# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5691 | 0 | 1.0000 | Rapid and Accurate Antibiotic Susceptibility Determination of tet(X)-Positive E. coli Using RNA Biomarkers. The emergence and prevalence of novel plasmid-mediated tigecycline resistance genes, namely, tet(X) and their variants, pose a serious threat to public health worldwide. Rapid and accurate antibiotic susceptibility testing (AST) that can simultaneously detect the genotype and phenotype of tet(X)-positive bacteria may contribute to the deployment of an effective antibiotic arsenal, mortality reduction, and a decrease in the use of broad-spectrum antimicrobial agents. However, current bacterial growth-based AST methods, such as broth microdilution, are time consuming and delay the prompt treatment of infectious diseases. Here, we developed a rapid RNA-based AST (RBAST) assay to effectively distinguish tet(X)-positive and -negative strains. RBAST works by detecting specific mRNA expression signatures in bacteria after short-term tigecycline exposure. As a proof of concept, a panel of clinical isolates was characterized successfully by using the RBAST method, with a 3-h assay time and 87.9% accuracy (95% confidence interval [CI], 71.8% to 96.6%). Altogether, our findings suggest that RNA signatures upon antibiotic exposure are promising biomarkers for the development of rapid AST, which could inform early antibiotic choices. IMPORTANCE Infections caused by multidrug-resistant (MDR) Gram-negative pathogens are an increasing threat to global health. Tigecycline is one of the last-resort antibiotics for the treatment of these complicated infections; however, the emergence of plasmid-encoded tigecycline resistance genes, namely, tet(X), severely diminishes its clinical efficacy. Currently, there is a lack of rapid and accurate antibiotic susceptibility testing (AST) for the detection of tet(X)-positive bacteria. In this study, we developed a rapid and robust RNA-based antibiotic susceptibility determination (RBAST) assay to effectively distinguish tet(X)-negative and -positive strains using specific RNA biomarkers in bacteria after tigecycline exposure. Using this RBAST method, we successfully characterized a set of clinical strains in 3 h. Our data indicate that the RBAST assay is useful for identifying tet(X)-positive Escherichia coli. | 2021 | 34704829 |
| 5690 | 1 | 0.9999 | Rapid Detection of MCR-Mediated Colistin Resistance in Escherichia coli. Colistin is one of the last-resort antibiotics for infections caused by multidrug-resistant Gram-negative bacteria. However, the wide spread of novel plasmid-carrying colistin resistance genes mcr-1 and its variants substantially compromise colistin's therapeutic effectiveness and pose a severe danger to public health. To detect colistin-resistant microorganisms induced by mcr genes, rapid and reliable antibiotic susceptibility testing (AST) is imminently needed. In this study, we identified an RNA-based AST (RBAST) to discriminate between colistin-susceptible and mcr-1-mediated colistin-resistant bacteria. After short-time colistin treatment, RBAST can detect differentially expressed RNA biomarkers in bacteria. Those candidate mRNA biomarkers were successfully verified within colistin exposure temporal shifts, concentration shifts, and other mcr-1 variants. Furthermore, a group of clinical strains were effectively distinguished by using the RBAST approach during the 3-h test duration with over 93% accuracy. Taken together, our findings imply that certain mRNA transcripts produced in response to colistin treatment might be useful indicators for the development of fast AST for mcr-positive bacteria. IMPORTANCE The emergence and prevalence of mcr-1 and its variants in humans, animals, and the environment pose a global public health threat. There is a pressing urgency to develop rapid and accurate methods to identify MCR-positive colistin-resistant bacteria in the clinical samples, providing a basis for subsequent effective antibiotic treatment. Using the specific mRNA signatures, we develop an RNA-based antibiotic susceptibility testing (RBAST) for effectively distinguishing colistin-susceptible and mcr-1-mediated colistin-resistant strains. Meanwhile, the detection efficiency of these RNA biomarkers was evidenced in other mcr variants-carrying strains. By comparing with the traditional AST method, the RBAST method was verified to successfully characterize a set of clinical isolates during 3 h assay time with over 93% accuracy. Our study provides a feasible method for the rapid detection of colistin-resistant strains in clinical practice. | 2022 | 35616398 |
| 5693 | 2 | 0.9998 | Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure. | 2013 | 23129055 |
| 5694 | 3 | 0.9998 | Multiplex characterization of human pathogens including species and antibiotic-resistance gene identification. The efficient medical treatment of infections requires detailed information about the pathogens involved and potential antibiotic-resistance mechanisms. The dramatically increasing incidence of multidrug-resistant bacteria especially highlights the importance of sophisticated diagnostic tests enabling a fast patient-customized therapy. However, the current molecular detection methods are limited to either the detection of species or only a few antibiotic-resistance genes.In this work, we present a human pathogen characterization assay using a rRNA gene microarray identifying 75 species comprising bacteria and fungi. A statistical classifier was developed to facilitate the automated species identification. Additionally, the clinically most important β-lactamases were identified simultaneously in a 100-plex reaction using padlock probes and the same microarray. The specificity and sensitivity of the combined assay was determined using clinical isolates. The detection limit was 10(5) c.f.u. ml(-1), recovering 89 % of the detectable β-lactamase-encoding genes specifically. The total assay time was less than 7 hand the modular character of the antibiotic-resistance detection allows the easy integration of further genetic targets. In summary, we present a fast, highly specific and sensitive multiplex pathogen characterization assay. | 2016 | 26489938 |
| 5023 | 4 | 0.9998 | Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Antimicrobial resistance is well-known to be a global health and development threat. Due to the decrease of effective antimicrobials, re-evaluation in clinical practice of old antibiotics, as fosfomycin (FOS), have been necessary. FOS is a phosphonic acid derivate that regained interest in clinical practice for the treatment of complicated infection by multi-drug resistant (MDR) bacteria. Globally, FOS resistant Gram-negative pathogens are raising, affecting the public health, and compromising the use of the antibiotic. In particular, the increased prevalence of FOS resistance (FOS(R)) profiles among Enterobacterales family is concerning. Decrease in FOS effectiveness can be caused by i) alteration of FOS influx inside bacterial cell or ii) acquiring antimicrobial resistance genes. In this review, we investigate the main components implicated in FOS flow and report specific mutations that affect FOS influx inside bacterial cell and, thus, its effectiveness. FosA enzymes were identified in 1980 from Serratia marcescens but only in recent years the scientific community has started studying their spread. We summarize the global epidemiology of FosA/C2/L1-2 enzymes among Enterobacterales family. To date, 11 different variants of FosA have been reported globally. Among acquired mechanisms, FosA3 is the most spread variant in Enterobacterales, followed by FosA7 and FosA5. Based on recently published studies, we clarify and represent the molecular and genetic composition of fosA/C2 genes enviroment, analyzing the mechanisms by which such genes are slowly transmitting in emerging and high-risk clones, such as E. coli ST69 and ST131, and K. pneumoniae ST11. FOS is indicated as first line option against uncomplicated urinary tract infections and shows remarkable qualities in combination with other antibiotics. A rapid and accurate identification of FOS(R) type in Enterobacterales is difficult to achieve due to the lack of commercial phenotypic susceptibility tests and of rapid systems for MIC detection. | 2023 | 37469601 |
| 4758 | 5 | 0.9998 | Development of New Tools to Detect Colistin-Resistance among Enterobacteriaceae Strains. The recent discovery of the plasmid-mediated mcr-1 gene conferring resistance to colistin is of clinical concern. The worldwide screening of this resistance mechanism among samples of different origins has highlighted the urgent need to improve the detection of colistin-resistant isolates in clinical microbiology laboratories. Currently, phenotypic methods used to detect colistin resistance are not necessarily suitable as the main characteristic of the mcr genes is the low level of resistance that they confer, close to the clinical breakpoint recommended jointly by the CLSI and EUCAST expert systems (S ≤ 2 mg/L and R > 2 mg/L). In this context, susceptibility testing recommendations for polymyxins have evolved and are becoming difficult to implement in routine laboratory work. The large number of mechanisms and genes involved in colistin resistance limits the access to rapid detection by molecular biology. It is therefore necessary to implement well-defined protocols using specific tools to detect all colistin-resistant bacteria. This review aims to summarize the current clinical microbiology diagnosis techniques and their ability to detect all colistin resistance mechanisms and describe new tools specifically developed to assess plasmid-mediated colistin resistance. Phenotyping, susceptibility testing, and genotyping methods are presented, including an update on recent studies related to the development of specific techniques. | 2018 | 30631384 |
| 5689 | 6 | 0.9998 | A CRISPR/Cas12a-Based System for Sensitive Detection of Antimicrobial-Resistant Genes in Carbapenem-Resistant Enterobacterales. Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-β-lactamase (NDM) are particularly concerning due to their resistance to most β-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (bla(NDM)) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry bla(NDM) and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of bla(NDM)-(1) carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 10(0) CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR. | 2024 | 38667187 |
| 5837 | 7 | 0.9998 | The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials. | 2017 | 28198411 |
| 5024 | 8 | 0.9997 | Colistin Resistance in Enterobacterales Strains - A Current View. Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 - mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin. Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 – mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin. | 2019 | 31880886 |
| 5059 | 9 | 0.9997 | Site-selective modifications by lipid A phosphoethanolamine transferases linked to colistin resistance and bacterial fitness. Genes encoding lipid A modifying phosphoethanolamine transferases (PETs) are genetically diverse and can confer resistance to colistin and antimicrobial peptides. To better understand the functional diversity of PETs, we characterized three canonical mobile colistin resistance (mcr) alleles (mcr-1, -3, -9), one intrinsic pet (eptA), and two mcr-like genes (petB, petC) in Escherichia coli. Using an isogenic expression system, we show that mcr-1 and mcr-3 confer similar phenotypes of decreased colistin susceptibility with low fitness costs. mcr-9, which is phylogenetically closely related to mcr-3, and eptA only provide fitness advantages in the presence of sub-inhibitory concentrations of colistin and significantly reduce fitness in media without colistin. PET-B and PET-C were phenotypically distinct from bonafide PETs; neither impacted colistin susceptibility nor caused considerable fitness cost. Strikingly, we found for the first time that different PETs selectively modify different phosphates of lipid A; MCR-1, MCR-3, and PET-C selectively modify the 4'-phosphate, whereas MCR-9 and EptA modify the 1-phosphate. However, 4'-phosphate modifications facilitated by MCR-1 and -3 are associated with lowered colistin susceptibility and low toxicity. Our results suggest that PETs have a wide phenotypic diversity and that increased colistin resistance is associated with specific lipid A modification patterns that have been largely unexplored thus far. IMPORTANCE: Rising levels of resistance to increasing numbers of antimicrobials have led to the revival of last resort antibiotic colistin. Unfortunately, resistance to colistin is also spreading in the form of mcr genes, making it essential to (i) improve the identification of resistant bacteria to allow clinicians to prescribe effective drug regimens and (ii) develop new combination therapies effective at targeting resistant bacteria. Our results demonstrate that PETs, including MCR variants, are site-selective in Escherichia coli and that site-selectivity correlates with the level of susceptibility and fitness costs conferred by certain PETs. Site selectivity associated with a given PET may not only help predict colistin resistance phenotypes but may also provide an avenue to (i) improve drug regimens and (ii) develop new combination therapies to better combat colistin-resistant bacteria. | 2024 | 39611852 |
| 5674 | 10 | 0.9997 | Evaluation of Resistance by Clinically Pathogenic Bacteria to Antimicrobials and Common Disinfectants in Beijing, China. BACKGROUND: Antibiotic resistance of pathogenic bacteria is well recognized among clinicians; however, studies that directly evaluate the bacterial resistance to commonly used disinfectants in clinical settings are lacking. Currently available reports focus on the resistance of single strains to single disinfectants and do not adequately examine the degree of resistance and cross-resistance to antimicrobials in the large-scale clinical use of disinfectants. METHODS: We investigated the resistance capacity to 11 antibiotics and 7 chemical disinfectants by bacterial strains collected from body fluids of patients in 10 hospitals in Beijing, China over a 1-year period. Bacterial resistance to disinfectants was tested using minimum inhibitory concentration and minimum bactericidal concentration using agar dilution methods based on commercially available reference strains. RESULTS: A total of 1,104 pathogenic strains were identified, of which 23% were Gram-positive bacteria, 74% were Gram-negative bacteria, and 3% were fungi. Overall, resistance to antibiotics for the most common strains was significantly higher than their resistance to disinfectants. The least effective antibiotics and disinfectants were aztreonam and glutaral, respectively, exhibiting the highest overall resistance rates; while amikacin and alcohol had the lowest resistance rates. Consistently, Acinetobacter baumannii exhibited the most resistance, while Escherichia coli had the least resistance for both antibiotics and disinfectants. CONCLUSIONS: Based on the pathogen spectrum for bacterial infective pathogens evaluated in this study, as well as the status quo of their resistance to antimicrobial agents and common clinical disinfectants, it is essential for healthcare professionals to pay attention not only to the standardized use of antimicrobial agents but also to the rational application of disinfectants. | 2018 | 30568055 |
| 4946 | 11 | 0.9997 | Escherichia coli B-Strains Are Intrinsically Resistant to Colistin and Not Suitable for Characterization and Identification of mcr Genes. Antimicrobial resistance is an increasing threat to human and animal health. Due to the rise of multi-, extensive, and pandrug resistance, last resort antibiotics, such as colistin, are extremely important in human medicine. While the distribution of colistin resistance genes can be tracked through sequencing methods, phenotypic characterization of putative antimicrobial resistance (AMR) genes is still important to confirm the phenotype conferred by different genes. While heterologous expression of AMR genes (e.g., in Escherichia coli) is a common approach, so far, no standard methods for heterologous expression and characterization of mcr genes exist. E. coli B-strains, designed for optimum protein expression, are frequently utilized. Here, we report that four E. coli B-strains are intrinsically resistant to colistin (MIC 8-16 μg/mL). The three tested B-strains that encode T7 RNA polymerase show growth defects when transformed with empty or mcr-expressing pET17b plasmids and grown in the presence of IPTG; K-12 or B-strains without T7 RNA polymerase do not show these growth defects. E. coli SHuffle T7 express carrying empty pET17b also skips wells in colistin MIC assays in the presence of IPTG. These phenotypes could explain why B-strains were erroneously reported as colistin susceptible. Analysis of existing genome data identified one nonsynonymous change in each pmrA and pmrB in all four E. coli B-strains; the E121K change in PmrB has previously been linked to intrinsic colistin resistance. We conclude that E. coli B-strains are not appropriate heterologous expression hosts for identification and characterization of mcr genes. IMPORTANCE Given the rise in multidrug, extensive drug, and pandrug resistance in bacteria and the increasing use of colistin to treat human infections, occurrence of mcr genes threatens human health, and characterization of these resistance genes becomes more important. We show that three commonly used heterologous expression strains are intrinsically resistant to colistin. This is important because these strains have previously been used to characterize and identify new mobile colistin resistance (mcr) genes. We also show that expression plasmids (i.e., pET17b) without inserts cause cell viability defects when carried by B-strains with T7 RNA polymerase and grown in the presence of IPTG. Our findings are important as they will facilitate improved selection of heterologous strains and plasmid combinations for characterizing AMR genes, which will be particularly important with a shift to Culture-independent diagnostic tests where bacterial isolates become increasingly less available for characterization. | 2023 | 37199645 |
| 4759 | 12 | 0.9997 | Recent advances in rapid antimicrobial susceptibility testing systems. INTRODUCTION: Until recently antimicrobial susceptibility testing (AST) methods based on the demonstration of phenotypic susceptibility in 16-24 h remained largely unchanged. AREAS COVERED: Advances in rapid phenotypic and molecular-based AST systems. EXPERT OPINION: AST has changed over the past decade, with many rapid phenotypic and molecular methods developed to demonstrate phenotypic or genotypic resistance, or biochemical markers of resistance such as β-lactamases associated with carbapenem resistance. Most methods still require isolation of bacteria from specimens before both legacy and newer methods can be used. Bacterial identification by MALDI-TOF mass spectroscopy is now widely used and is often key to the interpretation of rapid AST results. Several PCR arrays are available to detect the most frequent pathogens associated with bloodstream infections and their major antimicrobial resistance genes. Many advances in whole-genome sequencing of bacteria and fungi isolated by culture as well as directly from clinical specimens have been made but are not yet widely available. High cost and limited throughput are the major obstacles to uptake of rapid methods, but targeted use, continued development and decreasing costs are expected to result in more extensive use of these increasingly useful methods. | 2021 | 33926351 |
| 5045 | 13 | 0.9997 | Emergence of colistin-resistance in extremely drug-resistant Acinetobacter baumannii containing a novel pmrCAB operon during colistin therapy of wound infections. BACKGROUND: Colistin resistance is of concern since it is increasingly needed to treat infections caused by bacteria resistant to all other antibiotics and has been associated with poorer outcomes. Longitudinal data from in vivo series are sparse. METHODS: Under a quality-improvement directive to intensify infection-control measures, extremely drug-resistant (XDR) bacteria undergo phenotypic and molecular analysis. RESULTS: Twenty-eight XDR Acinetobacter baumannii isolates were longitudinally recovered during colistin therapy. Fourteen were susceptible to colistin, and 14 were resistant to colistin. Acquisition of colistin resistance did not alter resistance to other antibiotics. Isolates had low minimum inhibitory concentrations of an investigational aminoglycoside, belonged to multi-locus sequence type 94, were indistinguishable by pulsed-field gel electrophoresis and optical mapping, and harbored a novel pmrC1A1B allele. Colistin resistance was associated with point mutations in the pmrA1 and/or pmrB genes. Additional pmrC homologs, designated eptA-1 and eptA-2, were at distant locations from the operon. Compared with colistin-susceptible isolates, colistin-resistant isolates displayed significantly enhanced expression of pmrC1A1B, eptA-1, and eptA-2; lower growth rates; and lowered fitness. Phylogenetic analysis suggested that colistin resistance emerged from a single progenitor colistin-susceptible isolate. CONCLUSIONS: We provide insights into the in vivo evolution of colistin resistance in a series of XDR A. baumannii isolates recovered during therapy of infections and emphasize the importance of antibiotic stewardship and surveillance. | 2013 | 23812239 |
| 5842 | 14 | 0.9997 | Draft Genome Sequence and Biofilm Production of a Carbapenemase-Producing Klebsiella pneumoniae (KpR405) Sequence Type 405 Strain Isolated in Italy. Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is essential to diagnose severe infections in patients. In clinical routine practice, K. pneumoniae is frequently identified and characterized for outbreak investigation. Pulsed-field gel electrophoresis or multilocus sequence typing could be used, but, unfortunately, these methods are time-consuming, laborious, expensive, and do not provide any information about the presence of resistance and virulence genes. In recent years, the decreasing cost of next-generation sequencing and its easy use have led to it being considered a useful method, not only for outbreak surveillance but also for rapid identification and evaluation, in a single step, of virulence factors and resistance genes. Carbapenem-resistant strains of K. pneumoniae have become endemic in Italy, and in these strains the ability to form biofilms, communities of bacteria fixed in an extracellular matrix, can defend the pathogen from the host immune response as well as from antibiotics, improving its persistence in epithelial tissues and on medical device surfaces. | 2021 | 34064924 |
| 5977 | 15 | 0.9997 | Methods to determine antibiotic resistance gene silencing. The occurrence of antibiotic-resistant bacteria is an increasingly serious problem world-wide. In addition, to phenotypically resistant bacteria, a threat may also be posed by isolates with silent, but intact, antibiotic resistance genes. Such isolates, which have recently been described, possess wild-type genes that are not expressed, but may convert to resistance by activating expression of the silent genes. They may therefore compromise the efficacy of antimicrobial treatment, particularly if their presence has not been diagnosed. This chapter describes the detection of silent resistance genes by PCR and DNA sequencing. A method to detect five potentially silent acquired resistance genes; aadA, bla (OXA-2), strAB, sul1, and tet(A) is described. First, the susceptibility of the isolates to the relevant antibiotics is determined by an appropriate susceptibility testing method, such as E-test. Then the presence of the genes is investigated by PCR followed by agarose gel electrophoresis of the amplification products. If a resistance gene is detected in a susceptible isolate, the entire open-reading frame and promoter sequence of the gene is amplified by PCR and their DNA sequences obtained. The DNA sequences are then compared to those of known resistant isolates, to detect mutations that may account for susceptibility. If no mutations are detected the expression of the gene is investigated by RT-PCR following RNA extraction. The methods described here can be applied to all acquired resistance genes for which sequence and normal expression data are available. | 2010 | 20401584 |
| 9942 | 16 | 0.9997 | Exploring the Potential of CRISPR-Cas9 Under Challenging Conditions: Facing High-Copy Plasmids and Counteracting Beta-Lactam Resistance in Clinical Strains of Enterobacteriaceae. The antimicrobial resistance (AMR) crisis urgently requires countermeasures for reducing the dissemination of plasmid-borne resistance genes. Of particular concern are opportunistic pathogens of Enterobacteriaceae. One innovative approach is the CRISPR-Cas9 system which has recently been used for plasmid curing in defined strains of Escherichia coli. Here we exploited this system further under challenging conditions: by targeting the bla (TEM-) (1) AMR gene located on a high-copy plasmid (i.e., 100-300 copies/cell) and by directly tackling bla (TEM-) (1)-positive clinical isolates. Upon CRISPR-Cas9 insertion into a model strain of E. coli harboring bla (TEM-) (1) on the plasmid pSB1A2, the plasmid number and, accordingly, the bla (TEM-) (1) gene expression decreased but did not become extinct in a subpopulation of CRISPR-Cas9 treated bacteria. Sequence alterations in bla (TEM-) (1) were observed, likely resulting in a dysfunction of the gene product. As a consequence, a full reversal to an antibiotic sensitive phenotype was achieved, despite plasmid maintenance. In a clinical isolate of E. coli, plasmid clearance and simultaneous re-sensitization to five beta-lactams was possible. Reusability of antibiotics could be confirmed by rescuing larvae of Galleria mellonella infected with CRISPR-Cas9-treated E. coli, as opposed to infection with the unmodified clinical isolate. The drug sensitivity levels could also be increased in a clinical isolate of Enterobacter hormaechei and to a lesser extent in Klebsiella variicola, both of which harbored additional resistance genes affecting beta-lactams. The data show that targeting drug resistance genes is encouraging even when facing high-copy plasmids. In clinical isolates, the simultaneous interference with multiple genes mediating overlapping drug resistance might be the clue for successful phenotype reversal. | 2020 | 32425894 |
| 5695 | 17 | 0.9997 | Competition assays between ESBL-producing E. coli and K. pneumoniae isolates collected from Lebanese elderly: An additional cost on fitness. The dissemination of Multi Drug Resistant Organisms (MDROs) is one of the major public health problems addressed nowadays. High fecal carriage rates of MDR Enterobacteriaceae were reported from Lebanese nursing homes. Studies have shown that the acquisition of resistance genes by bacteria might confer a fitness cost detected as a decrease in the frequency of these bacteria as compared to sensitive isolates. In this study, the competitive growth of MDR Enterobacteriaceae isolated from elderly is assessed. Sensitive and ESBL-producing Escherichia coli and Klebsiella pneumoniae isolates were identified. Inter-species in-vitro competition assays were conducted in different combinations. ESBL-producing K. pneumoniae presented a fitness cost when competing against sensitive E. coli. On the other hand, resistant E. coli only showed a fitness cost when growing in presence of two sensitive K. pneumoniae isolates. These results suggest that ESBL-production genes in E. coli and K. pneumoniae may confer a fitness cost that leads to the decrease in frequency of these bacteria in interspecies competitions. Culturing bacteria in a medium with more diverse isolates can provide better insights into bacterial competition and resistance dynamics, which can be exploited in the search for alternative therapeutic approaches towards the colonization of resistant bacteria. | 2018 | 28988774 |
| 5089 | 18 | 0.9997 | A TaqMan-based multiplex real-time PCR assay for the rapid detection of tigecycline resistance genes from bacteria, faeces and environmental samples. BACKGROUND: Tigecycline is a last-resort antibiotic used to treat severe infections caused by extensively drug-resistant bacteria. Recently, novel tigecycline resistance genes tet(X3) and tet(X4) have been reported, which pose a great challenge to human health and food security. The current study aimed to establish a TaqMan-based real-time PCR assay for the rapid detection of the tigecycline-resistant genes tet(X3) and tet(X4). RESULTS: No false-positive result was found, and the results of the TaqMan-based real-time PCR assay showed 100% concordance with the results of the sequencing analyses. This proposed method can detect the two genes at the level of 1 × 10(2) copies/μL, and the whole process is completed within an hour, allowing rapid screening of tet(X3) and tet(X4) genes in cultured bacteria, faeces, and soil samples. CONCLUSION: Taken together, the TaqMan-based real-time PCR method established in this study is rapid, sensitive, specific, and is capable of detecting the two genes not only in bacteria, but also in environmental samples. | 2020 | 32571294 |
| 9768 | 19 | 0.9997 | Inosine monophosphate overcomes the coexisting resistance of mcr-1 and bla(NDM-1) in Escherichia coli. INTRODUCTION: The rise of antibiotic-resistant bacteria, particularly those harboring mcr-1 and bla(NDM-1), threatens public health by reducing the efficacy of colistin and carbapenems. Recently, the co-spread of mcr-1 and bla(NDM-1) has been reported, and the emergence of dual-resistant Enterobacteriaceae severely exacerbates antimicrobial resistance. OBJECTIVES: This study aims to investigate the impact of mcr-1 and bla(NDM-1) expression on metabolism in Escherichia coli and to identify potential antimicrobial agents capable of overcoming the resistance conferred by these genes. METHODS: We employed non-targeted metabolomics to profile the metabolic perturbations of E. coli strains harboring mcr-1 and bla(NDM-1). The bactericidal effects of the differential metabolite, inosine monophosphate (IMP), were assessed both in vitro using time-killing assays and in vivo using a mouse infection model. The antimicrobial mechanism of IMP was elucidated through transcriptomic analysis and biochemical approaches. RESULTS: Metabolic profiling revealed significant alterations in the purine pathway, with IMP demonstrating potent bactericidal activity against E. coli strains carrying both resistance genes. IMP increased membrane permeability, disrupted proton motive force, reduced ATP levels, induced oxidative damage by promoting reactive oxygen species and inhibiting bacterial antioxidant defenses, and improved the survival rate of infected mice. CONCLUSION: Our findings suggest that IMP could be a promising candidate for combating mcr-1 and bla(NDM-1)-mediated resistance and provide a novel approach for discovering antimicrobial agents against colistin- and carbapenem-resistant bacteria. | 2025 | 40139526 |