Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
568501.0000Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review. The objective of this review was to assess the prevalence of antibiotic resistance genes in the oral cavity and identify mobile genetic elements (MGEs) important in disseminating them. Additionally, to assess if age, geographic location, oral site, bacterial strains and oral disease influence the prevalence of these genes. Three electronic databases (Medline, Embase and the Cochrane Library) were used to search the literature. Journals and the grey literature were also hand searched. English language studies from January 2000 to November 2020 were selected. Primary screening was performed on the titles and abstracts of 1509 articles generated. One hundred and forty-seven full texts were obtained to conduct the second screening with strict inclusion and exclusion criteria. Forty-four final articles agreed with the inclusion criteria. Half of the studies were classed as low quality. tet(M) was the most prevalent gene overall and the conjugative transposon Tn916 the most common MGE associated with antibiotic resistance genes in the oral cavity. In babies delivered vaginally, tet(M) was more prevalent, whilst tet(Q) was more prevalent in those delivered by C-section. Generally, countries with higher consumption of antibiotics had higher numbers of antibiotic resistance genes. Agricultural as well as medical use of antibiotics in a country should always be considered. Between healthy, periodontitis and peri-implantitis subjects, there was no difference in the prevalence of tet(M); however, erm(B), tet(M) and tet(O) were higher in carious active children than the non-carious group. Subjects with poor oral hygiene have more pathogenic bacteria that carry resistance genes compared to those with good oral hygiene. Enterococcus faecalis isolates demonstrated significant tetracycline resistance (tet(M) up to 60% prevalence in samples) and erythromycin resistance (erm(B) up to 61.9% prevalence in samples), periodontal pathogens showed significant beta-lactam resistance with blaZ and cfxA present in up to 90%-97% of samples and the normal oral flora had a high level of erythromycin resistance with mef(A/E) present in 65% of Streptococcus salivarius isolates. The most common resistance gene was tet(M) in root canals, cfxA in subgingival plaque, erm(B) in supragingival plaque and tet(W) in 100% of whole saliva samples. The review highlights that although many studies in this area have been performed, 50% were classed as low quality. We advise the following recommendations to allow firm conclusions to be drawn from future work: the use of large sample sizes, investigate a broad range of antibiotic resistance genes, improved methodologies and reporting to improve the quality of genetic testing in microbiology and randomisation of subject selection.202235674142
255810.9998Antimicrobial resistance in wild game mammals: a glimpse into the contamination of wild habitats in a systematic review and meta-analysis. BACKGROUND: Wild game meat has over the years gained popularity across the globe as it is considered a food source with high protein content, low fat content, and a balanced composition of fatty acids and minerals, which are requirements for a healthy diet. Despite this popularity, there is a concern over its safety as many species of wildlife are reservoirs of zoonotic diseases including those of bacterial origin, more so antibiotic-resistant bacteria. METHODS: This study aimed to describe the prevalence of antibiotic-resistant bacteria in mammalian wild game, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: The overall pooled prevalence of antibiotic resistance was established at 59.8% while the prevalence of multidrug resistance (MDR) was 17.2%. Resistance was reported in 32 wild game species and the meta-analysis revealed the highest prevalence of antibiotic resistance in Yersinia spp. (95.5%; CI: 76.8 - 100%) followed by Enterococcus spp. (71%; CI: 44.1 - 92%), Salmonella spp. (69.9%; CI: 44.3 - 90.0%), Staphylococcus spp. (69.3%; CI: 40.3 - 92.3%), and Escherichia coli (39.5%; CI: 23.9 - 56.4%). Most notably, resistance to highest priority, critically important antimicrobials, was recorded in all genera of bacteria studied. Additionally, a significantly higher prevalence of antibiotic resistance was observed in studies conducted in remote settings than those in the vicinity of anthropogenic activities, pointing to extensive contamination of wild habitats. CONCLUSION: This review shows the presence of antibiotic resistance and the carriage of antimicrobial resistance (AMR) genes by bacteria isolated from mammalian wild game species. This is a cause for concern if critical steps to prevent transmission to humans from meat and meat products are not applied in the wild game meat production chain. The extensive occurrence of antibiotic resistance in the wild calls for expansion and adaptation of future AMR surveillance plans to include areas with various anthropogenic pressures including in sylvatic habitats.202539799360
282020.9998Direct detection of antibiotic resistance genes in specimens of chicken and pork meat. Antibiotic resistance (AR) in bacteria, a major threat to human health, has emerged in the last few decades as a consequence of the selective pressure exerted by the widespread use of antibiotics in medicine, agriculture and veterinary practice and as growth promoters in animal husbandry. The frequency of 11 genes [tet(M), tet(O), tet(K), erm(A), erm(B), erm(C), vanA, vanB, aac (6')-Ie aph (2'')-Ia, mecA, blaZ] encoding resistance to some antibiotics widely used in clinical practice was analysed in raw pork and chicken meat and in fermented sausages as well as in faecal samples from the relevant farm animals using a molecular approach based on PCR amplification of bacterial DNA directly extracted from specimens. Some of the 11 AR genes were highly prevalent, the largest number being detected in chicken meat and pig faeces. The genes found most frequently in meat were tet(K) and erm(B); vanB and mecA were the least represented. All 11 determinants were detected in faecal samples except mecA, which was found only in chicken faeces. erm(B) and erm(C) were detected in all faecal samples. The frequency of AR genes was not appreciably different in meat compared to faecal specimens of the relevant animal except for vanB, which was more prevalent in faeces. Our findings suggest that AR genes are highly prevalent in food-associated bacteria and that AR contamination is likely related to breeding rather than processing techniques. Finally, the cultivation-independent molecular method used in this work to determine the prevalence of AR genes in foods proved to be a rapid and reliable alternative to traditional tools.200717005283
193330.9998Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination.202236139170
564240.9998Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin. The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the environment.201526385434
193550.9998Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related.202134356729
255260.9998Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. OBJECTIVES: This study aims to describe the oral microbiome diversity and prevalence of ARGs in periodontal health and disease. BACKGROUND: The human oral cavity harbors a complex microbial community known as the oral microbiome. These organisms are regularly exposed to selective pressures, such as the usage of antibiotics, which drive evolution and acquisition of antibiotic resistance genes (ARGs). Resistance among oral bacteria jeopardizes not only antibiotic therapy for oral infections, but also extra-oral infections caused by bacterial translocation. METHODS: We carried out a cross-sectional investigation. Saliva and subgingival plaque samples were collected during a clinical exam. 16S rRNA gene sequencing was performed to assess microbial diversity. Resistance genes were identified through PCR assays. RESULTS: Of the 110 participants, only 22.7% had healthy periodontium, while the majority was diagnosed with gingivitis (55.4%) and chronic periodontitis (21.8%). The composition of the oral microbiota differed from healthy and diseased samples, being Streptococcus spp. and Rothia spp. predominant in periodontal disease. Regarding ARGs, 80 (72.7%) samples were positive for at least one of genes screened, erm being the most frequent variant (58.2%), followed by blaTEM (16.4%), mecA (2.7%), pbp2b and aac(6 ') (1.8%). Neither genes coding resistance to carbapenems nor metronidazole were detected. CONCLUSIONS: Our findings indicate that there are no significant differences in terms of taxonomic enrichment between healthy and diseased oral microbiomes. However, samples retrieved from healthy patients had a more diverse microbial community, whereas diseased samples have lower taxonomic diversity. We have also identified clinically relevant ARGs, providing baseline information to guide antibiotic prescription in dentistry.202032991620
281970.9998Prevalence of Antibiotic-Resistant Lactobacilli in Sepsis Patients with Long-Term Antibiotic Therapy. Lactobacilli are the most common probiotic bacteria found in the human gut microbiota, and the presence of acquired antibiotic resistance determinants carried on mobile genetic elements must be screened due to safety concerns. Unnecessary and inappropriate antibiotic therapy, as well as ingested antibiotic resistance bacteria (originating from food or food products), influence the abundance of antibiotic resistance genes in human guts, with serious clinical consequences. The current study looked into the antibiotic resistance of lactobacilli isolated from the guts of sepsis patients on long-term antibiotic therapy. The broth microdilution method was used to investigate the minimum inhibitory concentrations (MICs) of antibiotics such as imipenem, meropenem, erythromycin, tetracycline, cefepime, ciprofloxacin, and gentamycin, and the molecular genetic basis of resistance was studied based on the MIC values. The isolates were phenotypically resistant to tetracycline (20%), fluoroquinolone (20%), and macrolide (5%). Following that, resistance genes for tetracycline [tet(L), tet(O), tet(K), and tet(M)], macrolide [erm(B) and erm(C)], and beta-lactams [bla(CMY)] were investigated. Tetracycline or macrolide resistance genes were not found in the isolates, and only one isolate possessed the bla(CMY) resistance gene. The findings suggested that tetracycline and macrolide resistance may be linked to other resistance genes that were not investigated in this study. Because tetracyclines, fluoroquinolones, and macrolides are commonly used in clinics and animals, there has been concern about the spread of resistance in humans. If acquired antibiotic resistance is passed down through mobile genetic elements, it may serve as a reservoir of resistance for gut pathogens and other microbiome environments.202236088413
192980.9998Research Note: Detection of antibiotic-resistance genes in commercial poultry and turkey flocks from Italy. Antibiotics are routinely used in commercial poultry farms for the treatment of economically important bacterial diseases. Repeated use of antibiotics, usually administered in the feed or drinking water, may also result in the selection of resistant bacteria in animal feces, able to transfer their antimicrobial-resistance genes (ARG), residing on mobile elements, to other microorganisms, including human pathogens. In this study, single and multiplex PCR protocols were performed to detect tetracycline-, lincomycin-, chloramphenicol-, aminoglycoside-, colistin-, vancomycin-, and carbapenem-resistance genes, starting from 38 litter samples collected from 6 poultry and 2 turkey Italian flocks. The ARG were confirmed for all investigated classes of antimicrobials, except for colistin (mcr-1, mcr-2, mcr-3,mcr-4 mcr-5) and carbapenem (IMP, OXA-48, NDM, KPC), while the vanB gene was only detected for vancomycin. The highest positivity was obtained for tetracycline (tet[L], tet[M], tet[K], tetA[P]] and aminoglycoside (aadA2) ARG, confirming the predominant use of these antimicrobials in the veterinary practice and their potential to enhance the resistance patterns also in humans as a consequence of environmental contamination. On the contrary, the dissemination by poultry of ARG for critically important antimicrobials seems to be of minor concern, suggesting a negligible environmental dissemination by these genes in the Italian poultry industry. Finally, the molecular screening performed in this study using a noninvasive sampling method represents a simple and rapid tool for monitoring the ARG patterns at the farm level.202133799114
547790.9998An in-house 45-plex array for the detection of antimicrobial resistance genes in Gram-positive bacteria. Identifying antimicrobial resistance (AMR) genes and determining their occurrence in Gram-positive bacteria provide useful data to understand how resistance can be acquired and maintained in these bacteria. We describe an in-house bead array targeting AMR genes of Gram-positive bacteria and allowing their rapid detection all at once at a reduced cost. A total of 41 AMR probes were designed to target genes frequently associated with resistance to tetracycline, macrolides, lincosamides, streptogramins, pleuromutilins, phenicols, glycopeptides, aminoglycosides, diaminopyrimidines, oxazolidinones and particularly shared among Enterococcus and Staphylococcus spp. A collection of 124 enterococci and 62 staphylococci isolated from healthy livestock animals through the official Belgian AMR monitoring (2018-2020) was studied with this array from which a subsample was further investigated by whole-genome sequencing. The array detected AMR genes associated with phenotypic resistance for 93.0% and 89.2% of the individual resistant phenotypes in enterococci and staphylococci, respectively. Although linezolid is not used in veterinary medicine, linezolid-resistant isolates were detected. These were characterized by the presence of optrA and poxtA, providing cross-resistance to other antibiotics. Rarer, vancomycin resistance was conferred by the vanA or by the vanL cluster. Numerous resistance genes circulating among Enterococcus and Staphylococcus spp. were detected by this array allowing rapid screening of a large strain collection at an affordable cost. Our data stress the importance of interpreting AMR with caution and the complementarity of both phenotyping and genotyping methods. This array is now available to assess other One-Health AMR reservoirs.202336825880
5684100.9998Distribution of genes related to antimicrobial resistance in different oral environments: a systematic review. INTRODUCTION: The oral cavity is the main source of microorganisms for odontogenic infections. It is important to perform an extensive analysis regarding the reports on the presence of bacteria that carry resistance genes to antimicrobial agents. The aim of the study was to verify the reports on the distribution of genes associated with resistance to antibiotics prescribed in dentistry in different human oral sites. METHODS: A systematic review was conducted in electronic databases and gray literature to analyze clinical studies that detected genes of bacterial resistance to antibiotics in saliva, supragingival biofilm, and endodontic infections. Data regarding the research group, geographic location, sample source, number of subjects, methods for sample analysis, the targeted gene groups, and the detection rates were collected. Descriptive data analysis was performed. RESULTS: Preliminary analysis was performed in 152 titles; 50 abstracts were reviewed, and 29 full texts were obtained. Nine articles matched the inclusion criteria (saliva = 2, supragingival biofilm = 1, and endodontic infections = 6). The presence of 33 different targeted genes was evaluated. The most frequently investigated groups of genes were tetracycline and lactamics (tetM, tetQ, tetW, and cfxA). There was a wide range for the detection rates of each resistance gene among studies and for each specific gene group. CONCLUSIONS: This systematic review highlights the presence of resistance genes to antimicrobial agents in saliva, dental biofilm, and endodontic infections, especially for tetracycline and lactamics. There is a lack of reports on the presence of genes and resulting outcomes obtained through the therapeutic approaches for infection control.201525748493
1926110.9998Whole genome sequencing revealed high occurrence of antimicrobial resistance genes in bacteria isolated from poultry manure. BACKGROUND: Global demand for food has driven expansion and intensification of livestock production, particularly in developing nations where antibiotic use is often routine. Waste from poultry production, including manure, is commonly utilized as fertilizers in agroecosystems, risking environmental contamination with potentially zoonotic bacteria and antimicrobial resistance genes (ARGs). METHODS: Here, 33 bacterial isolates were recovered from broiler (n = 17) and layer (n = 16) chicken manure by aerobic culture using Luria Bertani agar. Antimicrobial susceptibility testing (AST) was performed using disc diffusion method. MALDI-ToF and 16S rRNA sequencing were used to identify and compare a subset of antibiotic-resistant isolates (n = 13). Comparison of whole genome sequence assemblies and phenotypic assays were used to assess capacity for biofilm formation, heavy metal tolerance and virulence. RESULTS: AST by disc diffusion revealed all isolates were resistant to a minimum of three antibiotics, with resistance to ampicillin, co-trimoxazole, fluoroquinolones, tetracyclines, streptomycin, rifampicin and/or chloramphenicol detected. Stutzerimonas sp. and Acinetobacter sp. were the common genera observed in this study. Genome sequencing of each selected isolate revealed carriage of multiple ARGs capable of conferring resistance to many antimicrobials commonly employed in poultry production and human medicine, including tetracyclines, quinolones, macrolides, sulfonamide and cephalosporins. CONCLUSIONS: The high occurrence of ARGs in studied bacterial isolates confirms that poultry manure could act as a source of genetic material that could be transferred to commensal microbiota and opportunistic pathogens of humans. Understanding the complex resistome interplay between humans, animals, and the environment requires a One Health approach, with implications for agricultural settings and public health.202539880102
2565120.9998Phenotypic and genotypic characterization of antibiotic-resistant bacteria from Swiss ready-to-eat meat products. Antimicrobial resistance is a global health concern, which is partly driven by rising meat consumption, which has led to the intensive farming of livestock that relies on antibiotics. ready-to-eat animal products can carry antibiotic-resistant bacteria, posing risks to humans since they are often consumed without further cooking. While countries such as Switzerland limit antibiotic use in agriculture, contamination of meat with antibiotic-resistant bacteria can still occur during meat processing, and non-antibiotic agents such as heavy metals may contribute to the co-selection of resistance. This study aimed to characterize antibiotic-resistant bacteria in ready-to-eat meat products from various Swiss butcheries. Presumptive resistant bacteria were isolated using selective plating and analyzed phenotypically and genotypically. A total of 53 bacteria-antibiotic resistance combinations were identified, including Enterobacterales resistant to third-generation cephalosporins, vancomycin-resistant Enterococci, and one strain of methicillin-resistant Staphylococcus aureus. Of the 804 products sampled, 177 antibiotic-resistant bacteria were isolated, 148 of which showed multidrug resistance. Notably, these strains remained susceptible to last-resort antibiotics such as carbapenems and colistin. Whole-genome sequencing of 31 selected isolates revealed 164 antibiotic resistance genes spanning 25 classes, confirming resistance to beta-lactams, cephalosporins, and tetracyclines. We also detected genes conferring resistance to metals, suggesting co-selection pressures. Long-read sequencing revealed that the majority of the antibiotic resistance genes were chromosomal, while others were plasmid-encoded, indicating the potential for horizontal gene transfer. This study demonstrates that ready-to-eat meat products are reservoirs of antibiotic and metal resistance genes, as well as antibiotic-resistant bacteria, even at low levels. From a One Health perspective, our results highlight the importance of extending AMR surveillance across the food chain and underscore the need to include non-traditional bacterial indicators.202541001059
2559130.9998Phenotypic and genotypic antimicrobial resistance patterns in honey bee (Apis mellifera L.) bacterial symbionts. Antimicrobial resistance (AMR) is a major global public health problem. Nevertheless, the knowledge of the factors driving the spread of resistance among environmental microorganisms is limited, and few studies have been performed worldwide. Honey bees (Apis mellifera L.) have long been considered bioindicators of environmental pollution and more recently also of AMR. In this study, 53 bacterial strains isolated from the body surface of honey bees at three ontogenetic stages, collected from ten different geographic locations, were tested for their phenotypic and genotypic resistance to eight classes of the most widely used antimicrobials in human and veterinary medicine. Results showed that 83% of the strains were resistant to at least one antimicrobial and 62% were multidrug-resistant bacteria, with a prevalence of resistance to nalidixic acid, cefotaxime, and aztreonam. A high percentage of isolates harbouring at least one antimicrobial gene was also observed (85%). The gene encoding resistance to colistin mcr-1 was the most abundant, followed by those for tetracycline tetM and tetC. Geographical features influenced the distribution of these traits more than bacterial species or bee stage, supporting the use of honey bee colonies and their associated bacteria as indicators to monitor environmental resistance. This approach can improve the scientific understanding of this global threat by increasing data collection capacity.202439098972
1937140.9997Antibiotic susceptibilities of enterococcus species isolated from hospital and domestic wastewater effluents in alice, eastern cape province of South Africa. BACKGROUND: Antimicrobial resistance in microorganisms are on the increase worldwide and are responsible for substantial cases of therapeutic failures. Resistance of species of Enterococcus to antibiotics is linked to their ability to acquire and disseminate antimicrobial resistance determinants in nature, and wastewater treatment plants (WWTPs) are considered to be one of the main reservoirs of such antibiotic resistant bacteria. We therefore determined the antimicrobial resistance and virulence profiles of some common Enterococcus spp that are known to be associated with human infections that were recovered from hospital wastewater and final effluent of the receiving wastewater treatment plant in Alice, Eastern Cape. METHODS: Wastewater samples were simultaneously collected from two sites (Victoria hospital and final effluents of a municipal WWTP) in Alice at about one to two weeks interval during the months of July and August 2014. Samples were screened for the isolation of enterococci using standard microbiological methods. The isolates were profiled molecularly after targeted generic identification and speciation for the presence of virulence and antibiotic resistance genes. RESULTS: Out of 66 presumptive isolates, 62 were confirmed to belong to the Enterococcus genusof which 30 were identified to be E. faecalis and 15 E. durans. The remaining isolates were not identified by the primers used in the screening procedure. Out of the six virulence genes that were targeted only three of them; ace, efaA, and gelE were detected. There was a very high phenotypic multiple resistance among the isolates and these were confirmed by genetic analyses. CONCLUSIONS: Analyses of the results obtained indicated that hospital wastewater may be one of the sources of antibiotic resistant bacteria to the receiving WWTP. Also, findings revealed that the final effluent discharged into the environment was contaminated with multi-resistant enterococci species thus posing a health hazard to the receiving aquatic environment as these could eventually be transmitted to humans and animals that are exposed to it.201525893999
1934150.9997Sulfonamide resistance evaluation in five animal species and first report of sul4 in companion animals. Sulfonamides are one of the oldest groups of antibacterial agents with a broad-spectrum, used as first line treatment in bacterial infections. Their widespread use produced a selective pressure on bacteria, as observed by the high incidence of sulfonamides resistance mainly in Gram negative bacteria isolated from animals. In this research, the presence of sulfonamide resistance genes (sul1, sul2, sul3, and sul4) in phenotypically resistant Escherichia coli isolates has been studied. These genes were amplified in isolates recovered from five animal species, with different interactions to humans: cattle, swine, poultry as livestock, and dogs and cats as companion animals. Isolates were collected according to their phenotypic resistance, and the magnetic bead-based Luminex technology was applied to simultaneously detect sul target genes. The frequency of sul genes was highest in swine, among livestock isolates. The sul1 and sul2 were the most frequently sulfonamide resistance genes detected in all phenotypically resistant isolates. Notably, in companion animals, with a closest interaction with human, sul4 gene was detected. To our knowledge, this is the first report of the presence of sul4 gene in E. coli collected from animals, whereas previously the presence of this gene was reported in environmental, municipal wastewater and human clinical isolates. These results highlighted the importance of continuous antimicrobial resistant genes monitoring in animal species, with a special care to companion animals.202439029236
2534160.9997Prevalence, antibiotic resistance, and virulence gene profile of Escherichia coli strains shared between food and other sources in Africa: A systematic review. BACKGROUND AND AIM: Foodborne diseases caused by Escherichia coli are prevalent globally. Treatment is challenging due to antibiotic resistance in bacteria, except for foodborne infections due to Shiga toxin-producing E. coli, for which treatment is symptomatic. Several studies have been conducted in Africa on antibiotic resistance of E. coli isolated from several sources. The prevalence and distribution of resistant pathogenic E. coli isolated from food, human, and animal sources and environmental samples and their virulence gene profiles were systematically reviewed. MATERIALS AND METHODS: Bibliographic searches were performed using four databases. Research articles published between 2000 and 2022 on antibiotic susceptibility and virulence gene profile of E. coli isolated from food and other sources were selected. RESULTS: In total, 64 articles were selected from 14 African countries: 45% of the studies were conducted on food, 34% on animal samples, 21% on human disease surveillance, and 13% on environmental samples. According to these studies, E. coli is resistant to ~50 antimicrobial agents, multidrug-resistant, and can transmit at least 37 types of virulence genes. Polymerase chain reaction was used to characterize E. coli and determine virulence genes. CONCLUSION: A significant variation in epidemiological data was noticed within countries, authors, and sources (settings). These results can be used as an updated database for monitoring E. coli resistance in Africa. More studies using state-of-the-art equipment are needed to determine all resistance and virulence genes in pathogenic E. coli isolated in Africa.202338023276
5663170.9997Development of multiplex Luminex assays for the surveillance of antimicrobial resistance genes in nasal samples. Bovine respiratory disease (BRD) is the major cause of morbidity and mortality in feedlot cattle. It is the major driver for the therapeutic use of antimicrobials in feedlot cattle with their continued use and effectiveness being underpinned through the implementation of stewardship programs that include monitoring of resistance levels. To enable these programs, rapid and user-friendly assays are needed to detect antimicrobial resistance genes (ARG) for efficient monitoring. This study developed multiplex Luminex assays targeting 34 ARGs and validated them using reference strains of Pasteurellaceae and other bacteria, as well as field samples from nasal swabs of cattle (n = 94) undergoing BRD treatment at an Australian feedlot. One swab was collected from each nostril of every animal, with one being used for bacterial culture and conventional PCR analyses for ARGs, while the DNA extracted from the second swab was analyzed using the novel Luminex assays for the presence or absence of the ARGs of interest. The pathogens isolated by culture were tested for macrolide resistance genes erm(42), mph(E) and msr(E); sulfonamide resistance genes, sul1 and sul2; florfenicol resistance gene floR; β-lactam resistance gene bla(Rob-1) and tetracycline resistance genes tet(Q) and tet(Y), by conventional PCR. Kappa statistics suggested a moderate agreement between the tests in detecting the macrolide resistance genes. Luminex based analyses identified more resistance genes than PCR on cultured organisms, revealing the presence of a broader array of these genes than previously reported. In addition to detecting more genes, Luminex assays could process a higher number of samples in a single day, making them well-suited for ongoing surveillance of antimicrobial resistance in BRD affected cattle. This capability is essential for optimising therapeutic use and detecting emerging resistance patterns.202540848749
5646180.9997Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. Staphylococcus spp. and Mammaliicoccus spp. colonize the skin and mucosa of humans and other animals and are responsible for several opportunistic infections. Staphylococci antibiotic resistance may be present in the environment due to the spread of treated and untreated manure from the livestock industry due to antibiotic use to disease control or growth promoter. In this work, we analyzed the species distribution and antimicrobial susceptibility of Staphylococcus and Mammaliicoccus species along different sites of a swine manure treatment plant from Southeastern Brazil. Bacterial colonies were obtained on mannitol salt agar, selected after catalase test and Gram staining, and finally identified by mass spectrometry and sequencing of the tuf gene. According to the results, S.cohnii and S. simulans were the most prevalent species. Antibiotic resistance test revealed that several strains were resistant to multiple drugs, with high levels of chloramphenicol resistance (98%), followed by erythromycin (79%), tetracycline (73%), gentamicin (46%), ciprofloxacin (42%), cefoxitin (18%), sulfamethoxazole + trimethoprim (12%), and linezolid (4%). In addition, gene detection by PCR showed that all strains carried at least 2 resistance genes and one of them carried all 11 genes investigated. Using the GTG(5)-PCR approach, a high genetic similarity was observed between some strains that were isolated from different points of the treatment plant. Although some were seemingly identical, differences in their resistance phenotype and genotype suggest horizontal gene transfer. The presence of resistant bacteria and resistance genes along the treatment system highlights the potential risk of contamination by people in direct contact with these animals and the soil since the effluent is used as a biofertilizer in the surrounding environment.202336515883
2821190.9997Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Use of antibiotics as feed additives in poultry production has been linked to the presence of antibiotic resistant bacteria in farm workers, consumer poultry products and the environs of confined poultry operations. There are concerns that these resistant bacteria may be transferred to communities near these operations; however, environmental pathways of exposure are not well documented. We assessed the prevalence of antibiotic resistant enterococci and staphylococci in stored poultry litter and flies collected near broiler chicken houses. Drug resistant enterococci and staphylococci were isolated from flies caught near confined poultry feeding operations in the summer of 2006. Susceptibility testing was conducted on isolates using antibiotics selected on the basis of their importance to human medicine and use in poultry production. Resistant isolates were then screened for genetic determinants of antibiotic resistance. A total of 142 enterococcal isolates and 144 staphylococcal isolates from both fly and poultry litter samples were identified. Resistance genes erm(B), erm(A), msr(C), msr(A/B) and mobile genetic elements associated with the conjugative transposon Tn916, were found in isolates recovered from both poultry litter and flies. Erm(B) was the most common resistance gene in enterococci, while erm(A) was the most common in staphylococci. We report that flies collected near broiler poultry operations may be involved in the spread of drug resistant bacteria from these operations and may increase the potential for human exposure to drug resistant bacteria.200919157515