Identification of novel antimicrobial resistance genes from microbiota on retail spinach. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
574301.0000Identification of novel antimicrobial resistance genes from microbiota on retail spinach. BACKGROUND: Drug resistance genes and their mobile genetic elements are frequently identified from environmental saprophytic organisms. It is widely accepted that the use of antibiotics in animal husbandry selects for drug resistant microorganisms, which are then spread from the farm environment to humans through the consumption of contaminated food products. We wished to identify novel drug resistance genes from microbial communities on retail food products. Here, we chose to study the microbial communities on retail spinach because it is commonly eaten raw and has previously been associated with outbreaks of bacterial infections. RESULTS: We created metagenomic plasmid libraries from microbiota isolated from retail spinach samples. We identified five unique plasmids that increased resistance to antimicrobial drugs in the E. coli host. These plasmids were identified in E. coli that grew on plates that contained ampicillin (pAMP), aztreonam (pAZT), ciprofloxacin (pCIP), trimethoprim (pTRM), and trimethoprim-sulfamethoxazole (pSXT). We identified open reading frames with similarity to known classes of drug resistance genes in the DNA inserts of all 5 plasmids. These drug resistance genes conferred resistance to fluoroquinolones, cephalosporins, and trimethoprim, which are classes of antimicrobial drugs frequently used to treat human Gram negative bacterial infections. These results show that novel drug resistance genes are found in microbiota on retail produce items. CONCLUSIONS: Here we show that microbiota of retail spinach contains DNA sequences previously unidentified as conferring antibiotic resistance. Many of these novel sequences show similarity to genes found in species of bacteria, which have previously been identified as commensal or saprophytic bacteria found on plants. We showed that these resistance genes are capable of conferring clinically relevant levels of resistance to antimicrobial agents. Food saprophytes may serve as an important reservoir for new drug-resistance determinants in human pathogens.201324289541
460810.9998Presence of Tetracycline and Sulfonamide Resistance Genes in Salmonella spp.: Literature Review. Tetracyclines and sulfonamides are broad-spectrum antibacterial agents which have been used to treat bacterial infections for over half a century. The widespread use of tetracyclines and sulfonamides led to the emergence of resistance in a diverse group of bacteria. This resistance can be studied by searching for resistance genes present in the bacteria responsible for different resistance mechanisms. Salmonella is one of the leading bacteria causing foodborne diseases worldwide, and its resistance to tetracyclines and sulfonamides has been widely reported. The literature review searched the Virtual Health Library for articles with specific data in the studied samples: the resistance genes found, the primers used in PCR, and the thermocycler conditions. The results revealed that Salmonella presented high rates of resistance to tetracycline and sulfonamide, and the most frequent samples used to isolate Salmonella were poultry and pork. The tetracycline resistance genes most frequently detected from Salmonella spp. were tetA followed by tetB. The gene sul1 followed by sul2 were the most frequently sulfonamide resistance genes present in Salmonella. These genes are associated with plasmids, transposons, or both, and are often conjugative, highlighting the transference potential of these genes to other bacteria, environments, animals, and humans.202134827252
460920.9998The importance of integrons for development and propagation of resistance in Shigella: the case of Latin America. In Latin America, the disease burden of shigellosis is found to coexist with the rapid and rampant spread of resistance to commonly used antibiotics. The molecular basis of antibiotic resistance lies within genetic elements such as plasmids, transposons, integrons, genomic islands, etc., which are found in the bacterial genome. Integrons are known to acquire, exchange, and express genes within gene cassettes and it is hypothesized that they play a significant role in the transmission of multidrug resistance genes in several Gram-negative bacteria including Shigella. A few studies have described antibiotic resistance genes and integrons among multidrug resistant Shigella isolates found in Latin America. For example, in Brazil, Bolivia, Chile, Costa Rica and Peru, class 1 and class 2 integrons have been detected among multidrug resistant strains of Shigella; this phenomenon is more frequently observed in S. flexneri isolates that are resistant to trimethoprim, sulfamethoxazole, streptomycin, ampicillin, chloramphenicol, and tetracycline. The gene cassette sul2, which is frequently detected in Shigella strains resistant to the sulfonamides, suggests that the sulfonamide-resistant phenotype can be explained by the presence of the sul2 genes independent of the integron class detected. It is to be noted that sul3 was negative in all isolates analyzed in these studies. The high frequency of sulfonamide (as encoded by sul2) and trimethoprim resistance is likely to be a result of the recurrent use of trimethoprim sulfamethoxazole as a popular regimen for the treatment of shigellosis. The observed resistance profiles of Shigella strains confirm that ampicillin and trimethoprim-sulfamethoxazole are ineffective as therapeutic options. In-depth information regarding antibiotic resistance mechanism in this pathogen is needed in order to develop suitable intervention strategies. There is a pressing need for regional and local antimicrobial resistance profiling of Shigella to be included as a part of the public health strategy.201627528086
392830.9998Organic and conventional fruits and vegetables contain equivalent counts of Gram-negative bacteria expressing resistance to antibacterial agents. Resistance to antibiotics is a major public health problem which might culminate in outbreaks caused by pathogenic bacteria untreatable by known antibiotics. Most of the genes conferring resistance are acquired horizontally from already resistant commensal or environmental bacteria. Food contamination by resistant bacteria might be a significant source of resistance genes for human bacteria but has never been precisely assessed, nor is it known whether organic products differ in this respect from conventionally produced products. We showed here, on a large year-long constructed sample set containing 399 products that, irrespective of their mode of production, raw fruits and vegetables are heavily contaminated by Gram-negative bacteria (GNB) resistant to multiple antibiotics. Most of these bacteria originate in the soil and environment. We focused on non-oxidative GNB resistant to third-generation cephalosporins, because of their potential impact on human health. Among them, species potentially pathogenic for immunocompetent hosts were rare. Of the products tested, 13% carried bacteria producing extended-spectrum beta-lactamases, all identified as Rahnella sp. which grouped into two phylotypes and all carrying the bla(RAHN) gene. Thus, both organic and conventional fruits and vegetables may constitute significant sources of resistant bacteria and of resistance genes.201019919536
496540.9998Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. The genus Campylobacter groups 32 Gram-negative bacteria species, several being zoonotic pathogens and a major cause of human gastroenteritis worldwide. Antibiotic resistant Campylobacter is considered by the World Health Organization as a high priority pathogen for research and development of new antibiotics. Genetic elements related to antibiotic resistance in the classical C. coli and C. jejuni species, which infect humans and livestock, have been analyzed in numerous studies, mainly focused on local geographical areas. However, the presence of these resistance determinants in other Campylobacter species, as well as in C. jejuni and C. coli strains distributed globally, remains poorly studied. In this work, we analyzed the occurrence and distribution of antibiotic resistance factors in 237 Campylobacter closed genomes available in NCBI, obtained from isolates collected worldwide, in different dates, from distinct hosts and comprising 22 Campylobacter species. Our data revealed 18 distinct genetic determinants, genes or point mutations in housekeeping genes, associated with resistance to antibiotics from aminoglycosides, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols or tetracyclines classes, which are differentially distributed among the Campylobacter species tested, on chromosomes or plasmids. Three resistance determinants, the bla (OXA-493) and bla (OXA-576) genes, putatively related to β-lactams resistance, as well as the lnu(AN2) gene, putatively related to lincosamides resistance, had not been reported in Campylobacter; thus, they represent novel determinants for antibiotic resistance in Campylobacter spp., which expands the insight on the Campylobacter resistome. Interestingly, we found that some of the genetic determinants associated with antibiotic resistance are Campylobacter species-specific; e.g., the bla (OXA-493) gene and the T86V mutation in gyrA were found only in the C. lari group, whereas genes associated with aminoglycosides resistance were found only in C. jejuni and C. coli. Additional analyses revealed how are distributed the resistance and multidrug resistance Campylobacter genotypes assessed, with respect to hosts, geographical locations, and collection dates. Thus, our findings further expand the knowledge on the factors that can determine or favor the antibiotic resistance in Campylobacter species distributed globally, which can be useful to choose a suitable antibiotic treatment to control the zoonotic infections by these bacteria.202033042043
460750.9998Genetics of resistance to trimethoprim in cotrimoxazole resistant uropathogenic Escherichia coli: integrons, transposons, and single gene cassettes. Cotrimoxazole, the combined formulation of sulfamethoxazole and trimethoprim, is one of the treatments of choice for several infectious diseases, particularly urinary tract infections. Both components of cotrimoxazole are synthetic antimicrobial drugs, and their combination was introduced into medical therapeutics about half a century ago. In Gram-negative bacteria, resistance to cotrimoxazole is widespread, being based on the acquisition of genes from the auxiliary genome that confer resistance to each of its antibacterial components. Starting from previous knowledge on the genotype of resistance to sulfamethoxazole in a collection of cotrimoxazole resistant uropathogenic Escherichia coli strains, this work focused on the identification of the genetic bases of the trimethoprim resistance of these same strains. Molecular techniques employed included PCR and Sanger sequencing of specific amplicons, conjugation experiments and NGS sequencing of the transferred plasmids. Mobile genetic elements conferring the trimethoprim resistance phenotype were identified and included integrons, transposons and single gene cassettes. Therefore, strains exhibited several ways to jointly resist both antibiotics, implying different levels of genetic linkage between genes conferring resistance to sulfamethoxazole (sul) and trimethoprim (dfrA). Two structures were particularly interesting because they represented a highly cohesive arrangements ensuring cotrimoxazole resistance. They both carried a single gene cassette, dfrA14 or dfrA1, integrated in two different points of a conserved cluster sul2-strA-strB, carried on transferable plasmids. The results suggest that the pressure exerted by cotrimoxazole on bacteria of our environment is still promoting the evolution toward increasingly compact gene arrangements, carried by mobile genetic elements that move them in the genome and also transfer them horizontally among bacteria.202438946902
467060.9998Novel Antibiotic Resistance Genes Identified by Functional Gene Library Screening in Stenotrophomonas maltophilia and Chryseobacterium spp. Bacteria of Soil Origin. As one of the most diverse habitats of microorganisms, soil has been recognised as a reservoir of both antibiotics and the antibiotic resistance genes (ARGs). Bacteria naturally inhabiting soil or water often possess innate ARGs to counteract the chemical compounds produced by competitors living in the same environment. When such bacteria are able to cause infections in immunocompromised patients, their strong innate antibiotic resistance mechanisms make treatment difficult. We generated functional gene libraries using antibiotic-resistant Stenotrophomonas maltophilia and Chryseobacterium spp. bacteria isolated from agricultural soils in Lithuania to select for the genetic determinants responsible for their resistance. We were able to find novel variants of aminoglycoside and β-lactam resistance genes, with β-lactamases isolated from the Chryseobacterium spp. functional gene library, one of which is a variant of IND-like metallo-β-lactamase (MBL) IND-17 and the other of which is a previously uncharacterised MBL we named CHM (Chryseobacterium metallo β-lactamase). Our results indicate that soil microorganisms possess a diversity of ARG variants, which could potentially be transferred to the clinical setting.202337047008
451970.9998Antimicrobial Drug Resistance in Fish Pathogens. Major concerns surround the use of antimicrobial agents in farm-raised fish, including the potential impacts these uses may have on the development of antimicrobial-resistant pathogens in fish and the aquatic environment. Currently, some antimicrobial agents commonly used in aquaculture are only partially effective against select fish pathogens due to the emergence of resistant bacteria. Although reports of ineffectiveness in aquaculture due to resistant pathogens are scarce in the literature, some have reported mass mortalities in Penaeus monodon larvae caused by Vibrio harveyi resistant to trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, and streptomycin. Genetic determinants of antimicrobial resistance have been described in aquaculture environments and are commonly found on mobile genetic elements which are recognized as the primary source of antimicrobial resistance for important fish pathogens. Indeed, resistance genes have been found on transferable plasmids and integrons in pathogenic bacterial species in the genera Aeromonas, Yersinia, Photobacterium, Edwardsiella, and Vibrio. Class 1 integrons and IncA/C plasmids have been widely identified in important fish pathogens (Aeromonas spp., Yersinia spp., Photobacterium spp., Edwardsiella spp., and Vibrio spp.) and are thought to play a major role in the transmission of antimicrobial resistance determinants in the aquatic environment. The identification of plasmids in terrestrial pathogens (Salmonella enterica serotypes, Escherichia coli, and others) which have considerable homology to plasmid backbone DNA from aquatic pathogens suggests that the plasmid profiles of fish pathogens are extremely plastic and mobile and constitute a considerable reservoir for antimicrobial resistance genes for pathogens in diverse environments.201829372680
574480.9998Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then.201627506509
392990.9998Genetic basis of antibiotic resistance in bovine mastitis and its possible implications for human and ecological health. Bovine mastitis is a mammary gland inflammation that can occur due to infectious pathogens, Staphylococcus aureus and Escherichia coli, which are, respectively, the most prevalent Gram-positive and Gram-negative bacteria associated with this disease. Currently, antibiotic treatment has become more complicated due to the presence of resistant pathogens. This review, therefore, aims to identify the most common resistance genes reported for these strains in the last four years. During the review, it was noted that bla(Z), bla(SHV,) bla(TEM), and bla(ampC) are the most reported genes for S. aureus and E. coli, associated with drug inactivation, mainly β-lactamases. They are characterized by generating bacterial resistance to β-lactam antibiotics, the most common treatment in animal and human bacterial treatments (penicillins and cephalosporins, among others). Genes associated with efflux systems were also present in the two strains and included norA, tetA, tetC, and tetK, which generate resistance to macrolide and tetracycline antibiotics. Additionally, the effects of spreading resistance between animals and humans through direct contact (such as consumption of contaminated milk) or indirect contact (through environmental contamination) has been deeply discussed, emphasizing the importance of having adequate sanitation and antibiotic control and administration protocols.202538916977
4967100.9998Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin. BACKGROUND: Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines. RESULTS: The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types. CONCLUSIONS: The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected.202439434132
4674110.9998Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture. Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened through scientific-based efficacy trials and product labels should allow identification of individual bacterial strains and inform the farmer on specific purpose, dosage and correct application measures.201526147573
3940120.9998Chicken Meat-Associated Enterococci: Influence of Agricultural Antibiotic Use and Connection to the Clinic. Industrial farms are unique, human-created ecosystems that provide the perfect setting for the development and dissemination of antibiotic resistance. Agricultural antibiotic use amplifies naturally occurring resistance mechanisms from soil ecologies, promoting their spread and sharing with other bacteria, including those poised to become endemic within hospital environments. To better understand the role of enterococci in the movement of antibiotic resistance from farm to table to clinic, we characterized over 300 isolates of Enterococcus cultured from raw chicken meat purchased at U.S. supermarkets by the Consumers Union in 2013. Enterococcus faecalis and Enterococcus faecium were the predominant species found, and antimicrobial susceptibility testing uncovered striking levels of resistance to medically important antibiotic classes, particularly from classes approved by the FDA for use in animal production. While nearly all isolates were resistant to at least one drug, bacteria from meat labeled as raised without antibiotics had fewer resistances, particularly for E. faecium Whole-genome sequencing of 92 isolates revealed that both commensal- and clinical-isolate-like enterococcal strains were associated with chicken meat, including isolates bearing important resistance-conferring elements and virulence factors. The ability of enterococci to persist in the food system positions them as vehicles to move resistance genes from the industrial farm ecosystem into more human-proximal ecologies.IMPORTANCE Bacteria that contaminate food can serve as a conduit for moving drug resistance genes from farm to table to clinic. Our results show that chicken meat-associated isolates of Enterococcus are often multidrug resistant, closely related to pathogenic lineages, and harbor worrisome virulence factors. These drug-resistant agricultural isolates could thus represent important stepping stones in the evolution of enterococci into drug-resistant human pathogens. Although significant efforts have been made over the past few years to reduce the agricultural use of antibiotics, continued assessment of agricultural practices, including the roles of processing plants, shared breeding flocks, and probiotics as sources for resistance spread, is needed in order to slow the evolution of antibiotic resistance. Because antibiotic resistance is a global problem, global policies are needed to address this threat. Additional measures must be taken to mitigate the development and spread of antibiotic resistance elements from farms to clinics throughout the world.201931471308
3937130.9998Design of a system for monitoring antimicrobial resistance in pathogenic, zoonotic and indicator bacteria from food animals. DANMAP is a Danish programme for integrated monitoring of and research on antimicrobial resistance in bacteria from food animals, food and humans. The paper describes how bacteria from broilers, pigs, and cattle are collected, as well as the procedures for data handling and presentation of results. The bacteria from animals include certain pathogens, selected so that they are representative for submissions to Danish diagnostic laboratories, as well as zoonotic bacteria (Campylobacter, Salmonella and Yersinia) and indicator bacteria (E. coli, E. faecium and E. faecalis), from samples collected at abattoirs. The latter samples are selected so that they are representative of the respective animal populations. Therefore, the apparent prevalence of antimicrobial resistance in the populations may be calculated. The isolates are identified to species level and the results of susceptibility testing are stored as continuous variables. All isolates are maintained in a strain collection so that they are available for subsequent research projects. The data handling facilities makes it possible to present results as percent resistant isolates or as the apparent prevalence of resistance in the population, or alternatively as graphical distributions of mm inhibition zones or MIC values. Computer routines have been established that make it possible to detect specific phenotypic expressions of resistance that may be of particular interest.199910783720
5746140.9998Identification of a Novel Plasmid-Borne Gentamicin Resistance Gene in Nontyphoidal Salmonella Isolated from Retail Turkey. The spread of antibiotic-resistant bacteria presents a global health challenge. Efficient surveillance of bacteria harboring antibiotic resistance genes (ARGs) is a critical aspect to controlling the spread. Increased access to microbial genomic data from many diverse populations informs this surveillance but only when functional ARGs are identifiable within the data set. Current, homology-based approaches are effective at identifying the majority of ARGs within given clinical and nonclinical data sets for several pathogens, yet there are still some whose identities remain elusive. By coupling phenotypic profiling with genotypic data, these unknown ARGs can be identified to strengthen homology-based searches. To prove the efficacy and feasibility of this approach, a published data set from the U.S. National Antimicrobial Resistance Monitoring System (NARMS), for which the phenotypic and genotypic data of 640 Salmonella isolates are available, was subjected to this analysis. Six isolates recovered from the NARMS retail meat program between 2011 and 2013 were identified previously as phenotypically resistant to gentamicin but contained no known gentamicin resistance gene. Using the phenotypic and genotypic data, a comparative genomics approach was employed to identify the gene responsible for the observed resistance in all six of the isolates. This gene, grdA, is harbored on a 9,016-bp plasmid that is transferrable to Escherichia coli, confers gentamicin resistance to E. coli, and has never before been reported to confer gentamicin resistance. Bioinformatic analysis of the encoded protein suggests an ATP binding motif. This work demonstrates the advantages associated with coupling genomics technologies with phenotypic data for novel ARG identification.202032816720
4923150.9998Genetic Resistance Determinants in Clinical Acinetobacter pittii Genomes. Antimicrobial-resistant pathogenic bacteria are an increasing problem in public health, especially in the healthcare environment, where nosocomial infection microorganisms find their niche. Among these bacteria, the genus Acinetobacter which belongs to the ESKAPE pathogenic group harbors different multi-drug resistant (MDR) species that cause human nosocomial infections. Although A. baumannii has always attracted more interest, the close-related species A. pittii is the object of more study due to the increase in its isolation and MDR strains. In this work, we present the genomic analysis of five clinically isolated A. pittii strains from a Spanish hospital, with special attention to their genetic resistance determinants and plasmid structures. All the strains harbored different genes related to β-lactam resistance, as well as different MDR efflux pumps. We also found and described, for the first time in this species, point mutations that seem linked with colistin resistance, which highlights the relevance of this comparative analysis among the pathogenic species isolates.202235625320
3943160.9998Quinolone resistance in the food chain. Antimicrobials are used in pet animals and in animal husbandry for prophylactic and therapeutic reasons and also as growth promoters, causing selective pressure on bacteria of animal origin. The impact of quinolones or quinolone-resistant bacteria on the management of human infections may be associated with three different scenarios. (i) Quinolone-resistant zoonotic bacterial pathogens are selected and food is contaminated during slaughter and/or preparation. (ii) Quinolone-resistant bacteria non-pathogenic to humans are selected in the animal. When the contaminated food is ingested, the bacteria may transfer resistance determinants to other bacteria in the human gut (commensal and potential pathogens). And (iii) quinolones remain in residues of food products, which may allow the selection of antibiotic-resistant bacteria after the food is consumed. In this review, we analyse the abovementioned aspects, emphasising the molecular basis of quinolone resistance in Escherichia coli, Salmonella spp. and Campylobacter spp.200818308515
3407170.9998The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria. Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.201323776501
5978180.9998Evidences of gentamicin resistance amplification in Klebsiella pneumoniae isolated from faeces of hospitalized newborns. The intestinal microbiota, a barrier to the establishment of pathogenic bacteria, is also an important reservoir of opportunistic pathogens. It plays a key role in the process of resistance-genes dissemination, commonly carried by specialized genetic elements, like plasmids, phages, and conjugative transposons. We obtained from strains of enterobacteria, isolated from faeces of newborns in a university hospital nursery, indication of phenotypical gentamicin resistance amplification (frequencies of 10(-3) to 10(-5), compatible with transposition frequencies). Southern blotting assays showed strong hybridization signals for both plasmidial and chromosomal regions in DNA extracted from variants selected at high gentamicin concentrations, using as a probe a labeled cloned insert containing aminoglycoside modifying enzyme (AME) gene sequence originated from a plasmid of a Klebsiella pneumoniae strain previously isolated in the same hospital. Further, we found indications of inactivation to other resistance genes in variants selected under similar conditions, as well as, indications of co-amplification of other AME markers (amikacin). Since the intestinal environment is a scenario of selective processes due to the therapeutic and prophylactic use of antimicrobial agents, the processes of amplification of low level antimicrobial resistance (not usually detected or sought by common methods used for antibiotic resistance surveillance) might compromise the effectiveness of antibiotic chemotherapy.199910585658
4930190.9998Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus. Whole-genome sequencing (WGS) has transformed our understanding of antimicrobial resistance, yielding new insights into the genetics underlying resistance. To date, most studies using WGS to study antimicrobial resistance have focused on gram-negative bacteria in the family Enterobacteriaceae, such as Salmonella spp. and Escherichia coli, which have well-defined resistance mechanisms. In contrast, relatively few studies have been performed on gram-positive organisms. We sequenced 197 strains of Enterococcus from various animal and food sources, including 100 Enterococcus faecium and 97 E. faecalis. From analyzing acquired resistance genes and known resistance-associated mutations, we found that resistance genotypes correlated with resistance phenotypes in 96.5% of cases for the 11 drugs investigated. Some resistances, such as those to tigecycline and daptomycin, could not be investigated due to a lack of knowledge of mechanisms underlying these phenotypes. This study showed the utility of WGS for predicting antimicrobial resistance based on genotype alone.201829617860