Study of Antimicrobial Resistance, Biofilm Formation, and Motility of Pseudomonas aeruginosa Derived from Urine Samples. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
566201.0000Study of Antimicrobial Resistance, Biofilm Formation, and Motility of Pseudomonas aeruginosa Derived from Urine Samples. Pseudomonas aeruginosa causes urinary tract infections associated with catheters by forming biofilms on the surface of indwelling catheters. Therefore, controlling the spread of the bacteria is crucial to preventing its transmission in hospitals and the environment. Thus, our objective was to determine the antibiotic susceptibility profiles of twenty-five P. aeruginosa isolates from UTIs at the Medical Center of Trás-os-Montes and Alto Douro (CHTMAD). Biofilm formation and motility are also virulence factors studied in this work. Out of the twenty-five P. aeruginosa isolates, 16% exhibited multidrug resistance, being resistant to at least three classes of antibiotics. However, the isolates showed a high prevalence of susceptibility to amikacin and tobramycin. Resistance to carbapenem antibiotics, essential for treating infections when other antibiotics fail, was low in this study, Notably, 92% of the isolates demonstrated intermediate sensitivity to ciprofloxacin, raising concerns about its efficacy in controlling the disease. Genotypic analysis revealed the presence of various β-lactamase genes, with class B metallo-β-lactamases (MBLs) being the most common. The bla(NDM), bla(S)(PM), and bla(VIM-VIM2) genes were detected in 16%, 60%, and 12% of the strains, respectively. The presence of these genes highlights the emerging threat of MBL-mediated resistance. Additionally, virulence gene analysis showed varying prevalence rates among the strains. The exoU gene, associated with cytotoxicity, was found in only one isolate, while other genes such as exoS, exoA, exoY, and exoT had a high prevalence. The toxA and lasB genes were present in all isolates, whereas the lasA gene was absent. The presence of various virulence genes suggests the potential of these strains to cause severe infections. This pathogen demonstrated proficiency in producing biofilms, as 92% of the isolates were found to be capable of doing so. Currently, antibiotic resistance is one of the most serious public health problems, as options become inadequate with the continued emergence and spread of multidrug-resistant strains, combined with the high rate of biofilm production and the ease of dissemination. In conclusion, this study provides insights into the antibiotic resistance and virulence profiles of P. aeruginosa strains isolated from human urine infections, highlighting the need for continued surveillance and appropriate therapeutic approaches.202337317319
196010.9999Phenotypic Investigation and Detection of Biofilm-Associated Genes in Acinetobacter baumannii Isolates, Obtained from Companion Animals. Bacteria of the genus Acinetobacter, especially Acinetobacter baumannii (Ab), have emerged as pathogens of companion animals during the last two decades and are commonly associated with hospitalization and multidrug resistance. A critical factor for the distribution of relevant strains in healthcare facilities, including veterinary facilities, is their adherence to both biotic and abiotic surfaces and the production of biofilms. A group of 41 A. baumannii isolates obtained from canine and feline clinical samples in Greece was subjected to phenotypic investigation of their ability to produce biofilms using the tissue culture plate (TCP) method. All of them (100%) produced biofilms, while 23 isolates (56.1%) were classified as strong producers, 11 (26.8%) as moderate producers, and 7 (17.1%) as weak producers. A correlation between the MDR and XDR phenotypes and weak or moderate biofilm production was identified. Moreover, the presence of four biofilm-associated genes bap, bla(PER), ompA, and csuE was examined by PCR, and they were detected in 100%, 65.9%, 97.6%, and 95.1% of the strains respectively. All isolates carried at least two of the investigated genes, whereas most of the strong biofilm producers carried all four genes. In conclusion, the spread and persistence of biofilm-producing Ab strains in veterinary facilities is a matter of concern, since they are regularly obtained from infected animals, indicating their potential as challenging pathogens for veterinarians due to multidrug resistance and tolerance in conventional eradication measures. Furthermore, considering that companion animals can act as reservoirs of relevant strains, public health concerns emerge.202438787042
190920.9998Multidrug-Resistant Gram-Negative Bacteria and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from the Poultry Farm Environment. The indiscriminate use and overuse of various antibiotics have caused the rapid emergence of antibiotic-resistant bacteria (ARB) in poultry products and the surrounding environment, giving rise to global public health issues. This study aimed to determine the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (GNB) found in the environment of poultry farms and to evaluate the risk of contamination in these farms based on multiple antibiotic resistance (MAR) index values. Soil and effluent samples were collected from 13 poultry farms. The VITEK 2 system was used for bacterial identification and susceptibility testing of the isolates. The identified Gram-negative isolates were Acinetobacter spp., Aeromonas spp., Enterobacter spp., Klebsiella pneumoniae, Proteus spp., Providencia spp., Pseudomonas spp., and Sphingomonas paucimobilis. The results showed that Enterobacter spp., Aeromonas spp., and Providencia spp. exhibited the highest MDR rates and MAR indices; 14% of K. pneumoniae isolates (3/21 isolates) were resistant to 13 antibiotics and found to be extended-spectrum β-lactamase (ESBL)-producing bacteria. As for the tested antibiotics, 96.6% of the isolates (28/29 isolates) demonstrated resistance to ampicillin, followed by ampicillin-sulbactam (55.9% [33/59 isolates]) and cefazolin (54.8% [57/104 isolates]). The high percentage of MDR bacteria and the presence of ESBL-producing K. pneumoniae strains suggested the presence of MDR genes from the poultry farm environment, which poses an alarming threat to the effectiveness of the available antibiotic medicines to treat infectious diseases. Therefore, the use of antibiotics should be regulated and controlled, while studies addressing One Health issues are vital for combating and preventing the development and spread of ARB. IMPORTANCE The occurrence and spread of ARB due to high demand in poultry industries are of great public health concern. The widespread emergence of antibiotic resistance, particularly MDR among bacterial pathogens, poses challenges in clinical treatment. Some pathogens are now virtually untreatable with current antibiotics. However, those pathogens were rarely explored in the environment. In alignment with the concept of One Health, it is imperative to study the rate of resistance in the environment, because this domain plays an important role in the dissemination of bacteria to humans, animals, and other environmental areas. Reliable data on the prevalence of MDR bacteria are crucial to curb the spread of bacterial pathogens that can cause antimicrobial-resistant infections.202235467407
196130.9998Trends in Antimicrobial Resistance of Canine Otitis Pathogens in the Iberian Peninsula (2010-2021). Background: The close relationship between humans and petsraises health concerns due to the potential transmission of antimicrobial-resistant (AMR) bacteria and genes. Bacterial otitis is an emerging health problem in dogs, given its widespread prevalence and impact on animal welfare. Early detection of resistance is vital in veterinary medicine to anticipate future treatment challenges. Objective: This study aimed to determine the prevalence of AMR bacteria involved in 12,498 cases of otitis in dogs from the Iberian Peninsula and the evolution of AMR patterns over an 11-year period. Methods: Data was provided by the Veterinary Medicine Department of a large private diagnostic laboratory in Barcelona. Antimicrobial susceptibility testing was performed using the standard disk diffusion method and minimum inhibitory concentration (MIC) testing. Results: The frequency of the principal bacterial agents was 35% Staphylococcus spp. (principally S. pseudointermedius), 20% Pseudomonas spp. (P. aeruginosa), 13% Streptococcus spp. (S. canis), and 11% Enterobacterales (Escherichia coli and Proteus mirabilis). Antimicrobial susceptibility testing revealed P. aeruginosa (among Gram-negatives) and Enterococcus faecalis (among Gram-positives) as the species with the highest AMR to multiple antimicrobial classes throughout the years. According to the frequency and time evolution of multidrug resistance (MDR), Gram-negative bacteria like P. mirabilis (33%) and E. coli (25%) presented higher MDR rates compared to Gram-positive strains like Corynebacterium (7%) and Enterococcus (5%). The AMR evolution also showed an increase in resistance patterns in Proteus spp. to doxycycline and Streptococcus spp. to amikacin. Conclusions: This information can be useful for clinicians, particularly in this region, to make rational antimicrobial use decisions, especially when empirical treatment is common in companion animal veterinary medicine. In summary, improving treatment guidelines is a key strategy for safeguarding both animal and human health, reinforcing the One Health approach.202540298475
567340.9998Antimicrobial Resistance, Genetic Lineages, and Biofilm Formation in Pseudomonas aeruginosa Isolated from Human Infections: An Emerging One Health Concern. Pseudomonas aeruginosa (PA) is a leading nosocomial pathogen and has great versatility due to a complex interplay between antimicrobial resistance and virulence factors. PA has also turned into one the most relevant model organisms for the study of biofilm-associated infections. The objective of the study focused on analyzing the antimicrobial susceptibility, resistance genes, virulence factors, and biofilm formation ability of thirty-two isolates of PA. PA isolates were characterized by the following analyses: susceptibility to 12 antimicrobial agents, the presence of resistance genes and virulence factors in PCR assays, and the quantification of biofilm production as evaluated by two distinct assays. Selected PA isolates were analyzed through multilocus sequence typing (MLST). Thirty PA isolates have a multi-resistant phenotype, and most of the isolates showed high levels of resistance to the tested antibiotics. Carbapenems showed the highest prevalence of resistance. Various virulence factors were detected and, for the quantification of biofilm production, the effectiveness of different methods was assessed. The microtiter plate method showed the highest accuracy and reproducibility for detecting biofilm-producing bacteria. MLST revealed four distinct sequence types (STs) in clinical PA, with three of them considered high-risk clones of PA, namely ST175, ST235, and ST244. These clones are associated with multidrug resistance and are prevalent in hospitals worldwide. Overall, the study highlights the high prevalence of antibiotic resistance, the presence of carbapenemase genes, the diversity of virulence factors, and the importance of biofilm formation in PA clinical isolates. Understanding these factors is crucial for effective infection control measures and the development of targeted treatment strategies.202337627668
567250.9998Antibiotic Resistance, Biofilm Formation, and Presence of Genes Encoding Virulence Factors in Strains Isolated from the Pharmaceutical Production Environment. The spread of bacterial resistance to antibiotics affects various areas of life. The aim of this study was to assess the occurrence of Pseudomonas aeruginosa, and other bacteria mainly from orders Enterobacterales and Staphylococcus in the pharmaceutical production sites, and to characterize isolated strains in the aspects of antibiotic resistance, biofilm formation, and presence of genes encoding virulence factors. Genes encoding selected virulence factors were detected using PCR techniques. Antimicrobial susceptibility testing was applied in accordance with the EUCAST recommendations. A total of 46 P. aeruginosa strains were isolated and 85% strains showed a strong biofilm-forming ability. The qualitative identification of genes taking part in Quorum Sensing system demonstrated that over 89% of strains contained lasR and rhlI genes. An antimicrobial susceptibility testing revealed nine strains resistant to at least one antibiotic, and two isolates were the metallo-β-lactamase producers. Moreover, the majority of P. aeruginosa strains contained genes encoding various virulence factors. Presence of even low level of pathogenic microorganisms or higher level of opportunistic pathogens and their toxic metabolites might result in the production inefficiency. Therefore, the prevention of microbial contamination, effectiveness of sanitary and hygienic applied protocols, and constant microbiological monitoring of the environment are of great importance.202133513933
570060.9998Gram-negative bacterial colonization in the gut: Isolation, characterization, and identification of resistance mechanisms. BACKGROUND: The gut microbiome is made up of a diverse range of bacteria, especially gram-negative bacteria, and is crucial for human health and illness. There is a great deal of interest in the dynamic interactions between gram-negative bacteria and their host environment, especially considering antibiotic resistance. This work aims to isolate gram-negative bacteria that exist in the gut, identify their species, and use resistance-associated gene analysis to define their resistance mechanisms. METHODS: Samples were collected from all patients who had a stool culture at a tertiary care center in Lebanon. Each type of bacteria that was identified from the stool samples was subjected to critical evaluations, and all discovered strains underwent antimicrobial susceptibility testing. Polymerase chain reaction was used to profile the genes for Carbapenem-resistant Enterobacteriaceae (CRE), Extended-spectrum beta-lactamase (ESBL), and that of Pseudomonas aeruginosa strains. RESULTS: Escherichia coli, Klebsiella species, and Pseudomonas aeruginosa turned out to be the predominant microbiota members. Escherichia coli strains had a high frequency of extended-spectrum beta-lactamase genes, with the most discovered gene being bla CTX-M. Additionally, a considerable percentage of isolates had carbapenemase-resistant Enterobacteriaceae genes, suggesting the rise of multidrug-resistant strains. Multidrug resistance genes, such as bla mexR, bla mexB, and bla mexA, were found in strains of Pseudomonas aeruginosa, highlighting the possible difficulties in treating infections brought on by these bacteria. CONCLUSION: The findings highlight the critical importance of effective surveillance and response measures to maintain the effectiveness of antibiotics considering the introduction of multidrug resistance genes in Pseudomonas aeruginosa and ESBL and CRE genes in Escherichia coli.202439216133
567170.9998Biofilms and antibiotic susceptibility of multidrug-resistant bacteria from wild animals. BACKGROUND: The "One Health" concept recognizes that human health and animal health are interdependent and bound to the health of the ecosystem in which they (co)exist. This interconnection favors the transmission of bacteria and other infectious agents as well as the flow of genetic elements containing antibiotic resistance genes. This problem is worsened when pathogenic bacteria have the ability to establish as biofilms. Therefore, it is important to understand the characteristics and behaviour of microorganisms in both planktonic and biofilms states from the most diverse environmental niches to mitigate the emergence and dissemination of resistance. METHODS: The purpose of this work was to assess the antibiotic susceptibility of four bacteria (Acinetobacter spp., Klebsiella pneumoniae, Pseudomonas fluorescens and Shewanella putrefaciens) isolated from wild animals and their ability to form biofilms. The effect of two antibiotics, imipenem (IPM) and ciprofloxacin (CIP), on biofilm removal was also assessed. Screening of resistance genetic determinants was performed by PCR. Biofilm tests were performed by a modified microtiter plate method. Bacterial surface hydrophobicity was determined by sessile drop contact angles. RESULTS: The susceptibility profile classified the bacteria as multidrug-resistant. Three genes coding for β-lactamases were detected in K. pneumoniae (TEM, SHV, OXA-aer) and one in P. fluorescens (OXA-aer). K. pneumoniae was the microorganism that carried more β-lactamase genes and it was the most proficient biofilm producer, while P. fluorescens demonstrated the highest adhesion ability. Antibiotics at their MIC, 5 × MIC and 10 × MIC were ineffective in total biofilm removal. The highest biomass reductions were found with IPM (54% at 10 × MIC) against K. pneumoniae biofilms and with CIP (40% at 10 × MIC) against P. fluorescens biofilms. DISCUSSION: The results highlight wildlife as important host reservoirs and vectors for the spread of multidrug-resistant bacteria and genetic determinants of resistance. The ability of these bacteria to form biofilms should increase their persistence.201829910986
225380.9998Biofilm Formation and Antibiotic Resistance Profiles in Carbapenemase-Producing Gram-Negative Rods-A Comparative Analysis between Screening and Pathological Isolates. (1) Background: Carbapenem-resistant (CR) bacteria pose a significant global public health challenge due to their ability to evade treatment with beta-lactam antibiotics, including carbapenems. This study investigates the biofilm-forming capabilities of CR clinical bacterial isolates and examines the impact of serum on biofilm formation. Additionally, the study evaluates the resistance profiles and genetic markers for carbapenemase production. (2) Methods: Bacterial isolates were collected from the microbiology laboratory of Mures County Clinical Hospital between October 2022 and September 2023. Pharyngeal and rectal swabs were screened for carbapenem-resistant bacteria using selective media. Lower respiratory tract samples were also analyzed for CR Gram-negative bacteria. The isolates were tested for their ability to form biofilms in the presence and absence of fetal bovine serum at 24 and 48 h. Carbapenemase production was detected phenotypically and confirmed via PCR for relevant genes. (3) Results: Out of 846 screened samples, 4.25% from pharyngeal swabs and 6.38% from rectal swabs tested positive for CR bacteria. Acinetobacter baumannii and Klebsiella pneumoniae were the most common species isolated. Biofilm formation varied significantly between clinical isolates and standard strains, with clinical isolates generally showing higher biofilm production. The presence of serum had no significant effect on biofilm formation in Klebsiella spp., but stimulated biofilm formation for Acinetobacter spp. Carbapenemase genes bla(KPC), bla(OXA-48-like), and bla(NDM) were detected in various isolates, predominantly in Klebsiella spp., but were not the main determinants of carbapenem resistance, at least in screening isolates. (4) Conclusions: This study highlights the variability in biofilm formation among CR clinical isolates and underscores the differences between the bacteria found as carriage versus infection. Both bacterial species and environmental factors variably influence biofilm formation. These insights are crucial for the development of effective treatment and infection control strategies in clinical settings.202439199988
265390.9998The secrets of environmental Pseudomonas aeruginosa in slaughterhouses: Antibiogram profile, virulence, and antibiotic resistance genes. Environmental pollution is a serious problem that can cause sicknesses, fatality, and biological contaminants such as bacteria, which can trigger allergic reactions and infectious illnesses. There is also evidence that environmental pollutants can have an impact on the gut microbiome and contribute to the development of various mental health and metabolic disorders. This study aimed to study the antibiotic resistance and virulence potential of environmental Pseudomonas aeruginosa (P. aeruginosa) isolates in slaughterhouses. A total of 100 samples were collected from different slaughterhouse tools. The samples were identified by cultural and biochemical tests and confirmed by the VITEK 2 system. P. aeruginosa isolates were further confirmed by CHROMagar™ Pseudomonas and genetically by rpsL gene analysis. Molecular screening of virulence genes (fimH, papC, lasB, rhlI, lasI, csgA, toxA, and hly) and antibiotic resistance genes (blaCTX-M, blaAmpC, blaSHV, blaNDM, IMP-1, aac(6')-Ib-, ant(4')IIb, mexY, TEM, tetA, and qnrB) by PCR and testing the antibiotic sensitivity, biofilm formation, and production of pigments, and hemolysin were carried out in all isolated strains. A total of 62 isolates were identified as P. aeruginosa. All P. aeruginosa isolates were multidrug-resistant and most of them have multiple resistant genes. blaCTX-M gene was detected in all strains; 23 (37.1%) strains have the ability for biofilm formation, 33 strains had virulence genes, and 26 isolates from them have more than one virulence genes. There should be probably 60 (96.8%) P. aeruginosa strains that produce pyocyanin pigment. Slaughterhouse tools are sources for multidrug-resistant and virulent pathogenic microorganisms which are a serious health problem. Low-hygienic slaughterhouses could be a reservoir for resistance and virulence genes which could then be transferred to other pathogens.202438091178
5683100.9997Association between antimicrobial resistance among Enterobacteriaceae and burden of environmental bacteria in hospital acquired infections: analysis of clinical studies and national reports. BACKGROUND: WHO has named three groups of gram-negative bacteria "our critical antimicrobial resistance-related problems globally". It is thus a priority to unveil any important covariation of variables behind this three-headed epidemic, which has gained alarming proportions in Low Income Countries, and spreads rapidly. Environmental bacteria including Acinetobacter spp. are common nosocomial pathogens in institutions that have high rates of antimicrobial resistance among other groups of gram-negative bacteria. METHODS: Based on two different data sources, we calculated the correlation coefficient (Pearson's r) between pathogenic burden of Acinetobacter spp. and antimicrobial resistance among Enterobacteriaceae in European and African nosocomial cohorts. CLINICAL REPORTS: Database search for studies on nosocomial sepsis in Europe and Africa was followed by a PRISMA-guided selection process. NATIONAL REPORTS: Data from Point prevalence survey of healthcare-associated infections published by European Centre for Disease Prevention and Control were used to study the correlation between prevalence of Acinetobacter spp. and antimicrobial resistance among K. pneumoniae in blood culture isolates. FINDINGS: The two approaches both revealed a strong association between prevalence of Acinetobacter spp. and rates of resistance against 3. generation cephalosporins among Enterobacteriaceae. In the study of clinical reports (13 selected studies included), r was 0.96 (0.80-0.99) when calculated by proportions on log scale. Based on national reports, r was 0.80 (0.56-0.92) for the correlation between resistance rates of K. pneumoniae and proportion of Acinetobacter spp. INTERPRETATION: The critical antimicrobial resistance-related epidemics that concern enteric and environmental gram-negative bacteria are not independent epidemics; they have a common promoting factor, or they are mutually supportive. Further, accumulation of antimicrobial resistance in nosocomial settings depends on the therapeutic environment. Burden of Acinetobacter spp. as defined here is a candidate measure for this dependence.201931372534
5513110.9997The genetic background of antibiotic resistance among clinical uropathogenic Escherichia coli strains. The spreading mechanisms of antibiotic resistance are related to many bacterial and environment factors. The overuse of antibiotics is leading to an unceasing emergence of new multidrug resistant strains. This problem also concerns uropathogenic Escherichia coli strains, which is the most common pathogen causing urinary tract infections. The aim of this study was the genetic analysis of antibiotic resistance in comparison to the phenotypic background of E. coli strains. The characterized collection of E. coli strains isolated 10 years ago from the urine samples of patients with urinary tract infections was used for antimicrobial susceptibility testing (the disc diffusion method) and analysis of antibiotic resistance genes (PCR reaction, sequencing). Additionally, the presence of ESBL strains was analyzed. Fourteen genes were associated with resistance to beta-lactams, aminoglycosides, sulfonamides and quinolones. The genetic analysis revealed that bla(TEM-1) and sul2 were present in almost all of the studied strains. Other drug-resistance genes were very rare or non-existent. Otherwise, the phenotypic resistance to fluoroquinolones was well correlated with the genotypic background of the studied bacteria. The presence of particular genes and specific mutations indicate a high bacterial potential to multidrug resistance. On the other hand, it needs to be emphasized that the standard disk diffusion test for the routine antimicrobial susceptibility analysis is still the best way to estimate the current situation of bacterial drug-resistance.201830008141
1967120.9997Identification of molecular determinants of antibiotic resistance in some fish farms of Ghana. Antimicrobial resistance is a global health challenge caused by the ability of microorganisms including bacteria, fungi, protozoans and viruses to survive the effects of drugs that hitherto were effective against them. This study sought to investigate the presence of antibiotic-resistant bacteria and their corresponding molecular determinants in fish farms of the Central and Western Regions of Ghana. Management practices and antibiotic use at the fish farms were obtained through the administration of a questionnaire. Coliform and Gram-positive bacterial loads of catfish (Clarias gariepinus), tilapia (Oreochromis niloticus) intestinal microbiota, and pond water samples recovered on MacConkey Agar and Mannitol Salt Agar were determined. Bacterial isolates were identified using various biochemical assays. Antibiotic resistance profiles and possible responsible genes of bacterial isolates were determined using the disc diffusion and Polymerase Chain Reaction (PCR) methods respectively. The study revealed that none of the fish farm managers admitted using antibiotics for prevention and treatment of diseases and no major disease outbreak had ever been recorded. Bacterial loads of pond water exceeded the acceptable level of ≤100 E. coli and <10 coliforms per mL for wastewater recommended for use in fish farming. In all, 145 bacterial isolates comprising 99 Gram negative and 46 Gram-positive bacteria were stored and identified. Most isolates were resistant to at least an antibiotic. Both Gram-negative and Gram-positive bacteria were highly resistant to beta-lactam antibiotics with a corresponding high percentage detection of the bla (TEM) gene compared to other classes of antibiotics. This study has revealed the presence of various molecular determinants of antibiotic resistance including bla (TEM), cmIA, qnrS, tetB and bla (CTX-M), in multidrug-resistant bacteria at some fish farms in Ghana. There is the need to increase awareness about risks associated with the misuse and overuse of antibiotics by humans and the potential risk of spread of multi-drug resistant-bacteria in the environment.202236097488
5682130.9997Reservoirs of resistance: polymyxin resistance in veterinary-associated companion animal isolates of Pseudomonas aeruginosa. BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen and a major cause of infections. Widespread resistance in human infections are increasing the use of last resort antimicrobials such as polymyxins. However, these have been used for decades in veterinary medicine. Companion animals are an understudied source of antimicrobial resistant P. aeruginosa isolates. This study evaluated the susceptibility of P. aeruginosa veterinary isolates to polymyxins to determine whether the veterinary niche represents a potential reservoir of resistance genes for pathogenic bacteria in both animals and humans. METHODS AND RESULTS: Clinical P. aeruginosa isolates (n=24) from UK companion animals were compared for antimicrobial susceptibility to a panel of human-associated isolates (n=37). Minimum inhibitory concentration (MIC) values for polymyxin B and colistin in the companion animals was significantly higher than in human isolates (P=0.033 and P=0.013, respectively). Genotyping revealed that the veterinary isolates were spread throughout the P. aeruginosa population, with shared array types from human infections such as keratitis and respiratory infections, suggesting the potential for zoonotic transmission. Whole genome sequencing revealed mutations in genes associated with polymyxin resistance and other antimicrobial resistance-related genes. CONCLUSION: The high levels of resistance to polymyxin shown here, along with genetic similarities between some human and animal isolates, together suggest a need for sustained surveillance of this veterinary niche as a potential reservoir for resistant, clinically relevant bacteria in both animals and humans.201931239295
2571140.9997Multidrug-resistant Enterobacter spp. in wastewater and surface water: Molecular characterization of β-lactam resistance and metal tolerance genes. Among the ESKAPE group pathogens, Enterobacter spp. is an opportunistic Gram-negative bacillus, widely dispersed in the environment, that causes infections. In the present study, samples of hospital wastewater, raw and treated urban wastewater, as well as surface receiving water, were collected to assess the occurrence of multidrug-resistant (MDR) Enterobacter spp. A molecular characterization of β-lactam antibiotic resistance and metal tolerance genes was performed. According to identification by MALDI-TOF MS, 14 isolates were obtained: 7 E. bugandensis, 5 E. kobei, and 2 E. cloacae. The isolates showed resistance mainly to β-lactam antibiotics, including those used to treat infections caused by MDR bacteria. Multiple antibiotic resistance index was calculated for all isolates. It allowed verify whether sampling points showed a high risk due to antibiotic resistant Enterobacter spp., as well as to determine if the isolates have been in environments with a frequent antibiotic use. Twelve isolates showed β-lactam antibiotic resistance gene, being the bla(KPC) widely detected. Regarding metal tolerance, 13 isolates showed at least two genes that encode metal tolerance mechanisms. Overall, metal tolerance mechanisms to silver, copper, mercury, arsenic and tellurium were found. New data on metal tolerance mechanisms dispersion and antibiotic-resistance characterization of the E. bugandensis and E. kobei species were here provided. The occurrence of MDR Enterobacter spp. in analyzed samples draws attention to an urgent need to put control measures into practice. It also evidences waterborne spread of clinically important antibiotic-resistant bacteria recognized as critical priority pathogens.202337356524
2315150.9997The Profile of Bacterial Infections in a Burn Unit during and after the COVID-19 Pandemic Period. Infections represent a major complication for burn-injured patients. The aim of this study was to highlight the changes in the incidence and antimicrobial resistance of bacterial strains isolated from burn patients, at the end of the COVID-19 pandemic, in relation to the antibiotics used during the pandemic. A comparative analysis of the demographic data and the microorganisms identified in the clinical samples of two groups of burn patients admitted to a university hospital in Romania was carried out. The first group consisted of 48 patients and the second of 69 patients, hospitalized in January-August 2020 and 2023, respectively. The bacterial species with the highest incidence were S. aureus, A. baumannii, Pseudomonas spp. The significant changes between 2023 and 2020 are reflected in the increase in the frequency of non-fermentative Gram-negative bacteria, especially S. maltophilia, and the increase in antimicrobial resistance of Pseudomonas and Klebsiella spp. Klebsiella spp. did not change in frequency (7%), but there was a significant increase in the incidence of K. pneumoniae strains with pan-drug resistant behaviour to antibiotics (40%), including colistin. The phenomenon can be explained by the selection of specimens carrying multiple resistance genes, as a result of antibiotic treatment during the COVID-19 period. The post-pandemic antimicrobial resistance detected in burn patients indicates the need for permanent surveillance of the resistance trends, primarily due to the limited therapeutic options available for these patients.202439334997
1908160.9997Hospital sewage in Brazil: a reservoir of multidrug-resistant carbapenemase-producing Enterobacteriaceae. The One Health concept recognizes that human health is clearly linked to the health of animals and the environment. Infections caused by bacteria resistant to carbapenem antibiotics have become a major challenge in hospitals due to limited therapeutic options and consequent increase in mortality. In this study, we investigated the presence of carbapenem-resistant Enterobacteriaceae in 84 effluent samples (42 from hospital and 42 from non-hospital) from Campo Grande, midwest Brazil. First, sewage samples were inoculated in a selective culture medium. Bacteria with reduced susceptibility to meropenem and ertapenem were then identified and their antimicrobial susceptibility was determined using the Vitek-2 system. The blaKPC genes were detected using PCR and further confirmed by sequencing. Carbapenem-resistant Enterobacteriaceae (CRE) were identified in both hospital (n=32) and non-hospital effluent (n=16), with the most common being Klebsiella pneumoniae and of the Enterobacter cloacae complex species. This is the first study to indicate the presence of the blaKPC-2 gene in carbapenem-resistant Enterobacteriaceae, classified as a critical priority by the WHO, in hospital sewage in this region. The dissemination of carbapenem antibiotic-resistant genes may be associated with clinical pathogens. Under favorable conditions and microbial loads, resistant bacteria and antimicrobial-resistance genes found in hospital sewage can disseminate into the environment, causing health problems. Therefore, sewage treatment regulations should be implemented to minimize the transfer of antimicrobial resistance from hospitals.202438985067
5661170.9997Detection of β-Lactamase Resistance and Biofilm Genes in Pseudomonas Species Isolated from Chickens. Bacteria of the genus Pseudomonas are pathogens in both humans and animals. The most prevalent nosocomial pathogen is P. aeruginosa, particularly strains with elevated antibiotic resistance. In this study, a total of eighteen previously identified Pseudomonas species strains, were isolated from chicken. These strains were screened for biofilm formation and antibiotic resistance. In addition, we evaluated clove oil’s effectiveness against Pseudomonas isolates as an antibiofilm agent. The results showed that Pseudomonas species isolates were resistant to most antibiotics tested, particularly those from the β-lactamase family. A significant correlation (p < 0.05) between the development of multidrug-resistant isolates and biofilms is too informal. After amplifying the AmpC-plasmid-mediated genes (blaCMY, blaMIR, DHA, and FOX) and biofilm-related genes (psld, rhlA, and pelA) in most of our isolates, PCR confirmed this relationship. Clove oil has a potent antibiofilm effect against Pseudomonas isolates, and may provide a treatment for bacteria that form biofilms and are resistant to antimicrobials.202236296251
2255180.9997Diversity and metallo-β-lactamase-producing genes in Pseudomonas aeruginosa strains isolated from filters of household water treatment systems. The microbiological quality of drinking water has long been a critical element in public health. Considering the high clinical relevance of Pseudomonas aeruginosa, we examined the filters of household water treatment systems for its presence and characteristics to determine the systems' efficiency in eliminating the bacteria. In total, filters of 50 household water treatment systems were examined. Microbiological and molecular methods were used for the detection and confirmation of P. aeruginosa isolates. Random Amplification of Polymorphic DNA-polymerase chain reaction (RAPD-PCR) was performed to detect similarities and differences among P. aeruginosa isolates. Combined disk (CD) method and double disk synergy test (DDST) were performed to detect metallo-beta-lactamase (MBL)-producing P. aeruginosa isolates. Finally, PCR was performed to detect MBL genes in MBL-producing strains. From the 50 analyzed systems, 76 colonies of P. aeruginosa were identified. In some systems, isolated bacteria from different filters harbored similar genetic profiles, indicating that these isolates may be able to pass through the filter and reach higher filters of the system. Phenotypic tests revealed 7 (9.2%) MBL-producing strains. Two isolates were positive for bla(VIM-1), whereas one isolate was positive for bla(NDM) and bla(IMP-1). The wide distribution of resistant phenotypes and genetic plasticity of these bacteria in household water treatment systems indicate that resistance mechanisms circulate among P. aeruginosa isolates in the environment of the filtration systems. The presence of MBL-producing genes in these systems and P. aeruginosa as a potential reservoir of these resistance genes can be a major concern for public health.201930368151
5512190.9997Incidence and diversity of antimicrobial multidrug resistance profiles of uropathogenic bacteria. The aim of this study was to assess the most frequent multidrug resistant (MDR) profiles of the main bacteria implicated in community-acquired urinary tract infections (UTI). Only the MDR profiles observed in, at least, 5% of the MDR isolates were considered. A quarter of the bacteria were MDR and the most common MDR profile, including resistance to penicillins, quinolones, and sulfonamides (antibiotics with different mechanisms of action, all mainly recommended by the European Association of Urology for empirical therapy of uncomplicated UTI), was observed, alone or in association with resistance to other antimicrobial classes, in the main bacteria implicated in UTI. The penicillin class was included in all the frequent MDR profiles observed in the ten main bacteria and was the antibiotic with the highest prescription during the study period. The sulfonamides class, included in five of the six more frequent MDR profiles, was avoided between 2000 and 2009. The results suggest that the high MDR percentage and the high diversity of MDR profiles result from a high prescription of antibiotics but also from antibiotic-resistant genes transmitted with other resistance determinants on mobile genetic elements and that the UTI standard treatment guidelines must be adjusted for the community of Aveiro District.201525834814