# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5727 | 0 | 1.0000 | Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. The prevalence of antimicrobial resistance (AR) in bacteria isolated from U.S. food animals has increased over the last several decades as have concerns of AR foodborne zoonotic human infections. Resistance mechanisms identified in U.S. animal isolates of Salmonella enterica included resistance to aminoglycosides (e.g., alleles of aacC, aadA, aadB, ant, aphA, and StrAB), β-lactams (e.g., bla CMY-2, TEM-1, PSE-1), chloramphenicol (e.g., floR, cmlA, cat1, cat2), folate pathway inhibitors (e.g., alleles of sul and dfr), and tetracycline [e.g., alleles of tet(A), (B), (C), (D), (G), and tetR]. In the U.S., multi-drug resistance (MDR) mechanisms in Salmonella animal isolates were associated with integrons, or mobile genetic elements (MGEs) such as IncA/C plasmids which can be transferred among bacteria. It is thought that AR Salmonella originates in food animals and is transmitted through food to humans. However, some AR Salmonella isolated from humans in the U.S. have different AR elements than those isolated from food animals, suggesting a different etiology for some AR human infections. The AR mechanisms identified in isolates from outside the U.S. are also predominantly different. For example the extended spectrum β-lactamases (ESBLs) are found in human and animal isolates globally; however, in the U.S., ESBLs thus far have only been found in human and not food animal isolates. Commensal bacteria in animals including Escherichia coli and Enterococcus spp. may be reservoirs for AR mechanisms. Many of the AR genes and MGEs found in E. coli isolated from U.S. animals are similar to those found in Salmonella. Enterococcus spp. isolated from animals frequently carry MGEs with AR genes, including resistances to aminoglycosides (e.g., alleles of aac, ant, and aph), macrolides [e.g., erm(A), erm(B), and msrC], and tetracyclines [e.g., tet(K), (L), (M), (O), (S)]. Continuing investigations are required to help understand and mitigate the impact of AR bacteria on human and animal health. | 2013 | 23734150 |
| 2844 | 1 | 0.9999 | High throughput qPCR analyses suggest that Enterobacterales of French sheep and cow cheese rarely carry genes conferring resistances to critically important antibiotics for human medicine. Bacteria present in raw milk can carry acquired or intrinsic antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs). However, only a few studies have evaluated raw milk cheese as a potential reservoir of ARGs. This study thus aimed at providing new data regarding resistance markers present in raw milk cheese. Sheep (n = 360) and cow (n = 360) cheese samples produced in France were incubated in buffered peptone water supplemented with acriflavin or novobiocin; as corroborated by 16S metabarcoding, samples were enriched in Gram-negative bacteria since Escherichia coli and Hafnia alvei respectively accounted for 40 % and 20 % of the samples' microbiota. Screening of the samples for the presence of 30 ARGs and 16 MGEs by high throughput qPCR array showed that nine ARGs conferring resistances to 1st-generation beta-lactams, aminoglycosides, trimethoprim/sulfonamides and tetracyclines occurred in >75 % of both sheep and cow samples. This is neither surprising nor alarming since these resistance genes are widely spread across the One Health human, animal and environmental sectors. Conversely, genes conferring resistances to last-generations cephalosporins were rarely identified, while those conferring resistances to carbapenems or amikacin, which are restricted to human use, were never detected. Multiple MGEs were detected, the most frequent ones being IncF plasmids, confirming the potential transmission of ARGs. Our results are in line with the few studies of the resistome of milk or milk cheese showing that genes conferring resistances to 1st-generation beta-lactams, aminoglycosides and tetracyclines families are widespread, while those conferring resistances to critically important antibiotics are rare or absent. | 2023 | 37384974 |
| 2565 | 2 | 0.9998 | Phenotypic and genotypic characterization of antibiotic-resistant bacteria from Swiss ready-to-eat meat products. Antimicrobial resistance is a global health concern, which is partly driven by rising meat consumption, which has led to the intensive farming of livestock that relies on antibiotics. ready-to-eat animal products can carry antibiotic-resistant bacteria, posing risks to humans since they are often consumed without further cooking. While countries such as Switzerland limit antibiotic use in agriculture, contamination of meat with antibiotic-resistant bacteria can still occur during meat processing, and non-antibiotic agents such as heavy metals may contribute to the co-selection of resistance. This study aimed to characterize antibiotic-resistant bacteria in ready-to-eat meat products from various Swiss butcheries. Presumptive resistant bacteria were isolated using selective plating and analyzed phenotypically and genotypically. A total of 53 bacteria-antibiotic resistance combinations were identified, including Enterobacterales resistant to third-generation cephalosporins, vancomycin-resistant Enterococci, and one strain of methicillin-resistant Staphylococcus aureus. Of the 804 products sampled, 177 antibiotic-resistant bacteria were isolated, 148 of which showed multidrug resistance. Notably, these strains remained susceptible to last-resort antibiotics such as carbapenems and colistin. Whole-genome sequencing of 31 selected isolates revealed 164 antibiotic resistance genes spanning 25 classes, confirming resistance to beta-lactams, cephalosporins, and tetracyclines. We also detected genes conferring resistance to metals, suggesting co-selection pressures. Long-read sequencing revealed that the majority of the antibiotic resistance genes were chromosomal, while others were plasmid-encoded, indicating the potential for horizontal gene transfer. This study demonstrates that ready-to-eat meat products are reservoirs of antibiotic and metal resistance genes, as well as antibiotic-resistant bacteria, even at low levels. From a One Health perspective, our results highlight the importance of extending AMR surveillance across the food chain and underscore the need to include non-traditional bacterial indicators. | 2025 | 41001059 |
| 5718 | 3 | 0.9998 | A newly identified IncY plasmid from multi-drug-resistant Escherichia coli isolated from dairy cattle feces in Poland. Comprehensive whole-genome sequencing was performed on two multi-drug-resistant Escherichia coli strains isolated from cattle manure from a typical dairy farm in Poland in 2020. The identified strains are resistant to beta-lactams, aminoglycosides, tetracyclines, trimethoprim/sulfamethoxazole, and fluoroquinolones. The complete sequences of the harbored plasmids revealed antibiotic-resistance genes located within many mobile genetic elements (e.g., insertional sequences or transposons) and genes facilitating conjugal transfer or promoting horizontal gene transfer. These plasmids are hitherto undescribed. Similar plasmids have been identified, but not in Poland. The identified plasmids carried resistance genes, including the tetracycline resistance gene tet(A), aph family aminoglycoside resistance genes aph(3″)-lb and aph (6)-ld, beta-lactam resistance genes bla(TEM-1) and bla(CTX-M-15), sulfonamide resistance gene sul2, fluoroquinolone resistance gene qnrS1, and the trimethoprim resistance gene dfrA14. The characterized resistance plasmids were categorized into the IncY incompatibility group, indicating a high possibility for dissemination among the Enterobacteriaceae. While similar plasmids (99% identity) have been found in environmental and clinical samples, none have been identified in farm animals. These findings are significant within the One Health framework, as they underline the potential for antimicrobial-resistant E. coli from livestock and food sources to be transmitted to humans and vice versa. It highlights the need for careful monitoring and strategies to limit the spread of antibiotic resistance in the One Health approach. IMPORTANCE: This study reveals the identification of new strains of antibiotic-resistant Escherichia coli in cattle manure from a dairy farm in Poland, offering critical insights into the spread of drug resistance. Through whole-genome sequencing, researchers discovered novel plasmids within these bacteria, which carry genes resistant to multiple antibiotics. These findings are particularly alarming, as these plasmids can transfer between different bacterial species, potentially escalating the spread of antibiotic resistance. This research underscores the vital connection between the health of humans, animals, and the environment, emphasizing the concept of One Health. It points to the critical need for global vigilance and strategies to curb the proliferation of antibiotic resistance. By showcasing the presence of these strains and their advanced resistance mechanisms, the study calls for enhanced surveillance and preventive actions in both agricultural practices and healthcare settings to address the imminent challenge of antibiotic-resistant bacteria. | 2024 | 39012117 |
| 1935 | 4 | 0.9998 | Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related. | 2021 | 34356729 |
| 5728 | 5 | 0.9998 | Genetic but No Phenotypic Associations between Biocide Tolerance and Antibiotic Resistance in Escherichia coli from German Broiler Fattening Farms. Biocides are frequently applied as disinfectants in animal husbandry to prevent the transmission of drug-resistant bacteria and to control zoonotic diseases. Concerns have been raised, that their use may contribute to the selection and persistence of antimicrobial-resistant bacteria. Especially, extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli have become a global health threat. In our study, 29 ESBL-/AmpC-producing and 64 NON-ESBL-/AmpC-producing E.coli isolates from three German broiler fattening farms collected in 2016 following regular cleaning and disinfection were phylogenetically characterized by whole genome sequencing, analyzed for phylogenetic distribution of virulence-associated genes, and screened for determinants of and associations between biocide tolerance and antibiotic resistance. Of the 30 known and two unknown sequence types detected, ST117 and ST297 were the most common genotypes. These STs are recognized worldwide as pandemic lineages causing disease in humans and poultry. Virulence determinants associated with extraintestinal pathogenic E.coli showed variable phylogenetic distribution patterns. Isolates with reduced biocide susceptibility were rarely found on the tested farms. Nine isolates displayed elevated MICs and/or MBCs of formaldehyde, chlorocresol, peroxyacetic acid, or benzalkonium chloride. Antibiotic resistance to ampicillin, trimethoprim, and sulfamethoxazole was most prevalent. The majority of ESBL-/AmpC-producing isolates carried bla(CTX-M) (55%) or bla(CMY-2) (24%) genes. Phenotypic biocide tolerance and antibiotic resistance were not interlinked. However, biocide and metal resistance determinants were found on mobile genetic elements together with antibiotic resistance genes raising concerns that biocides used in the food industry may lead to selection pressure for strains carrying acquired resistance determinants to different antimicrobials. | 2021 | 33801066 |
| 5613 | 6 | 0.9998 | Characterizing Antimicrobial Resistance in Clinically Relevant Bacteria Isolated at the Human/Animal/Environment Interface Using Whole-Genome Sequencing in Austria. Antimicrobial resistance (AMR) is a public health issue attributed to the misuse of antibiotics in human and veterinary medicine. Since AMR surveillance requires a One Health approach, we sampled nine interconnected compartments at a hydrological open-air lab (HOAL) in Austria to obtain six bacterial species included in the WHO priority list of antibiotic-resistant bacteria (ARB). Whole genome sequencing-based typing included core genome multilocus sequence typing (cgMLST). Genetic and phenotypic characterization of AMR was performed for all isolates. Eighty-nine clinically-relevant bacteria were obtained from eight compartments including 49 E. coli, 27 E. faecalis, 7 K. pneumoniae and 6 E. faecium. Clusters of isolates from the same species obtained in different sample collection dates were detected. Of the isolates, 29.2% were resistant to at least one antimicrobial. E. coli and E. faecalis isolates from different compartments had acquired antimicrobial resistance genes (ARGs) associated with veterinary drugs such as aminoglycosides and tetracyclines, some of which were carried in conjugative and mobilizable plasmids. Three multidrug resistant (MDR) E. coli isolates were found in samples from field drainage and wastewater. Early detection of ARGs and ARB in natural and farm-related environments can identify hotspots of AMR and help prevent its emergence and dissemination along the food/feed chain. | 2022 | 36232576 |
| 1929 | 7 | 0.9998 | Research Note: Detection of antibiotic-resistance genes in commercial poultry and turkey flocks from Italy. Antibiotics are routinely used in commercial poultry farms for the treatment of economically important bacterial diseases. Repeated use of antibiotics, usually administered in the feed or drinking water, may also result in the selection of resistant bacteria in animal feces, able to transfer their antimicrobial-resistance genes (ARG), residing on mobile elements, to other microorganisms, including human pathogens. In this study, single and multiplex PCR protocols were performed to detect tetracycline-, lincomycin-, chloramphenicol-, aminoglycoside-, colistin-, vancomycin-, and carbapenem-resistance genes, starting from 38 litter samples collected from 6 poultry and 2 turkey Italian flocks. The ARG were confirmed for all investigated classes of antimicrobials, except for colistin (mcr-1, mcr-2, mcr-3,mcr-4 mcr-5) and carbapenem (IMP, OXA-48, NDM, KPC), while the vanB gene was only detected for vancomycin. The highest positivity was obtained for tetracycline (tet[L], tet[M], tet[K], tetA[P]] and aminoglycoside (aadA2) ARG, confirming the predominant use of these antimicrobials in the veterinary practice and their potential to enhance the resistance patterns also in humans as a consequence of environmental contamination. On the contrary, the dissemination by poultry of ARG for critically important antimicrobials seems to be of minor concern, suggesting a negligible environmental dissemination by these genes in the Italian poultry industry. Finally, the molecular screening performed in this study using a noninvasive sampling method represents a simple and rapid tool for monitoring the ARG patterns at the farm level. | 2021 | 33799114 |
| 1600 | 8 | 0.9998 | Simultaneous Carriage of mcr-1 and Other Antimicrobial Resistance Determinants in Escherichia coli From Poultry. The use of antimicrobial growth promoters (AGPs) in sub-therapeutic doses for long periods promotes the selection of resistant microorganisms and the subsequent risk of spreading this resistance to the human population and the environment. Global concern about antimicrobial resistance development and transference of resistance genes from animal to human has been rising. The goal of our research was to evaluate the susceptibility pattern to different classes of antimicrobials of colistin-resistant Escherichia coli from poultry production systems that use AGPs, and characterize the resistance determinants associated to transferable platforms. E. coli strains (n = 41) were obtained from fecal samples collected from typical Argentine commercial broiler farms and susceptibility for 23 antimicrobials, relevant for human or veterinary medicine, was determined. Isolates were tested by PCR for the presence of mcr-1, extended spectrum β-lactamase encoding genes and plasmid-mediated quinolone resistance (PMQR) coding genes. Conjugation and susceptibility patterns of the transconjugant studies were performed. ERIC-PCR and REP-PCR analysis showed a high diversity of the isolates. Resistance to several antimicrobials was determined and all colistin-resistant isolates harbored the mcr-1 gene. CTX-M-2 cefotaximase was the main mechanism responsible for third generation cephalosporins resistance, and PMQR determinants were also identified. In addition, co-transference of the qnrB determinant on the mcr-1-positive transconjugants was corroborated, which suggests that these resistance genes are likely to be located in the same plasmid. In this work a wide range of antimicrobial resistance mechanisms were identified in E. coli strains isolated from the environment of healthy chickens highlighting the risk of antimicrobial abuse/misuse in animals under intensive production systems and its consequences for public health. | 2018 | 30090095 |
| 5719 | 9 | 0.9998 | Characterization of antibiotic determinants and heavy metal resistance genes in Escherichia coli from pigs in Catalonia. More antibiotics are administered to livestock animals than to treat human infections. Industrialization, large animal densities and early weaning mean pigs are exposed to more antibiotics than any other livestock animal. Consequently, antimicrobial resistance (AMR) is common among commensal and pathogenic bacteria. Heavy metals (HMs) are also often used as feed additives for growth promotion and infection prevention alongside antimicrobials, and increased exposure to copper, zinc and cadmium can further encourage AMR through co-selection. In this study, we sequenced an archived collection of 112 Escherichia coli isolates from pigs in Catalonia using short- and long-read sequencing methods to detect AMR and HM tolerance genes. The most common AMR genes were mdfA (84.8%), aph(3″)-Ib (52.7%), bla (TEM-1B) (45.6%) and aph(6)-Id (45.6%). Genes relevant to public health, such as the extended-spectrum β-lactamases (15.4%), bla (CTX-M) type or bla (SHV), or mobile colistin resistance (mcr) genes (13.4%), such as mcr-1, were also found. HM tolerance genes were present in almost every genome but were rarely located in plasmids, and, in most cases, AMR and HM tolerance genes were not located on the same plasmids. Of the genes predicted to increase tolerance to HMs, only those with activity to mercury were co-located on plasmids alongside other AMR determinants. However, mercury is rarely used in pig farming and does not support a scenario where AMR and HM genes are co-selected. Finally, we identified the exclusive association between mcr-4 and ColE10 plasmid, which may help target interventions to curtail its spread among pig Escherichia coli. | 2025 | 40131333 |
| 1932 | 10 | 0.9998 | Prevalence of Plasmid-Associated Tetracycline Resistance Genes in Multidrug-Resistant Escherichia coli Strains Isolated from Environmental, Animal and Human Samples in Panama. Antimicrobial resistance bacteria are nowadays ubiquitous. Its presence has been reported in almost every type of source, from water for agricultural and recreative use, water distribution pipes, and wastewater, to food, fomites, and clinical samples. Enterobacteriaceae, especially Escherichia coli, are not the exception, showing an increased resistance to several antibiotics, causing a global health and economic burden. Therefore, the monitoring of fecal microbiota is important because it is present in numerous reservoirs where gene transfer between commensal and virulent bacteria can take place, representing a potential source of resistant E. coli. In this work, antibiotic resistance profiles of 150 E. coli isolates from environmental, animal, and human samples, collected in three rural areas in Panama, were analyzed. A total of 116 isolates were resistant to at least one of the nine antibiotics tested. Remarkably, almost 100% of these exhibited resistance to tetracycline. Plasmid-associated tetA and tetB genes were detected in 42.86% of the isolates analyzed, tetA being the most prevalent. These results suggest that tetracycline resistance would be used as a convenient indicator of genetic horizontal transfer within a community. | 2023 | 36830191 |
| 5561 | 11 | 0.9998 | Antimicrobial Resistance of Escherichia coli and Pseudomonas aeruginosa from Companion Birds. Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated. | 2020 | 33171927 |
| 1591 | 12 | 0.9998 | Influence of agricultural practice on mobile bla genes: IncI1-bearing CTX-M, SHV, CMY and TEM in Escherichia coli from intensive farming soils. Many calls have been made to address antibiotic resistance in an environmental perspective. With this study, we showed the widespread presence of high-level antibiotic resistant isolates on a collection of non-susceptible Gram-negative bacteria (n = 232) recovered from soils. Bacteria were selected using amoxicillin, cefotaxime and imipenem, from sites representing different agricultural practices (extensive, intensive and organic). Striking levels of non-susceptibility were noticed in intensive soils for norfloxacin (74%), streptomycin (50.7%) and tetracycline (46.6%); indeed, the exposure to intensive agricultural practices constituted a risk factor for non-susceptibility to many antibiotics, multidrug resistance and production of extended-spectrum β-lactamases (ESBL). Analyses of non-susceptibility highlighted that environmental and clinical bacteria from the same species might not share the same intrinsic resistance patterns, raising concerns for therapy choices in environment-borne infections. The multiple sequence-type IncI1-driven spread of penicillinases (blaTEM-1, blaTEM-135), ESBL (blaSHV-12 and blaCTX-M-1) and plasmid-mediated AmpC β-lactamases (blaCMY-2), produced by isolates that share their molecular features with isolates from humans and animals, suggests contamination of agricultural soils. This is also the first appearance of IncI1/ST28-harbouring blaCTX-M-1, which should be monitored to prevent their establishment as successfully dispersed plasmids. This research may help disclose paths of contamination by mobile antibiotic resistance determinants and the risks for their dissemination. | 2016 | 26279315 |
| 2043 | 13 | 0.9998 | Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States. The presence of antibiotic resistance in commensal bacteria may be an influential factor in the persistence of resistance in pathogens. This is especially critical for Escherichia coli that consumers may be exposed to through the consumption of uncooked meat. In this study, E. coli isolates previously recovered from poultry in the US between 2001 and 2012 were whole-genome sequenced to identify their antibiotic resistance genes and mobile genetic elements. The genomes of 98 E. coli isolates from poultry carcass rinsates and 2 isolates from poultry diagnostic samples with multidrug resistance or potential extended-spectrum β-lactam (ESBL)-producing phenotypes as well as the genetic variabilities among the E. coli were assessed. All E. coli isolates were positive for at least one antibiotic resistance gene and plasmid replicon, with 37 resistance genes and 27 plasmid replicons detected among the isolates. While no ESBL genes were detected, bla(CMY-2) was the most common β-lactamase gene, and bla(TEM) and bla(CARB-2) were also identified. Most isolates (95%) harbored at least one intact phage, and as many as seven intact phages were identified in one isolate. These results show the occurrence of antibiotic resistance genes and mobile genetic elements in these 100 poultry-associated E. coli isolates, which may be responsible for the resistance phenotypes exhibited by the isolates. This retrospective study also enables comparisons of resistance genes and mobile genetic elements from more recent E. coli isolates associated with poultry to aid in understanding the trends of both antibiotic resistance phenotypes and genotypes in the poultry setting over time. | 2025 | 40872236 |
| 2819 | 14 | 0.9998 | Prevalence of Antibiotic-Resistant Lactobacilli in Sepsis Patients with Long-Term Antibiotic Therapy. Lactobacilli are the most common probiotic bacteria found in the human gut microbiota, and the presence of acquired antibiotic resistance determinants carried on mobile genetic elements must be screened due to safety concerns. Unnecessary and inappropriate antibiotic therapy, as well as ingested antibiotic resistance bacteria (originating from food or food products), influence the abundance of antibiotic resistance genes in human guts, with serious clinical consequences. The current study looked into the antibiotic resistance of lactobacilli isolated from the guts of sepsis patients on long-term antibiotic therapy. The broth microdilution method was used to investigate the minimum inhibitory concentrations (MICs) of antibiotics such as imipenem, meropenem, erythromycin, tetracycline, cefepime, ciprofloxacin, and gentamycin, and the molecular genetic basis of resistance was studied based on the MIC values. The isolates were phenotypically resistant to tetracycline (20%), fluoroquinolone (20%), and macrolide (5%). Following that, resistance genes for tetracycline [tet(L), tet(O), tet(K), and tet(M)], macrolide [erm(B) and erm(C)], and beta-lactams [bla(CMY)] were investigated. Tetracycline or macrolide resistance genes were not found in the isolates, and only one isolate possessed the bla(CMY) resistance gene. The findings suggested that tetracycline and macrolide resistance may be linked to other resistance genes that were not investigated in this study. Because tetracyclines, fluoroquinolones, and macrolides are commonly used in clinics and animals, there has been concern about the spread of resistance in humans. If acquired antibiotic resistance is passed down through mobile genetic elements, it may serve as a reservoir of resistance for gut pathogens and other microbiome environments. | 2022 | 36088413 |
| 4968 | 15 | 0.9998 | Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line. The presence of mobile genetic elements in Salmonella isolated from a chicken farm constitutes a potential risk for the appearance of emerging bacteria present in the food industry. These elements contribute to increased pathogenicity and antimicrobial resistance through genes that are related to the formation of biofilms and resistance genes contained in plasmids, integrons, and transposons. One hundred and thirty-three Salmonella isolates from different stages of the production line, such as feed manufacturing, hatchery, broiler farm, poultry farm, and slaughterhouse, were identified, serotyped and sequenced. The most predominant serotype was Salmonella Infantis. Phylogenetic analyses demonstrated that the diversity and spread of strains in the pipeline are serotype-independent, and that isolates belonging to the same serotype are very closely related genetically. On the other hand, Salmonella Infantis isolates carried the pESI IncFIB plasmid harboring a wide variety of resistance genes, all linked to mobile genetic elements, and among carriers of these plasmids, the antibiograms showed differences in resistance profiles and this linked to a variety in plasmid structure, similarly observed in the diversity of Salmonella Heidelberg isolates carrying the IncI1-Iα plasmid. Mobile genetic elements encoding resistance and virulence genes also contributed to the differences in gene content. Antibiotic resistance genotypes were matched closely by the resistance phenotypes, with high frequency of tetracycline, aminoglycosides, and cephalosporins resistance. In conclusion, the contamination in the poultry industry is described throughout the entire production line, with mobile genetic elements leading to multi-drug resistant bacteria, thus promoting survival when challenged with various antimicrobial compounds. | 2023 | 37007466 |
| 5555 | 16 | 0.9998 | New sequence types and multidrug resistance among pathogenic Escherichia coli isolates from coastal marine sediments. The spread of antibiotic-resistant microorganisms is widely recognized, but data about their sources, presence, and significance in marine environments are still limited. We examined 109 Escherichia coli strains from coastal marine sediments carrying virulence genes for antibiotic susceptibility, specific resistance genes, prevalence of class 1 and 2 integrons, and sequence type. Antibiotic resistance was found in 35% of strains, and multiple resistances were found in 14%; the resistances detected most frequently were against tetracycline (28%), ampicillin (16.5%), trimethoprim-sulfamethoxazole (13%), and streptomycin (7%). The highest prevalence of resistant strains was in phylogenetic group A, whereas phylogroup B2 exhibited a significantly lower frequency than all the other groups. Sixty percent of multiresistant strains harbored class 1 or 2 integrase genes, and about 50% carried resistance genes (particularly dfrA and aadA) linked to a class 1 integron. Multilocus sequence typing of 14 selected strains identified eight different types characteristic of extraintestinal pathogens and three new allelic combinations. Our data suggest that coastal marine sediment may be a suitable environment for the survival of pathogenic and antimicrobial-resistant E. coli strains capable of contributing to resistance spread via integrons among benthic bacteria, and they highlight a role for these strains in the emergence of new virulent genotypes. | 2012 | 22447595 |
| 2038 | 17 | 0.9998 | Salmonella enterica Serotype 4,[5],12:i:- in Swine in the United States Midwest: An Emerging Multidrug-Resistant Clade. BACKGROUND: Salmonella 4,[5],12:i:-, a worldwide emerging pathogen that causes many food-borne outbreaks mostly attributed to pig and pig products, is expanding in the United States. METHODS: Whole-genome sequencing was applied to conduct multiple comparisons of 659 S. 4,[5],12:i:- and 325 Salmonella Typhimurium from different sources and locations (ie, the United States and Europe) to assess their genetic heterogeneity, with a focus on strains recovered from swine in the US Midwest. In addition, the presence of resistance genes and other virulence factors was detected and the antimicrobial resistance phenotypes of 50 and 22 isolates of livestock and human origin, respectively, was determined. RESULTS: The S. 4,5,12:i:- strains formed two main clades regardless of their source and geographic origin. Most (84%) of the US isolates recovered in 2014-2016, including those (48 of 51) recovered from swine in the US Midwest, were part of an emerging clade. In this clade, multiple genotypic resistance determinants were predominant, including resistance against ampicillin, streptomycin, sulfonamides, and tetracyclines. Phenotypic resistance to enrofloxacin (11 of 50) and ceftiofur (9 of 50) was found in conjunction with the presence of plasmid-mediated resistance genes (qnrB19/qnrB2/qnrS1 and blaCMY-2/blaSHV-12, respectively). Higher similarity was also found between S. 4,[5],12:i:- from the emerging clade and S. Typhimurium from Europe than with S. Typhimurium from the United States. CONCLUSIONS: Salmonella 4,[5],12:i:- currently circulating in swine in the US Midwest are likely to be part of an emerging multidrug-resistant clade first reported in Europe, and can carry plasmid-mediated resistance genes that may be transmitted horizontally to other bacteria, and thus may represent a public health concern. | 2018 | 29069323 |
| 2041 | 18 | 0.9998 | Carrier flies of multidrug-resistant Escherichia coli as potential dissemination agent in dairy farm environment. The life cycle of synanthropic flies and their behavior, allows them to serve as mechanical vectors of several pathogens. Given that flies can carry multidrug-resistant (MDR) bacteria, this study aimed to investigate the spread of genes of antimicrobial resistance in Escherichia coli isolated from flies collected in two dairy farms in Brazil. Besides antimicrobial resistance determinants, the presence of virulence genes related to bovine colibacillosis was also assessed. Of 94 flies collected, Musca domestica was the most frequently found in the two farms. We isolated 198 E. coli strains (farm A=135 and farm B=63), and >30% were MDR E. coli. We found an association between bla(TEM) and phenotypical resistance to ampicillin, or chloramphenicol, or tetracycline; and bla(CTX-M) and resistance to cefoperazone. A high frequency (86%) of phylogenetic group B1 among MDR strains and the lack of association between multidrug resistance and virulence factors suggest that antimicrobial resistance possibly is associated with the commensal bacteria. Clonal relatedness of MDR E. coli performed by Pulsed-Field Gel Electrophoresis showed wide genomic diversity. Different flies can carry clones, but with distinct antimicrobial resistance pattern. Sanger sequencing showed that the same class 1 integron arrangement is displayed by apparently unrelated strains, carried by different flies. Our conjugation results indicate class 1 integron transfer associated with tetracycline resistance. We report for the first time, in Brazil, that MDR E. coli is carried by flies in the milking environment. Therefore, flies can act as carriers for MDR strains and contribute to dissemination routes of antimicrobial resistance. | 2018 | 29758886 |
| 5729 | 19 | 0.9998 | Virulome and genome analyses identify associations between antimicrobial resistance genes and virulence factors in highly drug-resistant Escherichia coli isolated from veal calves. Food animals are known reservoirs of multidrug-resistant (MDR) Escherichia coli, but information regarding the factors influencing colonization by these organisms is lacking. Here we report the genomic analysis of 66 MDR E. coli isolates from non-redundant veal calf fecal samples. Genes conferring resistance to aminoglycosides, β-lactams, sulfonamides, and tetracyclines were the most frequent antimicrobial resistance genes (ARGs) detected and included those that confer resistance to clinically significant antibiotics (blaCMY-2, blaCTX-M, mph(A), erm(B), aac(6')Ib-cr, and qnrS1). Co-occurrence analyses indicated that multiple ARGs significantly co-occurred with each other, and with metal and biocide resistance genes (MRGs and BRGs). Genomic analysis also indicated that the MDR E. coli isolated from veal calves were highly diverse. The most frequently detected genotype was phylogroup A-ST Cplx 10. A high percentage of isolates (50%) were identified as sequence types that are the causative agents of extra-intestinal infections (ExPECs), such as ST69, ST410, ST117, ST88, ST617, ST648, ST10, ST58, and ST167, and an appreciable number of these isolates encoded virulence factors involved in the colonization and infection of the human urinary tract. There was a significant difference in the presence of multiple accessory virulence factors (VFs) between MDR and susceptible strains. VFs associated with enterohemorrhagic infections, such as stx, tir, and eae, were more likely to be harbored by antimicrobial-susceptible strains, while factors associated with extraintestinal infections such as the sit system, aerobactin, and pap fimbriae genes were more likely to be encoded in resistant strains. A comparative analysis of SNPs between strains indicated that several closely related strains were recovered from animals on different farms indicating the potential for resistant strains to circulate among farms. These results indicate that veal calves are a reservoir for a diverse group of MDR E. coli that harbor various resistance genes and virulence factors associated with human infections. Evidence of co-occurrence of ARGs with MRGs, BRGs, and iron-scavenging genes (sit and aerobactin) may lead to management strategies for reducing colonization of resistant bacteria in the calf gut. | 2022 | 35298535 |