Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
569201.0000Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria. We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum beta-lactamases. Validation of the array with control strains demonstrated a 99% correlation between polymerase chain reaction and array results. There was also good correlation between phenotypic and genotypic results for a large panel of Escherichia coli and Salmonella isolates. Some differences were also seen in the number and type of resistance genes harboured by E. coli and Salmonella strains. The array provides an effective, fast and simple method for detection of resistance genes in clinical isolates suitable for use in diagnostic laboratories, which in future will help to understand the epidemiology of isolates and to detect gene linkage in bacterial populations.200818243668
597410.9999Use of a bacterial antimicrobial resistance gene microarray for the identification of resistant Staphylococcus aureus. As diagnostic and surveillance activities are vital to determine measures needed to control antimicrobial resistance (AMR), new and rapid laboratory methods are necessary to facilitate this important effort. DNA microarray technology allows the detection of a large number of genes in a single reaction. This technology is simple, specific and high-throughput. We have developed a bacterial antimicrobial resistance gene DNA microarray that will allow rapid antimicrobial resistance gene screening for all Gram-positive and Gram-negative bacteria. A prototype microarray was designed using a 70-mer based oligonucleotide set targeting AMR genes of Gram-negative and Gram-positive bacteria. In the present version, the microarray consists of 182 oligonucleotides corresponding to 166 different acquired AMR gene targets, covering most of the resistance genes found in both Gram-negative and -positive bacteria. A test study was performed on a collection of Staphylococcus aureus isolates from milk samples from dairy farms in Québec, Canada. The reproducibility of the hybridizations was determined, and the microarray results were compared with those obtained by phenotypic resistance tests (either MIC or Kirby-Bauer). The microarray genotyping demonstrated a correlation between penicillin, tetracycline and erythromycin resistance phenotypes with the corresponding acquired resistance genes. The hybridizations showed that the 38 antimicrobial resistant S. aureus isolates possessed at least one AMR gene.201021083822
569320.9999Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure.201323129055
597330.9999DNA microarray detection of antimicrobial resistance genes in diverse bacteria. High throughput genotyping is essential for studying the spread of multiple antimicrobial resistance. A test oligonucleotide microarray designed to detect 94 antimicrobial resistance genes was constructed and successfully used to identify antimicrobial resistance genes in control strains. The microarray was then used to assay 51 distantly related bacteria, including Gram-negative and Gram-positive isolates, resulting in the identification of 61 different antimicrobial resistance genes in these bacteria. These results were consistent with their known gene content and resistance phenotypes. Microarray results were confirmed by polymerase chain reaction and Southern blot analysis. These results demonstrate that this approach could be used to construct a microarray to detect all sequenced antimicrobial resistance genes in nearly all bacteria.200616427254
569740.9998In Silico Analysis of Extended-Spectrum β-Lactamases in Bacteria. The growing bacterial resistance to available β-lactam antibiotics is a very serious public health problem, especially due to the production of a wide range of β-lactamases. At present, clinically important bacteria are increasingly acquiring new elements of resistance to carbapenems and polymyxins, including extended-spectrum β-lactamases (ESBLs), carbapenemases and phosphoethanolamine transferases of the MCR type. These bacterial enzymes limit therapeutic options in human and veterinary medicine. It must be emphasized that there is a real risk of losing the ability to treat serious and life-threatening infections. The present study aimed to design specific oligonucleotides for rapid PCR detection of ESBL-encoding genes and in silico analysis of selected ESBL enzymes. A total of 58 primers were designed to detect 49 types of different ESBL genes. After comparing the amino acid sequences of ESBLs (CTX-M, SHV and TEM), phylogenetic trees were created based on the presence of conserved amino acids and homologous motifs. This study indicates that the proposed primers should be able to specifically detect more than 99.8% of all described ESBL enzymes. The results suggest that the in silico tested primers could be used for PCR to detect the presence of ESBL genes in various bacteria, as well as to monitor their spread.202134356733
569450.9998Multiplex characterization of human pathogens including species and antibiotic-resistance gene identification. The efficient medical treatment of infections requires detailed information about the pathogens involved and potential antibiotic-resistance mechanisms. The dramatically increasing incidence of multidrug-resistant bacteria especially highlights the importance of sophisticated diagnostic tests enabling a fast patient-customized therapy. However, the current molecular detection methods are limited to either the detection of species or only a few antibiotic-resistance genes.In this work, we present a human pathogen characterization assay using a rRNA gene microarray identifying 75 species comprising bacteria and fungi. A statistical classifier was developed to facilitate the automated species identification. Additionally, the clinically most important β-lactamases were identified simultaneously in a 100-plex reaction using padlock probes and the same microarray. The specificity and sensitivity of the combined assay was determined using clinical isolates. The detection limit was 10(5) c.f.u. ml(-1), recovering 89 % of the detectable β-lactamase-encoding genes specifically. The total assay time was less than 7 hand the modular character of the antibiotic-resistance detection allows the easy integration of further genetic targets. In summary, we present a fast, highly specific and sensitive multiplex pathogen characterization assay.201626489938
250760.9998Epidemiology of resistance to diaminopyrimidines. Resistance to trimethoprim emerged in Enterobacteriaceae and later in other Gram-negative and Gram-positive bacteria within two years of the clinical introduction of the drug. Resistance is borne in many different replicons often present in multiply-resistant epidemic bacteria. The incidence of trimethoprim resistance is highly variable, depending upon methodology, type of patients, local epidemiology: this can be illustrated by the high variation of trimethoprim resistance among Salmonella, Shigella or MRSA in various countries and by the incidence of resistance in penicillin-resistant Streptococcus pneumoniae.19938195837
550770.9998Putative Protein Biomarkers of Escherichia coli Antibiotic Multiresistance Identified by MALDI Mass Spectrometry. The commensal bacteria Escherichia coli causes several intestinal and extra-intestinal diseases, since it has virulence factors that interfere in important cellular processes. These bacteria also have a great capacity to spread the resistance genes, sometimes to phylogenetically distant bacteria, which poses an additional threat to public health worldwide. Here, we aimed to use the analytical potential of MALDI-TOF mass spectrometry (MS) to characterize E. coli isolates and identify proteins associated closely with antibiotic resistance. Thirty strains of extended-spectrum beta-lactamase producing E. coli were sampled from various animals. The phenotypes of antibiotic resistance were determined according to Clinical and Laboratory Standards Institute (CLSI) methods, and they showed that all bacterial isolates were multi-resistant to trimethoprim-sulfamethoxazole, tetracycline, and ampicillin. To identify peptides characteristic of resistance to particular antibiotics, each strain was grown in the presence or absence of the different antibiotics, and then proteins were extracted from the cells. The protein fingerprints of the samples were determined by MALDI-TOF MS in linear mode over a mass range of 2 to 20 kDa. The spectra obtained were compared by using the ClinProTools bioinformatics software, using three machine learning classification algorithms. A putative species biomarker was also detected at a peak m/z of 4528.00.202032204308
597280.9998Method of Selection of Bacteria Antibiotic Resistance Genes Based on Clustering of Similar Nucleotide Sequences. A new method for selection of bacterium antibiotic resistance genes is proposed and tested for solving the problems related to selection of primers for PCR assay. The method implies clustering of similar nucleotide sequences and selection of group primers for all genes of each cluster. Clustering of resistance genes for six groups of antibiotics (aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, macrolides and lincosamides, and fusidic acid) was performed. The method was tested for 81 strains of bacteria of different genera isolated from patients (K. pneumoniae, Staphylococcus spp., S. agalactiae, E. faecalis, E. coli, and G. vaginalis). The results obtained by us are comparable to those in the selection of individual genes; this allows reducing the number of primers necessary for maximum coverage of the known antibiotic resistance genes during PCR analysis.201729063318
551390.9998The genetic background of antibiotic resistance among clinical uropathogenic Escherichia coli strains. The spreading mechanisms of antibiotic resistance are related to many bacterial and environment factors. The overuse of antibiotics is leading to an unceasing emergence of new multidrug resistant strains. This problem also concerns uropathogenic Escherichia coli strains, which is the most common pathogen causing urinary tract infections. The aim of this study was the genetic analysis of antibiotic resistance in comparison to the phenotypic background of E. coli strains. The characterized collection of E. coli strains isolated 10 years ago from the urine samples of patients with urinary tract infections was used for antimicrobial susceptibility testing (the disc diffusion method) and analysis of antibiotic resistance genes (PCR reaction, sequencing). Additionally, the presence of ESBL strains was analyzed. Fourteen genes were associated with resistance to beta-lactams, aminoglycosides, sulfonamides and quinolones. The genetic analysis revealed that bla(TEM-1) and sul2 were present in almost all of the studied strains. Other drug-resistance genes were very rare or non-existent. Otherwise, the phenotypic resistance to fluoroquinolones was well correlated with the genotypic background of the studied bacteria. The presence of particular genes and specific mutations indicate a high bacterial potential to multidrug resistance. On the other hand, it needs to be emphasized that the standard disk diffusion test for the routine antimicrobial susceptibility analysis is still the best way to estimate the current situation of bacterial drug-resistance.201830008141
4957100.9998Plasmid-mediated quinolone resistance gene detected in Escherichia coli from cattle. Fluoroquinolones resistance in bacteria can be due to chromosomal and plasmid-mediated mechanisms. Of growing concern is the acquisition of genes encoding quinolone resistance in combination with other resistance mechanisms such as extended-spectrum beta-lactamases. In this study we describe the identification of an isolate of Escherichia coli from cattle which carried qnrS1 in combination with a blaCTX-M gene, although they were not co-localised on the same plasmid. In addition, using a DNA array it was possible to identify several other antimicrobial resistance genes in this isolate. This is the first report of a qnr gene in E. coli from cattle in the UK and highlights the need for surveillance of these emerging resistance mechanisms.201120884136
5971110.9998Detection of antibiotic resistance genes in different Salmonella serovars by oligonucleotide microarray analysis. In this study the feasibility of 50- and 60-mer oligonucleotides in microarray analysis for the detection and identification of antibiotic resistance genes in various Salmonella strains was assessed. The specificity of the designed oligonucleotides was evaluated, furthermore the optimal spotting concentration was determined. The oligonucleotide microarray was used to screen two sets of Salmonella strains for the presence of several antibiotic resistance genes. Set 1 consisted of strains with variant Salmonella Genomic Island 1 (SGI1) multidrug resistance (MDR) regions of which the antibiotic resistance profiles and genotypes were known. The second set contained strains of which initially only phenotypic data were available. The microarray results of the first set of Salmonella strains perfectly matched with the phenotypic and genotypic information. The microarray data of the second set were almost completely in concordance with the available phenotypic data. It was concluded that the microarray technique in combination with random primed genomic labeling and 50- or 60-mer oligonucleotides is a powerful tool for the detection of antibiotic resistance genes in bacteria.200515823391
5699120.9998Presence of β-Lactamase Encoding Genes in Burkholderia cepacia Complex Isolated from Soil. Burkholderia cepacia complex has emerged as an important opportunistic bacteria group for immunocompromised patients, and it has a high level of intrinsic resistance for different antibiotic classes. Hydrolysis of β-lactam antibiotics by β-lactamases is the most common resistance mechanism in Gram-negative bacteria, and the presence of such enzymes complicates the selection of appropriate therapy. This study aimed at investigating the antimicrobial resistance profile and the presence of β-lactamase encoding genes in B. cepacia complex isolated from Brazilian soils. High-level ceftazidime resistance and several β-lactamase encoding genes were found, including the first report of bla(KPC) genes in bacteria isolated from soil.201828915359
5088130.9998A Multiplex SYBR Green Real-Time PCR Assay for the Detection of Three Colistin Resistance Genes from Cultured Bacteria, Feces, and Environment Samples. The aim of the study was to develop a multiplex assay for rapid detection of mcr-1, mcr-2, and mcr-3, a group of genes of conferring resistance to colistin mediated by plasmid in Enterobacteriaceae. A SYBR Green based real-time PCR assay has been designed to detect the mcr genes, and applied to cultured bacteria, feces and soil samples. All three mcr genes could be detected with a lower limit of 10(2) cultured bacteria. This test was highly specific and sensitive, and generated no false-positive results. The assay was also conclusive when applied to feces and soil samples containing mcr-1-positive Escherichia coli, which could facilitate the screening of mcr genes not only in the bacteria, but also directly from the environment. This simple, rapid, sensitive, and specific multiplex assay will be useful for rapid screening of the colistin resistance in both clinical medicine and animal husbandry.201729163387
5978140.9998Evidences of gentamicin resistance amplification in Klebsiella pneumoniae isolated from faeces of hospitalized newborns. The intestinal microbiota, a barrier to the establishment of pathogenic bacteria, is also an important reservoir of opportunistic pathogens. It plays a key role in the process of resistance-genes dissemination, commonly carried by specialized genetic elements, like plasmids, phages, and conjugative transposons. We obtained from strains of enterobacteria, isolated from faeces of newborns in a university hospital nursery, indication of phenotypical gentamicin resistance amplification (frequencies of 10(-3) to 10(-5), compatible with transposition frequencies). Southern blotting assays showed strong hybridization signals for both plasmidial and chromosomal regions in DNA extracted from variants selected at high gentamicin concentrations, using as a probe a labeled cloned insert containing aminoglycoside modifying enzyme (AME) gene sequence originated from a plasmid of a Klebsiella pneumoniae strain previously isolated in the same hospital. Further, we found indications of inactivation to other resistance genes in variants selected under similar conditions, as well as, indications of co-amplification of other AME markers (amikacin). Since the intestinal environment is a scenario of selective processes due to the therapeutic and prophylactic use of antimicrobial agents, the processes of amplification of low level antimicrobial resistance (not usually detected or sought by common methods used for antibiotic resistance surveillance) might compromise the effectiveness of antibiotic chemotherapy.199910585658
5977150.9998Methods to determine antibiotic resistance gene silencing. The occurrence of antibiotic-resistant bacteria is an increasingly serious problem world-wide. In addition, to phenotypically resistant bacteria, a threat may also be posed by isolates with silent, but intact, antibiotic resistance genes. Such isolates, which have recently been described, possess wild-type genes that are not expressed, but may convert to resistance by activating expression of the silent genes. They may therefore compromise the efficacy of antimicrobial treatment, particularly if their presence has not been diagnosed. This chapter describes the detection of silent resistance genes by PCR and DNA sequencing. A method to detect five potentially silent acquired resistance genes; aadA, bla (OXA-2), strAB, sul1, and tet(A) is described. First, the susceptibility of the isolates to the relevant antibiotics is determined by an appropriate susceptibility testing method, such as E-test. Then the presence of the genes is investigated by PCR followed by agarose gel electrophoresis of the amplification products. If a resistance gene is detected in a susceptible isolate, the entire open-reading frame and promoter sequence of the gene is amplified by PCR and their DNA sequences obtained. The DNA sequences are then compared to those of known resistant isolates, to detect mutations that may account for susceptibility. If no mutations are detected the expression of the gene is investigated by RT-PCR following RNA extraction. The methods described here can be applied to all acquired resistance genes for which sequence and normal expression data are available.201020401584
5090160.9998A TaqMan real-time PCR assay for detection of qacEΔ1 gene in Gram-negative bacteria. The transfer of biocide and antibiotic resistance genes by mobile genetic elements is the most common mechanism for rapidly acquiring and spreading resistance among bacteria. The qacEΔ1 gene confers the resistance to quaternary ammonium compounds (QACs). It has also been considered a genetic marker for the presence of class 1 integrons associated with multidrug-resistant (MDR) phenotypes in Gram-negative bacteria. In this study, a TaqMan real-time PCR assay was developed to detect the qacEΔ1 gene in Gram-negative bacteria. The assay has a detection limit of 80 copies of the qacEΔ1 gene per reaction. No false-positive or false-negative results have been observed. Simultaneous amplification and detection of the 16S rRNA gene is performed as an endogenous internal amplification control (IAC). The TaqMan real-time PCR assay developed is a rapid, sensitive, and specific method that could be used to monitor resistance to QACs, the spread of class 1 integrons, and the prediction of associated MDR phenotypes in Gram-negative bacteria.202439395725
1917170.9998Prediction of major antibiotic resistance in Escherichia coli and Klebsiella pneumoniae in Singapore, USA and China using a limited set of gene targets. Antibiotic resistance in Gram-negative bacteria, especially Enterobacteriaceae, can be conferred by a large number of different acquired resistance genes, although it appears that relatively few dominate. A previous survey of Escherichia coli and Klebsiella pneumoniae isolates from Sydney, Australia, revealed that a limited set of genes could reliably predict resistance to third-generation cephalosporins (3GCs) and aminoglycosides. Here we tested E. coli and K. pneumoniae isolates with a cefotaxime, ceftriaxone and/or ceftazidime minimum inhibitory concentration of ≥ 2 μg/mL from China and Singapore, with significantly higher resistance rates than Australia, as well as the USA. Few targets were needed to predict non-susceptibility to 3GCs (95/95; 100%) and gentamicin (47/51; 92%). The gene types detected here are consistent with previous surveys in similar countries with similar resistance rates, where the majority of 3GC resistance can be explained by blaCTX-M genes. This study identified a limited set of genes capable of predicting resistance to 3GC and aminoglycoside antibiotics and implies a restriction in the global resistance gene pool that can be exploited for diagnostic purposes.201424721234
5501180.9998The oral microbiota of domestic cats harbors a wide variety of Staphylococcus species with zoonotic potential. This study aimed to characterize the species, antimicrobial resistance and dispersion of CRISPR systems in staphylococci isolated from the oropharynx of domestic cats in Brazil. Staphylococcus strains (n=75) were identified by MALDI-TOF and sequencing of rpoB and tuf genes. Antimicrobial susceptibility was assessed by disk diffusion method and PCR to investigate the presence of antimicrobial-resistance genes usually present in mobile genetic elements (plasmids), in addition to plasmid extraction. CRISPR - genetic arrangements that give the bacteria the ability to resist the entry of exogenous DNA - were investigated by the presence of the essential protein Cas1 gene. A great diversity of Staphylococcus species (n=13) was identified. The presence of understudied species, like S. nepalensis and S. pettenkoferi reveals that more than one identification method may be necessary to achieve conclusive results. At least 56% of the strains contain plamids, being 99% resistant to at least one of the eight tested antimicrobials and 12% multidrug resistant. CRISPR were rare among the studied strains, consistent with their putative role as gene reservoirs. Moreover, herein we describe for the first time their existence in Staphylococcus lentus, to which the system must confer additional adaptive advantage. Prevalence of resistance among staphylococci against antimicrobials used in veterinary and human clinical practice and the zoonotic risk highlight the need of better antimicrobial management practices, as staphylococci may transfer resistance genes among themselves, including to virulent species, like S. aureus.201728284599
5640190.9998Antibiotic consumption and faecal bacterial susceptibility in surgical in-patients. A one-day prevalence study of resistance of faecal bacteria to 19 antibacterial agents was performed in 144 surgical inpatients. Most of the drug-resistant isolates were of aerobic and anaerobic species commonly seen in infections, which indicates that surveys of faecal flora can yield rapid information on local patterns of drug resistance in pathogens relevant to abdominal infection. In faecal bacteria the drug resistance pattern only weakly reflected the local antibiotic consumption. The amount of administered aminoglycosides was relatively small, and no gentamicin-resistant aerobes were found. Absence of resistance was found also for some of the newer agents not yet in clinical use (aztreonam, latamoxef, norfloxacin), but not for others (ceftazidime, ceftriaxone). Despite heavy use of fosfomycin and metronidazole, resistance had not emerged among aerobic and anaerobic bacteria, respectively. Imipenem was unique in inhibiting growth of all aerobic and anaerobic faecal bacteria, in the studied patients with the single exception of a strain of Enterobacter.19873673450