PCR and subsequent sequencing analysis. In addition to nine genes known to be associated with antibiotic resistance, including mexI, mexB and mexR, 24 new antibiotic resistance-associated genes were identified, including a fimbrial biogenesis gene pilY1 whose disruption resulted in a 128-fold increase in the MIC of carbenicillin. Twelve of the 43 genes identified were of unknown function. These genes could serve as targets to control or reverse antibiotic resistance in this important human pathogen. | 2010 | 20953948 |
| 6262 | 11 | 0.9997 | Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance. Tigecycline is a glycylcycline antibiotic active against multidrug-resistant bacterial pathogens. The objectives of our study were to examine the potential of the Tet(A), Tet(K), Tet(M), and Tet(X) tetracycline resistance proteins to acquire mutations causing tigecycline resistance and to determine how this affects resistance to earlier classes of tetracyclines. Mutations in all four tet genes caused a significant increase in the tigecycline MIC in Escherichia coli, and strains expressing mutant Tet(A) and Tet(X) variants reached clinically relevant MICs (2 mg/liter and 3 mg/liter, respectively). Mutations predominantly accumulated in transmembrane domains of the efflux pumps, most likely increasing the accommodation of tigecycline as a substrate. All selected Tet(M) mutants contained at least one mutation in the functionally most important loop III of domain IV. Deletion of leucine 505 of this loop led to the highest increase of the tigecycline MIC (0.5 mg/liter) among Tet(M) mutants. It also caused collateral sensitivity to earlier classes of tetracyclines. A majority of the Tet(X) mutants showed increased activity against all three classes of tetracylines. All tested Tet proteins have the potential to acquire mutations leading to increased MICs of tigecycline. As tet genes are widely found in pathogenic bacteria and spread easily by horizontal gene transfer, resistance development by alteration of existing Tet proteins might compromise the future medical use of tigecycline. We predict that Tet(X) might become the most problematic future Tet determinant, since its weak intrinsic tigecycline activity can be mutationally improved to reach clinically relevant levels without collateral loss in activity to other tetracyclines. | 2016 | 26596936 |
| 5763 | 12 | 0.9997 | Development of in vitro resistance to fluoroquinolones in Pseudomonas aeruginosa. Fluoroquinolone resistance in Pseudomonas aeruginosa typically arises through site-specific mutations and overexpression of efflux pumps. In this study, we investigated the dynamics of different resistance mechanisms in P. aeruginosa populations that have evolved under fluoroquinolone pressure, as well as the interactions between these mechanisms in evolutionary trajectories. Bacteria of strain ATCC27853 were selected under different concentrations of ciprofloxacin and levofloxacin for six parallel lineages, followed by amplification of four target genes in the quinolone-resistance determining region (QRDR) and Sanger sequencing to identify the mutations. The expression of four efflux pump proteins was evaluated by real-time polymerase chain reaction using the relative quantitation method, with the ATCC27853 strain used as a control. We found that ciprofloxacin killed P. aeruginosa sooner than did levofloxacin. Further, we identified five different mutations in three subunits of QRDRs, with gyrA as the main mutated gene associated with conferring fluoroquinolone resistance. Additionally, we found a larger number of mutations appearing at 2 mg/L and 4 mg/L of ciprofloxacin and levofloxacin, respectively. Moreover, we identified the main efflux pump being expressed as MexCD-OprJ, with initial overexpression observed at 0.25 mg/L and 0.5 mg/L of ciprofloxacin and levofloxacin, respectively. These results demonstrated gyrA(83) mutation and MexCD-OprJ overexpression as the primary mechanism conferring ciprofloxacin and levofloxacin resistance in P. aeruginosa. In addition, we also show that ciprofloxacin exhibited a stronger ability to kill the bacteria while potentially rendering it more susceptible to resistance. | 2020 | 32758289 |
| 5761 | 13 | 0.9997 | The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa: Reduced Susceptibility Due to Mutations. Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa. Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps (mexR, mexS, mexZ and nalC) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS, sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant. | 2021 | 34987489 |
| 5751 | 14 | 0.9997 | The use of eugenol in combination with cefotaxime and ciprofloxacin to combat ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae. AIM: Emergence of extended-spectrum beta-lactamase (ESBL) producing with quinolone-resistant (QR) pathogenic Enterobacteriaceae augmented the need to establish therapeutic options against them. Present study aimed towards determination of synergistic combination of eugenol (EG) with cefotaxime (CTX) and ciprofloxacin (CIP) to combat against this resistance and potentiation of antibacterial drugs by EG against these bacteria. METHODS AND RESULTS: Synergistic interaction between EG and CTX/CIP (FICI: 0·08-0·5) were observed among ESBL-QR bacteria using checkerboard assay. Approximately, 2- to 1024-fold minimum inhibitory concentration value reduction and 17- to 165 030-fold dose reduction index strongly suggested synergistic interaction between EG and antibiotics. Cell viability assay showed reduction in log(10) CFU per ml from 16·6 to 3·1 at synergistic concentration. Scanning electron microscopy further proved disruptive effect of EG on cell architecture. Eugenol and/or its combination also altered genes' expressions that imparted antibiotic resistance by ~1·6 to ~1226 folds. CONCLUSIONS: Reduced doses of antibiotics, bacterial morphological alterations, efflux pump down regulation, porin over expression and beta-lactamase gene inhibition of ESBL-QR bacteria by EG alone or in combination with CTX/CIP might have reversed antibiotic resistance profile of ESBL-QR bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided a molecular insight into action of EG and/with CTX and CIP, which might have potentiated antibiotic's activity against ESBL-QR bacteria. | 2020 | 32502298 |
| 5762 | 15 | 0.9996 | Evolution of antimicrobial resistance in E. coli biofilm treated with high doses of ciprofloxacin. The evolution of antimicrobial resistance (AMR) has mainly been studied in planktonic bacteria exposed to sub-inhibitory antimicrobial (AM) concentrations. However, in a number of infections that are treated with AMs the bacteria are located in biofilms where they tolerate high doses of AM. In the present study, we continuously exposed biofilm residing E. coli at body temperature to high ciprofloxacin (CIP) concentrations increasing from 4 to 130 times the minimal inhibitory concentration (MIC), i.e., from 0.06 to 2.0 mg/L. After 1 week, the biofilms were full of CIP resistant bacteria. The evolutionary trajectory observed was the same as described in the literature for planktonic bacteria, i.e., starting with a single mutation in the target gene gyrA followed by mutations in parC, gyrB, and parE, as well as in genes for regulation of multidrug efflux pump systems and outer membrane porins. Strains with higher numbers of these mutations also displayed higher MIC values. Furthermore, the evolution of CIP resistance was more rapid, and resulted in strains with higher MIC values, when the bacteria were biofilm residing than when they were in a planktonic suspension. These results may indicate that extensive clinical AM treatment of biofilm-residing bacteria may not only fail to eradicate the infection but also pose an increased risk of AMR development. | 2023 | 37731931 |
| 5768 | 16 | 0.9996 | The resistance mechanism of Escherichia coli induced by ampicillin in laboratory. BACKGROUND: Multi-drug-resistant Escherichia coli poses a great threat to human health, especially resistant to ampicillin (AMP), but the mechanism of drug resistance is not very clear. PURPOSE: To understand the mechanism of resistance of E. coli to beta-lactam antibiotics by inducing drug resistance of sensitive bacteria in laboratory. METHODS: Clinical sensitive E. coli strain was induced into resistance strain by 1/2 minimum inhibitive concentration (MIC) induced trails of AMP. The drug resistance spectrum was measured by modified K-B susceptibility test. Whole-genome sequencing analysis was used to analyze primary sensitive strain, and resequencing was used to analyze induced strains. Protein tertiary structure encoded by the gene containing single nucleotide polymorphism (SNP) was analyzed by bioinformatics. RESULTS: After 315 hrs induced, the MIC value of E. coli 15743 reached to 256 µg/mL, 64 times higher than that of the sensitive bacteria. During the induction process, the bacterial resistance process is divided into two stages. The rate of drug resistance occurs rapidly before reaching the critical concentration of 32 µg/mL, and then the resistance rate slows down. Sequencing of the genome of resistant strain showed that E. coli 15743 drug-resistant strain with the MIC values of 32 and 256 µg/mL contained four and eight non-synonymous SNPs, respectively. These non-synonymous SNPs were distributed in the genes of frdD, ftsI, acrB, OmpD, marR, VgrG, and envZ. CONCLUSION: These studies will improve our understanding of the molecular mechanism of AMP resistance of E. coli, and may provide the basis for prevention and control of multi-drug-resistant bacteria and generation of new antibiotics to treat E. coli infection. | 2019 | 31571941 |
| 5674 | 17 | 0.9996 | Evaluation of Resistance by Clinically Pathogenic Bacteria to Antimicrobials and Common Disinfectants in Beijing, China. BACKGROUND: Antibiotic resistance of pathogenic bacteria is well recognized among clinicians; however, studies that directly evaluate the bacterial resistance to commonly used disinfectants in clinical settings are lacking. Currently available reports focus on the resistance of single strains to single disinfectants and do not adequately examine the degree of resistance and cross-resistance to antimicrobials in the large-scale clinical use of disinfectants. METHODS: We investigated the resistance capacity to 11 antibiotics and 7 chemical disinfectants by bacterial strains collected from body fluids of patients in 10 hospitals in Beijing, China over a 1-year period. Bacterial resistance to disinfectants was tested using minimum inhibitory concentration and minimum bactericidal concentration using agar dilution methods based on commercially available reference strains. RESULTS: A total of 1,104 pathogenic strains were identified, of which 23% were Gram-positive bacteria, 74% were Gram-negative bacteria, and 3% were fungi. Overall, resistance to antibiotics for the most common strains was significantly higher than their resistance to disinfectants. The least effective antibiotics and disinfectants were aztreonam and glutaral, respectively, exhibiting the highest overall resistance rates; while amikacin and alcohol had the lowest resistance rates. Consistently, Acinetobacter baumannii exhibited the most resistance, while Escherichia coli had the least resistance for both antibiotics and disinfectants. CONCLUSIONS: Based on the pathogen spectrum for bacterial infective pathogens evaluated in this study, as well as the status quo of their resistance to antimicrobial agents and common clinical disinfectants, it is essential for healthcare professionals to pay attention not only to the standardized use of antimicrobial agents but also to the rational application of disinfectants. | 2018 | 30568055 |
| 4767 | 18 | 0.9996 | The impact of probiotic cell-free metabolites in MDR Pseudomonas aeruginosa: antibacterial properties and effect on antibiotic resistance genes expression. There is a significant demand for novel antibacterial agents against multidrug-resistant (MDR) gram-negative bacteria. Recently, probiotics have been noted for their antibacterial properties against various pathogens. This study aimed to investigate the effects of probiotic cell-free supernatants on MDR Pseudomonas aeruginosa. Clinical isolates demonstrating the highest degree of antibiotic resistance were chosen, and the antibacterial effect of probiotic metabolites was evaluated using an agar-well diffusion assay. In addition, the effect of probiotics on the expression of resistance genes was evaluated using real-time PCR. The CFS was assessed using GC-MS to determine the antibacterial compounds. The supernatants inhibited the growth of the isolates (P < 0.0001); however, there was no noticeable difference in the effectiveness of the probiotics. In addition, the supernatants decreased the expression levels of mexD, mexB, mexF, and ampC, and an increase in oprD was observed in some groups. After the assessment of Lactobacillus acidophilus by GC-MS, antibacterial compounds, such as acetamide, nonadecane, 9-methyl, and tetradecane, were determined. Our findings showed that probiotic metabolites can effectively inhibit the growth of MDR P. aeruginosa. Gene expression analysis also revealed that the mechanism of antibacterial action was most likely related to the regulation of efflux pumps. | 2023 | 37742315 |
| 4738 | 19 | 0.9996 | Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis. Antimicrobial resistance in bacteria is a global threat that can make antibacterial treatments ineffective. One well-known method of antibiotic resistance and a common defensive mechanism in many harmful bacteria is the synthesis of endogenous hydrogen sulfide (H(2)S) in bacteria. In this study, soil bacteria were screened using the lead acetate agar test and the triple sugar iron test to determine that they were non-endogenous H(2)S producers. This was further validated by full genome analysis of the identified organism against the gene sequences of H(2)S-producing genes. Antibacterial resistance of the bacteria was phenotypically analyzed using the Kirby-Bauer disk diffusion method. Then, the effect of exogenous H(2)S on the antibiotic-resistant bacteria was checked in sodium sulfide, leading to antibiotic re-sensitization. | 2025 | 38767682 |