# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5657 | 0 | 1.0000 | Biofilm and Antibiotic Resistance Study of Bacteria Involved in Nosocomial Infections. Nosocomial infections are increasingly problematic due to growing bacterial resistance. Biofilms play a key role in the persistence of these infections, leading to treatment failures and poor patient outcomes. Addressing antibiotic resistance within biofilms is especially critical in hospitals, making it essential to develop new strategies to manage biofilm-related infections and curb bacterial resistance. The study, conducted at the regional hospital center in Agadir, Morocco, analyzed 75 bacteria (37 antibiotic-sensitive and 38 resistant). Seven bacteria were isolated from catheters, and others from preserved samples. Biofilm formation was assessed using the tissue culture plate (TCP) method, involving strain recovery; culture on cystine, lactose, electrolyte-deficient (CLED) medium; microplate inoculation; staining with crystal violet; and optical density (OD) measurement. The results showed that 77.33% of the bacteria formed biofilms. All catheter-isolated bacteria showed biofilm formation. Strong biofilm production was observed in 66.67% of Acinetobacter baumannii and in most Pseudomonas aeruginosa strains. Enterobacteriaceae also demonstrated significant biofilm formation. Notably, 70% of carbapenem-resistant bacteria showed strong biofilm production. Most nosocomial bacteria form biofilms, with a higher prevalence in antibiotic-resistant strains. Sensitive bacteria also form biofilms but less frequently. Bacterial conjugation may facilitate the acquisition of carbapenem resistance within biofilms. | 2025 | 39926624 |
| 5672 | 1 | 0.9998 | Antibiotic Resistance, Biofilm Formation, and Presence of Genes Encoding Virulence Factors in Strains Isolated from the Pharmaceutical Production Environment. The spread of bacterial resistance to antibiotics affects various areas of life. The aim of this study was to assess the occurrence of Pseudomonas aeruginosa, and other bacteria mainly from orders Enterobacterales and Staphylococcus in the pharmaceutical production sites, and to characterize isolated strains in the aspects of antibiotic resistance, biofilm formation, and presence of genes encoding virulence factors. Genes encoding selected virulence factors were detected using PCR techniques. Antimicrobial susceptibility testing was applied in accordance with the EUCAST recommendations. A total of 46 P. aeruginosa strains were isolated and 85% strains showed a strong biofilm-forming ability. The qualitative identification of genes taking part in Quorum Sensing system demonstrated that over 89% of strains contained lasR and rhlI genes. An antimicrobial susceptibility testing revealed nine strains resistant to at least one antibiotic, and two isolates were the metallo-β-lactamase producers. Moreover, the majority of P. aeruginosa strains contained genes encoding various virulence factors. Presence of even low level of pathogenic microorganisms or higher level of opportunistic pathogens and their toxic metabolites might result in the production inefficiency. Therefore, the prevention of microbial contamination, effectiveness of sanitary and hygienic applied protocols, and constant microbiological monitoring of the environment are of great importance. | 2021 | 33513933 |
| 5658 | 2 | 0.9998 | Molecular identification and biofilm formation of aerobic and anaerobic coinfection bacterial isolated from cystic fibrosis patients in southwest Iran from 2014 to 2022. BACKGROUND: Coinfections and resistant bacterial infections are more likely to occur in cystic fibrosis patients because their immune systems are weak. The purpose of this study was to identify by molecular means as well as the formation of biofilm of aerobic and anaerobic coinfection bacteria isolated from cystic fibrosis patients in southwest Iran from 2014 to 2022. METHODS: In this investigation, 130 clinical specimens were collected from 130 CF patients by universal primer. Biofilm formation was investigated using the microtiter plate method. Antibiotic resistance was measured using Vitec 2 device. In addition, identification of methicillin-resistant Staphylococcus aureus using genes mecA was performed. MAIN FINDINGS: In aerobic bacteria, Pseudomonas aeruginosa was detected in (32%) of samples. In anaerobic bacteria (16%) Prevotella spp. was the most frequently isolated anaerobe bacteria found in of the CF patients. In this study, 75% of the bacteria could form biofilms, while 23% were unable to biofilm formation. CONCLUSION: In conclusion, P. aeruginosa was found to be the most frequently isolated bacterium from patients with CF, and many of these bacteria could form biofilms. Additionally, the high prevalence of antibiotic resistance indicates the urgent need for increased attention to antibiotic preparation and patient screening concerning bacterial coinfections and the virulence and adhesion factors of these bacteria. Furthermore, the present study demonstrates that the coinfection of bacteria with high antibiotic resistance and a high capacity for biofilm formation can pose a life-threatening risk to CF patients, mainly due to their weakened immune systems. | 2023 | 37566205 |
| 5671 | 3 | 0.9998 | Biofilms and antibiotic susceptibility of multidrug-resistant bacteria from wild animals. BACKGROUND: The "One Health" concept recognizes that human health and animal health are interdependent and bound to the health of the ecosystem in which they (co)exist. This interconnection favors the transmission of bacteria and other infectious agents as well as the flow of genetic elements containing antibiotic resistance genes. This problem is worsened when pathogenic bacteria have the ability to establish as biofilms. Therefore, it is important to understand the characteristics and behaviour of microorganisms in both planktonic and biofilms states from the most diverse environmental niches to mitigate the emergence and dissemination of resistance. METHODS: The purpose of this work was to assess the antibiotic susceptibility of four bacteria (Acinetobacter spp., Klebsiella pneumoniae, Pseudomonas fluorescens and Shewanella putrefaciens) isolated from wild animals and their ability to form biofilms. The effect of two antibiotics, imipenem (IPM) and ciprofloxacin (CIP), on biofilm removal was also assessed. Screening of resistance genetic determinants was performed by PCR. Biofilm tests were performed by a modified microtiter plate method. Bacterial surface hydrophobicity was determined by sessile drop contact angles. RESULTS: The susceptibility profile classified the bacteria as multidrug-resistant. Three genes coding for β-lactamases were detected in K. pneumoniae (TEM, SHV, OXA-aer) and one in P. fluorescens (OXA-aer). K. pneumoniae was the microorganism that carried more β-lactamase genes and it was the most proficient biofilm producer, while P. fluorescens demonstrated the highest adhesion ability. Antibiotics at their MIC, 5 × MIC and 10 × MIC were ineffective in total biofilm removal. The highest biomass reductions were found with IPM (54% at 10 × MIC) against K. pneumoniae biofilms and with CIP (40% at 10 × MIC) against P. fluorescens biofilms. DISCUSSION: The results highlight wildlife as important host reservoirs and vectors for the spread of multidrug-resistant bacteria and genetic determinants of resistance. The ability of these bacteria to form biofilms should increase their persistence. | 2018 | 29910986 |
| 4817 | 4 | 0.9997 | Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Gram-negative microorganisms are a significant cause of infection in both community and nosocomial settings. The increase, emergence, and spread of antimicrobial resistance among bacteria are the most important health problems worldwide. One of the mechanisms of resistance used by bacteria is biofilm formation, which is also a mechanism of virulence. This study analyzed the possible relationship between antimicrobial resistance and biofilm formation among isolates of three Gram-negative bacteria species. Several relationships were found between the ability to form biofilm and antimicrobial resistance, being different for each species. Indeed, gentamicin and ceftazidime resistance was related to biofilm formation in Escherichia coli, piperacillin/tazobactam, and colistin in Klebsiella pneumoniae, and ciprofloxacin in Pseudomonas aeruginosa. However, no relationship was observed between global resistance or multidrug-resistance and biofilm formation. In addition, compared with other reported data, the isolates in the present study showed higher rates of antimicrobial resistance. In conclusion, the acquisition of specific antimicrobial resistance can compromise or enhance biofilm formation in several species of Gram-negative bacteria. However, multidrug-resistant isolates do not show a trend to being greater biofilm producers than non-multiresistant isolates. | 2019 | 30142035 |
| 4745 | 5 | 0.9997 | Determination of Antimicrobial Resistance and the Impact of Imipenem + Cilastatin Synergy with Tetracycline in Pseudomonas aeruginosa Isolates from Sepsis. Pseudomonas aeruginosa is among the most ubiquitous bacteria in the natural world, exhibiting metabolic and physiological versatility, which makes it highly adaptable. Imipenem + cilastatin and tetracycline are antibiotic combinations commonly used to treat infections caused by P. aeruginosa, including serious infections such as sepsis. In the context of bacterial infections, biofilm, formed by bacterial cells surrounded by extracellular substances forming a matrix, plays a pivotal role in the resistance of P. aeruginosa to antibiotics. This study aimed to characterize a representative panel of P. aeruginosa isolates from septicemias, assessing their susceptibility to various antibiotics, specifically, imipenem + cilastatin and tetracycline, and the impact of these treatments on biofilm formation. Results from antibiotic susceptibility tests revealed sensitivity in most isolates to six antibiotics, with four showing near or equal to 100% sensitivity. However, resistance was observed in some antibiotics, albeit at minimal levels. Notably, tetracycline showed a 100% resistance phenotype, while imipenem + cilastatin predominantly displayed an intermediate phenotype (85.72%), with some resistance (38.1%). Microdilution susceptibility testing identified effective combinations against different isolates. Regarding biofilm formation, P. aeruginosa demonstrated the ability to produce biofilms. The staining of microtiter plates confirmed that specific concentrations of imipenem + cilastatin and tetracycline could inhibit biofilm production. A significant proportion of isolates exhibited resistance to aminoglycoside antibiotics because of the presence of modifying genes (aac(3)-II and aac(3)-III), reducing their effectiveness. This study also explored various resistance genes, unveiling diverse resistance mechanisms among P. aeruginosa isolates. Several virulence genes were detected, including the las quorum-sensing system genes (lasI and lasR) in a significant proportion of isolates, contributing to virulence factor activation. However, genes related to the type IV pili (T4P) system (pilB and pilA) were found in limited isolates. In conclusion, this comprehensive study sheds light on the intricate dynamics of P. aeruginosa, a remarkably adaptable bacterium with a widespread presence in the natural world. Our findings provide valuable insights into the ongoing battle against P. aeruginosa infections, highlighting the need for tailored antibiotic therapies and innovative approaches to combat biofilm-related resistance. | 2023 | 38004699 |
| 5673 | 6 | 0.9997 | Antimicrobial Resistance, Genetic Lineages, and Biofilm Formation in Pseudomonas aeruginosa Isolated from Human Infections: An Emerging One Health Concern. Pseudomonas aeruginosa (PA) is a leading nosocomial pathogen and has great versatility due to a complex interplay between antimicrobial resistance and virulence factors. PA has also turned into one the most relevant model organisms for the study of biofilm-associated infections. The objective of the study focused on analyzing the antimicrobial susceptibility, resistance genes, virulence factors, and biofilm formation ability of thirty-two isolates of PA. PA isolates were characterized by the following analyses: susceptibility to 12 antimicrobial agents, the presence of resistance genes and virulence factors in PCR assays, and the quantification of biofilm production as evaluated by two distinct assays. Selected PA isolates were analyzed through multilocus sequence typing (MLST). Thirty PA isolates have a multi-resistant phenotype, and most of the isolates showed high levels of resistance to the tested antibiotics. Carbapenems showed the highest prevalence of resistance. Various virulence factors were detected and, for the quantification of biofilm production, the effectiveness of different methods was assessed. The microtiter plate method showed the highest accuracy and reproducibility for detecting biofilm-producing bacteria. MLST revealed four distinct sequence types (STs) in clinical PA, with three of them considered high-risk clones of PA, namely ST175, ST235, and ST244. These clones are associated with multidrug resistance and are prevalent in hospitals worldwide. Overall, the study highlights the high prevalence of antibiotic resistance, the presence of carbapenemase genes, the diversity of virulence factors, and the importance of biofilm formation in PA clinical isolates. Understanding these factors is crucial for effective infection control measures and the development of targeted treatment strategies. | 2023 | 37627668 |
| 5659 | 7 | 0.9997 | Pseudomonas aeruginosa clinical isolates in Egypt: phenotypic, genotypic, and antibiofilm assessment of Pluronic F-127. BACKGROUND: Virulence factors play an important role in developing bacterial resistance leading to the increased severity of Pseudomonas aeruginosa infections. Several genes encoding for virulence factors is coordinated by the quorum sensing (QS) system. In the present study, the prevalence of virulence genes, particularly those involved in controlling biofilm formation, and their correlation with antibiotic resistance patterns was investigated. The ability of the pathogens to form biofilm and the impact of Pluronic F-127 as a potential biofilm inhibitor was assessed. RESULTS: A total of 118 P. aeruginosa clinical isolates were collected. The highest resistance rates were observed against ceftazidime (94%), while colistin was the most effective followed by polymyxin B with sensitivity rate 72% and 59%, respectively. Out of 118 isolates: 111 (94%) were biofilm producers, 24.6% of them were strong. The QS genes; lasR and rhlR, were detected in 85% and 89% of the isolates, respectively, toxA gene in 95% and ampC gene in 69% of the isolates. Pluronic F-127 was confirmed as a biofilm inhibitor in lowest concentration used 1.25 mg/ml which inhibits 78% of strong biofilm forming isolates and has better effect on detachment of established biofilm by 90% of biofilm forming isolates. CONCLUSION: The ability of bacteria to form biofilms contributes greatly to the development of antibiotic resistance, which leads to the occurrence of persistent and chronic bacterial illnesses. Many isolates exhibited moderate to strong biofilm forming ability, which showed a high resistance pattern. The results demonstrated that Pluronic F-127 has a promising level of biofilm inhibition and detachment in most isolates. It has a chance to serve as a substitute means for combating biofilm formation. | 2025 | 40281406 |
| 5656 | 8 | 0.9997 | Prevalence of silver resistance in bacteria isolated from diabetic foot ulcers and efficacy of silver-containing wound dressings. Silver dressings are used to manage wounds at risk of infection or locally infected. This in vitro study was conducted to assess the prevalence of silver resistance genes in 112 bacterial isolates obtained from the diabetic foot ulcers of patients attending the Diabetic Foot Clinic at Tameside General Hospital, UK. Using polymerase chain reaction to screen for three silver-resistance transcriptional units--silE, silS and silP--two silver-resistant bacteria were identified; both are strains of Enterobacter cloacae, an organism rarely implicated as a primary pathogen in chronic wounds. No recognized wound pathogens (Staphylococcus aureus-24 isolates and Pseudomonas aeruginosa-nine isolates) were found to contain silver-resistant genes. Analysis of the efficacy of silver-containing dressings on the silver-resistant strains of Enterobacter cloacae using confocal laser microscopy showed that, despite evidence of genetic resistance to silver, all strains were killed following a maximum of 48 hours of exposure to the dressings. Results suggest that presence of silver resistance genes is rare and that genetic resistance does not necessarily translate to phenotypic resistance to silver. While silver resistance in wound care should be monitored, the threat of widespread resistance is low and silver-containing dressings remain an extremely important tool in managing wound infection. | 2008 | 18382046 |
| 5674 | 9 | 0.9997 | Evaluation of Resistance by Clinically Pathogenic Bacteria to Antimicrobials and Common Disinfectants in Beijing, China. BACKGROUND: Antibiotic resistance of pathogenic bacteria is well recognized among clinicians; however, studies that directly evaluate the bacterial resistance to commonly used disinfectants in clinical settings are lacking. Currently available reports focus on the resistance of single strains to single disinfectants and do not adequately examine the degree of resistance and cross-resistance to antimicrobials in the large-scale clinical use of disinfectants. METHODS: We investigated the resistance capacity to 11 antibiotics and 7 chemical disinfectants by bacterial strains collected from body fluids of patients in 10 hospitals in Beijing, China over a 1-year period. Bacterial resistance to disinfectants was tested using minimum inhibitory concentration and minimum bactericidal concentration using agar dilution methods based on commercially available reference strains. RESULTS: A total of 1,104 pathogenic strains were identified, of which 23% were Gram-positive bacteria, 74% were Gram-negative bacteria, and 3% were fungi. Overall, resistance to antibiotics for the most common strains was significantly higher than their resistance to disinfectants. The least effective antibiotics and disinfectants were aztreonam and glutaral, respectively, exhibiting the highest overall resistance rates; while amikacin and alcohol had the lowest resistance rates. Consistently, Acinetobacter baumannii exhibited the most resistance, while Escherichia coli had the least resistance for both antibiotics and disinfectants. CONCLUSIONS: Based on the pathogen spectrum for bacterial infective pathogens evaluated in this study, as well as the status quo of their resistance to antimicrobial agents and common clinical disinfectants, it is essential for healthcare professionals to pay attention not only to the standardized use of antimicrobial agents but also to the rational application of disinfectants. | 2018 | 30568055 |
| 5662 | 10 | 0.9997 | Study of Antimicrobial Resistance, Biofilm Formation, and Motility of Pseudomonas aeruginosa Derived from Urine Samples. Pseudomonas aeruginosa causes urinary tract infections associated with catheters by forming biofilms on the surface of indwelling catheters. Therefore, controlling the spread of the bacteria is crucial to preventing its transmission in hospitals and the environment. Thus, our objective was to determine the antibiotic susceptibility profiles of twenty-five P. aeruginosa isolates from UTIs at the Medical Center of Trás-os-Montes and Alto Douro (CHTMAD). Biofilm formation and motility are also virulence factors studied in this work. Out of the twenty-five P. aeruginosa isolates, 16% exhibited multidrug resistance, being resistant to at least three classes of antibiotics. However, the isolates showed a high prevalence of susceptibility to amikacin and tobramycin. Resistance to carbapenem antibiotics, essential for treating infections when other antibiotics fail, was low in this study, Notably, 92% of the isolates demonstrated intermediate sensitivity to ciprofloxacin, raising concerns about its efficacy in controlling the disease. Genotypic analysis revealed the presence of various β-lactamase genes, with class B metallo-β-lactamases (MBLs) being the most common. The bla(NDM), bla(S)(PM), and bla(VIM-VIM2) genes were detected in 16%, 60%, and 12% of the strains, respectively. The presence of these genes highlights the emerging threat of MBL-mediated resistance. Additionally, virulence gene analysis showed varying prevalence rates among the strains. The exoU gene, associated with cytotoxicity, was found in only one isolate, while other genes such as exoS, exoA, exoY, and exoT had a high prevalence. The toxA and lasB genes were present in all isolates, whereas the lasA gene was absent. The presence of various virulence genes suggests the potential of these strains to cause severe infections. This pathogen demonstrated proficiency in producing biofilms, as 92% of the isolates were found to be capable of doing so. Currently, antibiotic resistance is one of the most serious public health problems, as options become inadequate with the continued emergence and spread of multidrug-resistant strains, combined with the high rate of biofilm production and the ease of dissemination. In conclusion, this study provides insights into the antibiotic resistance and virulence profiles of P. aeruginosa strains isolated from human urine infections, highlighting the need for continued surveillance and appropriate therapeutic approaches. | 2023 | 37317319 |
| 4816 | 11 | 0.9997 | Sub-inhibitory concentrations of colistin and imipenem impact the expression of biofilm-associated genes in Acinetobacter baumannii. Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs. | 2024 | 38489041 |
| 5759 | 12 | 0.9997 | The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria. Urinary tract infections (UTIs) are common bacterial infections caused mainly by enteric bacteria. Numerous virulence factors assist bacteria in the colonization of the bladder. Bacterial efflux pumps also contribute to bacterial communication and to biofilm formation. In this study, the phenotypic and genetic antibiotic resistance of clinical UTI pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were determined by disk diffusion method and polymerase chain reaction (PCR). Following this, different classes of antibiotics were evaluated for their antibacterial activity at pH 5, 6, 7 and 8 by a microdilution method. Gentamicin (GEN) was the most potent antibacterial agent against E. coli strains. The effect of GEN on the relative expression of marR and sdiA genes was evaluated by quantitative PCR. The slightly acidic pH (pH 6) and GEN treatment induced the upregulation of marR antibiotic resistance and sdiA QS activator genes in both E. coli strains. Consequently, bacteria had become more susceptible to GEN. It can be concluded that antibiotic activity is pH dependent and so the artificial manipulation of urinary pH can contribute to a more effective therapy of multidrug resistant bacterial infections. | 2021 | 34943643 |
| 4744 | 13 | 0.9997 | Whole-Genome Sequencing of Resistance, Virulence and Regulation Genes in Extremely Resistant Strains of Pseudomonas aeruginosa. BACKGROUND/OBJECTIVES: Pseudomonas aeruginosa is a clinically significant opportunistic pathogen, renowned for its ability to acquire and develop diverse mechanisms of antibiotic resistance. This study examines the resistance, virulence, and regulatory mechanisms in extensively drug-resistant clinical strains of P. aeruginosa. METHODS: Antibiotic susceptibility was assessed using the Minimum Inhibitory Concentration (MIC) method, and whole-genome sequencing (WGS) was performed on the Illumina NovaSeq platform. RESULTS: The analysis demonstrated a higher prevalence of virulence genes compared to resistance and regulatory genes. Key virulence factors identified included secretion systems, motility, adhesion, and biofilm formation. Resistance mechanisms observed comprised efflux pumps and beta-lactamases, while regulatory systems involved two-component systems, transcriptional regulators, and sigma factors. Additionally, phenotypic profiles were found to correlate with resistance genes identified through genotypic analysis. CONCLUSIONS: This study underscores the significant resistance and virulence of the clinical P. aeruginosa strains analyzed, highlighting the urgent need for alternative strategies to address infections caused by extensively drug-resistant bacteria. | 2025 | 39846701 |
| 5693 | 14 | 0.9997 | Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure. | 2013 | 23129055 |
| 5508 | 15 | 0.9997 | Genomic and phenotypic comparison of environmental and patient-derived isolates of Pseudomonas aeruginosa suggest that antimicrobial resistance is rare within the environment. Patient-derived isolates of the opportunistic pathogen Pseudomonas aeruginosa are frequently resistant to antibiotics due to the presence of sequence variants in resistance-associated genes. However, the frequency of antibiotic resistance and of resistance-associated sequence variants in environmental isolates of P. aeruginosa has not been well studied. Antimicrobial susceptibility testing (ciprofloxacin, ceftazidime, meropenem, tobramycin) of environmental (n=50) and cystic fibrosis (n=42) P. aeruginosa isolates was carried out. Following whole genome sequencing of all isolates, 25 resistance-associated genes were analysed for the presence of likely function-altering sequence variants. Environmental isolates were susceptible to all antibiotics with one exception, whereas patient-derived isolates had significant frequencies of resistance to each antibiotic and a greater number of likely resistance-associated genetic variants. These findings indicate that the natural environment does not act as a reservoir of antibiotic-resistant P. aeruginosa, supporting a model in which antibiotic susceptible environmental bacteria infect patients and develop resistance during infection. | 2019 | 31553303 |
| 5785 | 16 | 0.9996 | Molecular characterization of resistance and biofilm genes of ESKAPE pathogens isolated from clinical samples: examination of the effect of boric acid on biofilm ability by cell culture method. Biofilm formation ranks first among the resistance and virulence factors crucial in forming ESKAPE pathogens. Once biofilm is formed, treating the infection with existing drugs is often futile. Therefore, in this study, resistant ESKAPE pathogens were isolated from intensive care units and sent to Atatürk University Yakutiye Research Hospital Microbiology Laboratory. This study investigated the biofilm formation and molecular characterization of resistant ESKAPE pathogens isolated from intensive care units. The bacteria's biofilm formation abilities, genes responsible for biofilm formation, and resistance characteristics were identified. The effect of boric acid (BA) on resistance and bacterial genes was evaluated by a bacterial infection cell culture model. The highest biofilm formation was observed in Escherichia coli, Enterococcus spp., and Pseudomonas aeruginosa Enterococcus spp. isolates showed the vanA gene in 14.6% and the vanC gene in 61% of the samples. Among Staphylococcus spp. isolates, 48.3% were MSSA, 34.5% were MRCNS, and 17.2% were MRSA. The KPC gene was detected in 50%, the OXA-48 gene in 40%, and the NDM gene in 15% of the isolates. In P. aeruginosa, the LasI and LasR quorum sensing system genes were found in 38.5% and 30.8% of the isolates, respectively. In E. coli isolates, OXA-48 was present in 35%, KPC in 31.7%, and TEM in 12.5%. BA demonstrated significant activity against ESKAPE pathogens. The combined antimicrobial activity of boron compounds showed a decrease in the expression level of the resistance gene. It will be promising for preventing hospital-associated infections. | 2025 | 40025436 |
| 5842 | 17 | 0.9996 | Draft Genome Sequence and Biofilm Production of a Carbapenemase-Producing Klebsiella pneumoniae (KpR405) Sequence Type 405 Strain Isolated in Italy. Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is essential to diagnose severe infections in patients. In clinical routine practice, K. pneumoniae is frequently identified and characterized for outbreak investigation. Pulsed-field gel electrophoresis or multilocus sequence typing could be used, but, unfortunately, these methods are time-consuming, laborious, expensive, and do not provide any information about the presence of resistance and virulence genes. In recent years, the decreasing cost of next-generation sequencing and its easy use have led to it being considered a useful method, not only for outbreak surveillance but also for rapid identification and evaluation, in a single step, of virulence factors and resistance genes. Carbapenem-resistant strains of K. pneumoniae have become endemic in Italy, and in these strains the ability to form biofilms, communities of bacteria fixed in an extracellular matrix, can defend the pathogen from the host immune response as well as from antibiotics, improving its persistence in epithelial tissues and on medical device surfaces. | 2021 | 34064924 |
| 5156 | 18 | 0.9996 | Pseudomonas aeruginosa strains isolated from animal with high virulence genes content and highly sensitive to antimicrobials. OBJECTIVES: P. aeruginosa is one of the most metabolically versatile bacteria having the ability to survive in multiple environments through its accessory genome. An important hallmark of P. aeruginosa is the high level of antibiotic resistance, which often makes eradication difficult and sometimes impossible. Evolutionary forces have led to this bacterium to develop high antimicrobial resistance with a variety of elements contributing to both intrinsic and acquired resistance. The objectives were to genetically and phenotypically characterizer P. aeruginosa strains isolated from companion animals of different species. METHODS: We characterized a collection of 39 P. aeruginosa strains isolated from infected animals. The genetic characterization was in relation to chromosomal profile by PFGE; content of virulence gene; presence of genomic islands (GIs); genes of the cytotoxins exported by T3SS: exoU, exoS, exoT and exoY; and type IV pili allele. The phenotypic characterization was based on patterns of susceptibility to different antimicrobials. RESULTS: Each strain had a PFGE profile, a high virulence genes content, and a large accessory genome. However, most of the strains presented high sensitivity to almost all antimicrobials tested, showing no acquired resistance (no β-lactamases). The exception to this lack of resistance was seen with penicillin. CONCLUSIONS: P. aeruginosa could be a naturally sensitive bacterium to standard antimicrobials but could rapidly develop intrinsic and acquired resistance when the bacterium is exposed to pressure exerted by antibiotics, as observed in hospital settings. | 2024 | 38452900 |
| 5687 | 19 | 0.9996 | The effect of short-course antibiotics on the resistance profile of colonizing gut bacteria in the ICU: a prospective cohort study. BACKGROUND: The need for early antibiotics in the intensive care unit (ICU) is often balanced against the goal of antibiotic stewardship. Long-course antibiotics increase the burden of antimicrobial resistance within colonizing gut bacteria, but the dynamics of this process are not fully understood. We sought to determine how short-course antibiotics affect the antimicrobial resistance phenotype and genotype of colonizing gut bacteria in the ICU by performing a prospective cohort study with assessments of resistance at ICU admission and exactly 72 h later. METHODS: Deep rectal swabs were performed on 48 adults at the time of ICU admission and exactly 72 h later, including patients who did and did not receive antibiotics. To determine resistance phenotype, rectal swabs were cultured for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). In addition, Gram-negative bacterial isolates were cultured against relevant antibiotics. To determine resistance genotype, quantitative PCR (qPCR) was performed from rectal swabs for 87 established resistance genes. Within-individual changes in antimicrobial resistance were calculated based on culture and qPCR results and correlated with exposure to relevant antibiotics (e.g., did β-lactam antibiotic exposure associate with a detectable change in β-lactam resistance over this 72-h period?). RESULTS: Of 48 ICU patients, 41 (85%) received antibiotics. Overall, there was no increase in the antimicrobial resistance profile of colonizing gut bacteria during the 72-h study period. There was also no increase in antimicrobial resistance after stratification by receipt of antibiotics (i.e., no detectable increase in β-lactam, vancomycin, or macrolide resistance regardless of whether patients received those same antibiotics). This was true for both culture and PCR. Antimicrobial resistance pattern at ICU admission strongly predicted resistance pattern after 72 h. CONCLUSIONS: Short-course ICU antibiotics made little detectable difference in the antimicrobial resistance pattern of colonizing gut bacteria over 72 h in the ICU. This provides an improved understanding of the dynamics of antimicrobial resistance in the ICU and some reassurance that short-course antibiotics may not adversely impact the stewardship goal of reducing antimicrobial resistance. | 2020 | 32646458 |