# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5681 | 0 | 1.0000 | Molecular Epidemiology of Neonatal-Associated Staphylococcus haemolyticus Reveals Endemic Outbreak. Staphylococcus haemolyticus is a major cause of late-onset sepsis in neonates, and endemic clones are often multidrug-resistant. The bacteria can also act as a genetic reservoir for more pathogenic bacteria. Molecular epidemiology is important in understanding bacterial pathogenicity and preventing infection. To describe the molecular epidemiology of S. haemolyticus isolated from neonatal blood cultures at a Swedish neonatal intensive care unit (NICU) over 4 decades, including antibiotic resistance genes (ARGs), virulence factors, and comparison to international isolates. Isolates were whole-genome sequenced, and single nucleotide polymorphisms in the core genome were used to map the relatedness. The occurrence of previously described ARGs and virulence genes were investigated. Disc diffusion and gradient tests were used to determine phenotypic resistance. The results revealed a clonal outbreak of S. haemolyticus at this NICU during the 1990s. Multidrug resistance was present in 28 (82%) of all isolates and concomitant resistance to aminoglycoside and methicillin occurred in 27 (79%). No isolates were vancomycin resistant. Genes encoding ARGs and virulence factors occurred frequently. The isolates in the outbreak were more homogenous in their genotypic and phenotypic patterns. Genotypic and phenotypic resistance combinations were consistent. Pathogenic traits previously described in S. haemolyticus occurred frequently in the present isolates, perhaps due to the hospital selection pressure resulting in epidemiological success. The clonal outbreak revealed by this study emphasizes the importance of adhering to hygiene procedures in order to prevent future endemic outbreaks. IMPORTANCE This study investigated the relatedness of Staphylococcus haemolyticus isolated from neonatal blood and revealed a clonal outbreak in the 1990s at a Swedish neonatal intensive care unit. The outbreak clone has earlier been isolated in Japan and Norway. Virulence and antibiotic resistance genes previously associated with clinical S. haemolyticus were frequently occuring in the present study as well. The majority of the isolates were multidrug-resistant. These traits should be considered important for S. haemolyticus epidemiological success and are probably caused by the hospital selection pressure. Thus, this study emphasizes the importance of restrictive antibiotic use and following the hygiene procedures, to prevent further antibiotic resistance spread and future endemic outbreaks. | 2022 | 36314976 |
| 5680 | 1 | 0.9999 | Multidrug-Resistant Acinetobacter baumannii Genetic Characterization and Spread in Lithuania in 2014, 2016, and 2018. Bacterial resistance to antimicrobial agents plays an important role in the treatment of bacterial infections in healthcare institutions. The spread of multidrug-resistant bacteria can occur during inter- and intra-hospital transmissions among patients and hospital personnel. For this reason, more studies must be conducted to understand how resistance occurs in bacteria and how it moves between hospitals by comparing data from different years and looking out for any patterns that might emerge. Multidrug-resistant (MDR) Acinetobacter spp. was studied at 14 healthcare institutions in Lithuania during 2014, 2016, and 2018 using samples from human bloodstream infections. In total, 194 isolates were collected and identified using MALDI-TOF and VITEK2 analyzers as Acinetobacter baumannii group bacteria. After that, the isolates were analyzed for the presence of different resistance genes (20 genes were analyzed) and characterized by using the Rep-PCR and MLVA (multiple-locus variable-number tandem repeat analysis) genotyping methods. The results of the study showed the relatedness of the different Acinetobacter spp. isolates and a possible circulation of resistance genes or profiles during the different years of the study. This study provides essential information, such as variability and diversity of resistance genes, genetic profiling, and clustering of isolates, to better understand the antimicrobial resistance patterns of Acinetobacter spp. These results can be used to strengthen the control of multidrug-resistant infections in healthcare institutions and to prevent potential outbreaks of this pathogen in the future. | 2021 | 33669401 |
| 5519 | 2 | 0.9999 | Antimicrobial susceptibility, virulence potential and sequence types associated with Arcobacter strains recovered from human faeces. PURPOSE: The genus Arcobacter includes bacteria that are considered emergent pathogens because they can produce infections in humans and animals. The most common symptoms are bloody and non-bloody persistent diarrhea but cases with abdominal cramps without diarrhea or asymptomatic cases have also been described as well as cases with bacteremia. The objective was to characterize Arcobacter clinical strains isolated from the faeces of patients from three Spanish hospitals. METHODOLOGY: We have characterized 28 clinical strains (27 of A. butzleri and one of A. cryaerophilus) isolated from faeces, analysing their epidemiological relationship using the multilocus sequence typing (MLST) approach and screening them for their antibiotic susceptibility and for the presence of virulence genes.Results/Key findings. Typing results showed that only one of the 28 identified sequence types (i.e. ST 2) was already present in the MLST database. The other 27 STs constituted new records because they included new alleles for five of the seven genes or new combinations of known alleles of the seven genes. All strains were positive for the ciaB virulence gene and sensitive to tetracycline. However, 7.4 % of the A. butzleri and A. cryaerophilus strains showed resistance to ciprofloxacin. CONCLUSION: The fact that epidemiological unrelated strains show the same ST indicates that other techniques with higher resolution should be developed to effectively recognize the infection source. Resistance to ciprofloxacin, one of the antibiotics recommended for the treatment of Arcobacter intestinal infections, demonstrated in 10.7 % of the strains, indicates the importance of selecting the most appropriate effective treatment. | 2017 | 29120301 |
| 5682 | 3 | 0.9999 | Reservoirs of resistance: polymyxin resistance in veterinary-associated companion animal isolates of Pseudomonas aeruginosa. BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen and a major cause of infections. Widespread resistance in human infections are increasing the use of last resort antimicrobials such as polymyxins. However, these have been used for decades in veterinary medicine. Companion animals are an understudied source of antimicrobial resistant P. aeruginosa isolates. This study evaluated the susceptibility of P. aeruginosa veterinary isolates to polymyxins to determine whether the veterinary niche represents a potential reservoir of resistance genes for pathogenic bacteria in both animals and humans. METHODS AND RESULTS: Clinical P. aeruginosa isolates (n=24) from UK companion animals were compared for antimicrobial susceptibility to a panel of human-associated isolates (n=37). Minimum inhibitory concentration (MIC) values for polymyxin B and colistin in the companion animals was significantly higher than in human isolates (P=0.033 and P=0.013, respectively). Genotyping revealed that the veterinary isolates were spread throughout the P. aeruginosa population, with shared array types from human infections such as keratitis and respiratory infections, suggesting the potential for zoonotic transmission. Whole genome sequencing revealed mutations in genes associated with polymyxin resistance and other antimicrobial resistance-related genes. CONCLUSION: The high levels of resistance to polymyxin shown here, along with genetic similarities between some human and animal isolates, together suggest a need for sustained surveillance of this veterinary niche as a potential reservoir for resistant, clinically relevant bacteria in both animals and humans. | 2019 | 31239295 |
| 5677 | 4 | 0.9999 | Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance. Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined. | 2015 | 26084443 |
| 5676 | 5 | 0.9999 | Fosfomycin Resistance in Bacteria Isolated from Companion Animals (Dogs and Cats). Fosfomycin is an old antibacterial agent, which is currently used mainly in human medicine, in uncomplicated Urinary Tract Infections (UTIs). The purpose of this review is to investigate the presence and the characteristics of Fosfomycin resistance in bacteria isolated from canine or feline samples, estimate the possible causes of the dissemination of associated strains in pets, and underline the requirements of prospective relevant studies. Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines were used for the search of current literature in two databases. A total of 33 articles were finally included in the review. Relevant data were tracked down, assembled, and compared. Referring to the geographical distribution, Northeast Asia was the main area of origin of the studies. E. coli was the predominant species detected, followed by other Enterobacteriaceae, Staphylococci, and Pseudomonas spp. FosA and fosA3 were the more frequently encountered Antimicrobial Resistance Genes (ARGs) in the related Gram-negative isolates, while fosB was regularly encountered in Gram-positive ones. The majority of the strains were multidrug-resistant (MDR) and co-carried resistance genes against several classes of antibiotics and especially β-Lactams, such as bla(CTX-M) and mecA. These results demonstrate the fact that the cause of the spreading of Fosfomycin-resistant bacteria among pets could be the extended use of other antibacterial agents, that promote the prevalence of MDR, epidemic strains among an animal population. Through the circulation of these strains into a community, a public health issue could arise. Further research is essential though, for the comprehensive consideration of the issue, as the current data are limited. | 2023 | 37235420 |
| 4936 | 6 | 0.9999 | A New Tool for Analyses of Whole Genome Sequences Reveals Dissemination of Specific Strains of Vancomycin-Resistant Enterococcus faecium in a Hospital. A new easy-to-use online bioinformatic tool analyzing whole genome sequences of healthcare associated bacteria was used by a local infection control unit to retrospectively map genetic relationship of isolates of E. faecium carrying resistance genes to vancomycin in a hospital. Three clusters of isolates were detected over a period of 5 years, suggesting transmission between patients. Individual relatedness between isolates within each cluster was established by SNP analyses provided by the system. Genetic antimicrobial resistance mechanisms to antibiotics other than vancomycin were identified. The results suggest that the system is suited for hospital surveillance of E. faecium carrying resistance genes to vancomycin in settings with access to next Generation Sequencing without bioinformatic expertise for interpretation of the genome sequences. | 2021 | 34778297 |
| 5508 | 7 | 0.9998 | Genomic and phenotypic comparison of environmental and patient-derived isolates of Pseudomonas aeruginosa suggest that antimicrobial resistance is rare within the environment. Patient-derived isolates of the opportunistic pathogen Pseudomonas aeruginosa are frequently resistant to antibiotics due to the presence of sequence variants in resistance-associated genes. However, the frequency of antibiotic resistance and of resistance-associated sequence variants in environmental isolates of P. aeruginosa has not been well studied. Antimicrobial susceptibility testing (ciprofloxacin, ceftazidime, meropenem, tobramycin) of environmental (n=50) and cystic fibrosis (n=42) P. aeruginosa isolates was carried out. Following whole genome sequencing of all isolates, 25 resistance-associated genes were analysed for the presence of likely function-altering sequence variants. Environmental isolates were susceptible to all antibiotics with one exception, whereas patient-derived isolates had significant frequencies of resistance to each antibiotic and a greater number of likely resistance-associated genetic variants. These findings indicate that the natural environment does not act as a reservoir of antibiotic-resistant P. aeruginosa, supporting a model in which antibiotic susceptible environmental bacteria infect patients and develop resistance during infection. | 2019 | 31553303 |
| 5713 | 8 | 0.9998 | Genomic characterization of two community-acquired methicillin-resistant Staphylococcus aureus with novel sequence types in Kenya. Staphylococcus aureus is a clinically important bacteria with high antimicrobial resistance (AMR) challenge globally. The emergence of methicillin-resistant Staphylococcus aureus (MRSA) clones with unique sequence types have been identified in the community showing evidence that the epidemiology of MRSA globally is changing and requires continual surveillance. We utilized whole genome sequencing to characterize two community acquired-MRSA (CA-MRSA) strains isolated from wound swabs from community-onset infections in two health facilities in Kenya. The two strains belonged to multilocus sequence type (MLST) sequence type (ST) 7460, and ST 7635. The resistance genes detected showed that the novel STs are carriers of clinically relevant resistance genes. Linezolid and mupirocin resistance was observed, yet mupirocin is not commonly used in the country. Mutations within resistance genes were also detected and the pathogenicity toward the human host matched various pathogenic global S. aureus families, e.g., S. aureus subsp. aureus USA300. Multidrug efflux transporters, important in antimicrobial resistance including restriction enzymes type I and type IV were detected. Plasmids identified showed similarities with the plasmids in other clinically significant non-staphylococcal species, such as Pseudomonas aeruginosa, Escherichia coli, Morganella morganii, and Enterococcus faecium. Both STs belong to clonal complex 8 (CC8) which is the most successful MRSA clone in Kenya. Spa type t30 to which ST 7635 belongs has not been reported in the country. The results of this study further highlight the need for epidemiological studies to reveal circulating strains and antimicrobial resistance spread between hospitals and the community. The genomic research highlights resistance to anti-staphylococcal broad-spectrum antimicrobials not used frequently in the country, jeopardizing successful MRSA treatment since most health facilities do not perform genotypic resistance tests for routine patient management. Preliminary insights into unidentified STs of CA-MRSA in Kenya show the need for molecular epidemiological surveillance studies to further understand the diversity of S. aureus in Africa. | 2022 | 36226152 |
| 5683 | 9 | 0.9998 | Association between antimicrobial resistance among Enterobacteriaceae and burden of environmental bacteria in hospital acquired infections: analysis of clinical studies and national reports. BACKGROUND: WHO has named three groups of gram-negative bacteria "our critical antimicrobial resistance-related problems globally". It is thus a priority to unveil any important covariation of variables behind this three-headed epidemic, which has gained alarming proportions in Low Income Countries, and spreads rapidly. Environmental bacteria including Acinetobacter spp. are common nosocomial pathogens in institutions that have high rates of antimicrobial resistance among other groups of gram-negative bacteria. METHODS: Based on two different data sources, we calculated the correlation coefficient (Pearson's r) between pathogenic burden of Acinetobacter spp. and antimicrobial resistance among Enterobacteriaceae in European and African nosocomial cohorts. CLINICAL REPORTS: Database search for studies on nosocomial sepsis in Europe and Africa was followed by a PRISMA-guided selection process. NATIONAL REPORTS: Data from Point prevalence survey of healthcare-associated infections published by European Centre for Disease Prevention and Control were used to study the correlation between prevalence of Acinetobacter spp. and antimicrobial resistance among K. pneumoniae in blood culture isolates. FINDINGS: The two approaches both revealed a strong association between prevalence of Acinetobacter spp. and rates of resistance against 3. generation cephalosporins among Enterobacteriaceae. In the study of clinical reports (13 selected studies included), r was 0.96 (0.80-0.99) when calculated by proportions on log scale. Based on national reports, r was 0.80 (0.56-0.92) for the correlation between resistance rates of K. pneumoniae and proportion of Acinetobacter spp. INTERPRETATION: The critical antimicrobial resistance-related epidemics that concern enteric and environmental gram-negative bacteria are not independent epidemics; they have a common promoting factor, or they are mutually supportive. Further, accumulation of antimicrobial resistance in nosocomial settings depends on the therapeutic environment. Burden of Acinetobacter spp. as defined here is a candidate measure for this dependence. | 2019 | 31372534 |
| 5715 | 10 | 0.9998 | Genomic Characterization of Mobile Genetic Elements Associated with Multidrug-Resistant Acinetobacter Non-baumannii Species from Southern Thailand. This study investigated the genetic diversity, antimicrobial resistance profiles, and virulence characteristics of Acinetobacter non-baumannii isolates obtained from four hospitals in southern Thailand. Clinical data, genome information, and average nucleotide identity (ANI) were analyzed for eight isolates, revealing diverse genetic profiles and novel sequence types (STs). Minimum spanning tree analysis indicated potential clonal spread of certain STs across different geographic regions. Antimicrobial resistance genes (ARGs) were detected in all isolates, with a high prevalence of genes conferring resistance to carbapenems, highlighting the challenge of antimicrobial resistance in Acinetobacter spp. infections. Mobile genetic elements (MGEs) carrying ARGs were also identified, emphasizing the role of horizontal gene transfer in spreading resistance. Evaluation of virulence-associated genes revealed a diverse range of virulence factors, including those related to biofilm formation and antibiotic resistance. However, no direct correlation was found between virulence-associated genes in Acinetobacter spp. and specific clinical outcomes, such as infection severity or patient mortality. This complexity suggests that factors beyond gene presence may influence disease progression and outcomes. This study emphasizes the importance of continued surveillance and molecular epidemiological studies to combat the spread of multidrug-resistant (MDR) Acinetobacter non-baumannii strains. The findings provide valuable insights into the epidemiology and genetic characteristics of this bacteria in southern Thailand, with implications for infection control and antimicrobial management efforts. | 2024 | 38391535 |
| 5564 | 11 | 0.9998 | Epidemiology of the colonization and acquisition of methicillin-resistant staphylococci and vancomycin-resistant enterococci in dogs hospitalized in a clinic veterinary hospital in Spain. Antibiotic resistance is one of the biggest threats to human and animal health. Methicillin-resistant Staphylococcus spp. (MRS) and vancomycin-resistant Enterococcus spp. (VRE) are of increasing importance in hospital and/or nosocomial infections and represent a potential risk of transmission to humans from infected or colonized companion animals. Studies on the risk factors associated with colonization by multiresistant bacteria in animals are scarce. The present study aimed to estimate the prevalence and incidence of MRS and VRE in canine patients hospitalized in a veterinary hospital and to identify the risk factors for its acquisition and persistence. Nasal and perianal swabs were obtained from 72 dogs. Antimicrobial susceptibility assays and molecular detection of mecA and van genes were performed. A prevalence of 13.9% and incidence of 26.5% was observed in dogs colonized by MRS at hospital admission and release, respectively, higher values than those described in most veterinary studies. Thirty-five Staphylococcus isolates had mecA gene and showed higher resistance levels to most of the antimicrobials evaluated. Previous and concomitant use of antibiotics and corticosteroids has been associated with an increase in MRS colonization. The use of antibiotics in other animals living with the canine patients has also been identified as an associated factor, suggesting cross transmission. The presence of van-resistant genes from Enterococcus spp. was not detected. Pets should be considered possible vehicles of transmission and reservoirs for MRS bacteria and veterinary hospitals should be considered high-risk environments for the occurrence and spread of nosocomial infections and resistant bacteria. | 2020 | 32535110 |
| 5518 | 12 | 0.9998 | Analysis of Resistance Gene Prevalence in Whole-Genome Sequenced Enterobacteriales from Brazil. Enterobacteriales is an order of bacteria responsible for community and hospital-acquired infections related to high rates of antimicrobial resistance and increased treatment costs, morbidity, and mortality globally. The aims of this study were to analyze the frequency of the resistance genes detected and distribution over the years and sources of isolation in sequenced Enterobacteriales strains isolated in Brazil and available at the Pathogen Detection website. The presence of resistance genes was analyzed in 1,507 whole-genome sequenced strains of 19 Enterobacteriales species. A total of 58.0% of the strains presented resistance genes to at least one antimicrobial class and 684 strains presented a multidrug-resistant (MDR) profile. Resistance genes to 14 classes of antimicrobials were detected. Aminoglycosides presented the most prevalent and diverse resistance genes, while the sulfonamide resistance gene, sul2, was the most prevalent among the strains studied. The presence of resistance genes from 14 different antimicrobial classes, the high levels of MDR strains, and the detection of genes related to clinical and veterinary-used drugs reinforce the necessity of more efficient control measures. Moreover, it warns for the necessity of the rational use of antimicrobials in veterinary and clinical situations in Brazil, since contaminated food may act as a vehicle for human infections. | 2020 | 31746671 |
| 5513 | 13 | 0.9998 | The genetic background of antibiotic resistance among clinical uropathogenic Escherichia coli strains. The spreading mechanisms of antibiotic resistance are related to many bacterial and environment factors. The overuse of antibiotics is leading to an unceasing emergence of new multidrug resistant strains. This problem also concerns uropathogenic Escherichia coli strains, which is the most common pathogen causing urinary tract infections. The aim of this study was the genetic analysis of antibiotic resistance in comparison to the phenotypic background of E. coli strains. The characterized collection of E. coli strains isolated 10 years ago from the urine samples of patients with urinary tract infections was used for antimicrobial susceptibility testing (the disc diffusion method) and analysis of antibiotic resistance genes (PCR reaction, sequencing). Additionally, the presence of ESBL strains was analyzed. Fourteen genes were associated with resistance to beta-lactams, aminoglycosides, sulfonamides and quinolones. The genetic analysis revealed that bla(TEM-1) and sul2 were present in almost all of the studied strains. Other drug-resistance genes were very rare or non-existent. Otherwise, the phenotypic resistance to fluoroquinolones was well correlated with the genotypic background of the studied bacteria. The presence of particular genes and specific mutations indicate a high bacterial potential to multidrug resistance. On the other hand, it needs to be emphasized that the standard disk diffusion test for the routine antimicrobial susceptibility analysis is still the best way to estimate the current situation of bacterial drug-resistance. | 2018 | 30008141 |
| 5673 | 14 | 0.9998 | Antimicrobial Resistance, Genetic Lineages, and Biofilm Formation in Pseudomonas aeruginosa Isolated from Human Infections: An Emerging One Health Concern. Pseudomonas aeruginosa (PA) is a leading nosocomial pathogen and has great versatility due to a complex interplay between antimicrobial resistance and virulence factors. PA has also turned into one the most relevant model organisms for the study of biofilm-associated infections. The objective of the study focused on analyzing the antimicrobial susceptibility, resistance genes, virulence factors, and biofilm formation ability of thirty-two isolates of PA. PA isolates were characterized by the following analyses: susceptibility to 12 antimicrobial agents, the presence of resistance genes and virulence factors in PCR assays, and the quantification of biofilm production as evaluated by two distinct assays. Selected PA isolates were analyzed through multilocus sequence typing (MLST). Thirty PA isolates have a multi-resistant phenotype, and most of the isolates showed high levels of resistance to the tested antibiotics. Carbapenems showed the highest prevalence of resistance. Various virulence factors were detected and, for the quantification of biofilm production, the effectiveness of different methods was assessed. The microtiter plate method showed the highest accuracy and reproducibility for detecting biofilm-producing bacteria. MLST revealed four distinct sequence types (STs) in clinical PA, with three of them considered high-risk clones of PA, namely ST175, ST235, and ST244. These clones are associated with multidrug resistance and are prevalent in hospitals worldwide. Overall, the study highlights the high prevalence of antibiotic resistance, the presence of carbapenemase genes, the diversity of virulence factors, and the importance of biofilm formation in PA clinical isolates. Understanding these factors is crucial for effective infection control measures and the development of targeted treatment strategies. | 2023 | 37627668 |
| 5817 | 15 | 0.9998 | Comparative genomics reveals the correlations of stress response genes and bacteriophages in developing antibiotic resistance of Staphylococcus saprophyticus. Staphylococcus saprophyticus is the second most common bacteria associated with urinary tract infections (UTIs) in women. The antimicrobial treatment regimen for uncomplicated UTI is normally nitrofurantoin, trimethoprim-sulfamethoxazole (TMP-SMX), or a fluoroquinolone without routine susceptibility testing of S. saprophyticus recovered from urine specimens. However, TMP-SMX-resistant S. saprophyticus has been detected recently in UTI patients, as well as in our cohort. Herein, we investigated the understudied resistance patterns of this pathogenic species by linking genomic antibiotic resistance gene (ARG) content to susceptibility phenotypes. We describe ARG associations with known and novel SCCmec configurations as well as phage elements in S. saprophyticus, which may serve as intervention or diagnostic targets to limit resistance transmission. Our analyses yielded a comprehensive database of phenotypic data associated with the ARG sequence in clinical S. saprophyticus isolates, which will be crucial for resistance surveillance and prediction to enable precise diagnosis and effective treatment of S. saprophyticus UTIs. | 2023 | 38051037 |
| 1920 | 16 | 0.9998 | Exploring the resistome, virulome, and mobilome of multidrug-resistant Klebsiella pneumoniae isolates: deciphering the molecular basis of carbapenem resistance. BACKGROUND: Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS: The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, bla(NDM,) and bla(OXA), respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS: This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources. | 2024 | 38664636 |
| 5712 | 17 | 0.9998 | Draft Genome Sequences of Three Multidrug-Resistant Staphylococcus spp. Isolated from Hospital Wastewater in Malaysia. Staphylococcus spp. are Gram-positive bacteria that reside within the normal microbiota of humans and animals but pose a health threat as reservoirs of antimicrobial resistance genes. Here, we present the draft genome sequences of three Staphylococcus sp. strains isolated from hospital wastewater in Malaysia that demonstrated resistance to multiple antibiotics. | 2021 | 33958405 |
| 5477 | 18 | 0.9998 | An in-house 45-plex array for the detection of antimicrobial resistance genes in Gram-positive bacteria. Identifying antimicrobial resistance (AMR) genes and determining their occurrence in Gram-positive bacteria provide useful data to understand how resistance can be acquired and maintained in these bacteria. We describe an in-house bead array targeting AMR genes of Gram-positive bacteria and allowing their rapid detection all at once at a reduced cost. A total of 41 AMR probes were designed to target genes frequently associated with resistance to tetracycline, macrolides, lincosamides, streptogramins, pleuromutilins, phenicols, glycopeptides, aminoglycosides, diaminopyrimidines, oxazolidinones and particularly shared among Enterococcus and Staphylococcus spp. A collection of 124 enterococci and 62 staphylococci isolated from healthy livestock animals through the official Belgian AMR monitoring (2018-2020) was studied with this array from which a subsample was further investigated by whole-genome sequencing. The array detected AMR genes associated with phenotypic resistance for 93.0% and 89.2% of the individual resistant phenotypes in enterococci and staphylococci, respectively. Although linezolid is not used in veterinary medicine, linezolid-resistant isolates were detected. These were characterized by the presence of optrA and poxtA, providing cross-resistance to other antibiotics. Rarer, vancomycin resistance was conferred by the vanA or by the vanL cluster. Numerous resistance genes circulating among Enterococcus and Staphylococcus spp. were detected by this array allowing rapid screening of a large strain collection at an affordable cost. Our data stress the importance of interpreting AMR with caution and the complementarity of both phenotyping and genotyping methods. This array is now available to assess other One-Health AMR reservoirs. | 2023 | 36825880 |
| 4967 | 19 | 0.9998 | Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin. BACKGROUND: Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines. RESULTS: The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types. CONCLUSIONS: The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected. | 2024 | 39434132 |