# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5649 | 0 | 1.0000 | Prevalence and antibiotic resistance profile of mercury-resistant oral bacteria from children with and without mercury amalgam fillings. Genes encoding resistance to mercury and to antibiotics are often carried on the same mobile genetic element and so it is possible that mercury-containing dental materials may select for bacteria resistant to mercury and to antibiotics. The main aim of this study was to determine whether the prevalence of Hg-resistant oral bacteria was greater in children with mercury amalgam fillings than in those without. A secondary aim was to determine whether the Hg-resistant isolates were also antibiotic resistant. Bacteria in dental plaque and saliva from 41 children with amalgam fillings and 42 children without such fillings were screened for mercury resistance by cultivation on a HgCl(2)-containing medium. Surviving organisms were identified and their susceptibility to mercury and to several antibiotics was determined. Seventy-eight per cent and 74% of children in the amalgam group and amalgam-free group, respectively, harboured Hg-resistant bacteria; this difference was not statistically significant. Nor was there any significant difference between the groups in terms of the proportions of Hg-resistant bacteria in the oral microflora of the children. Of Hg-resistant bacteria, 88% and 92% from the amalgam group and the amalgam-free group, respectively, were streptococci; 41% and 33% were resistant to at least one antibiotic, most frequently tetracycline. The results of this study show that there was no significant difference between children with amalgam fillings and those without such fillings with regard to the prevalence, or the proportion, of Hg-resistant bacteria in their oral microflora. The study also found that Hg-resistant bacteria were common in children regardless of whether or not they had amalgam fillings and that many of these organisms were also resistant to antibiotics. | 2002 | 12003971 |
| 3392 | 1 | 0.9998 | Coselection for resistance to multiple late-generation human therapeutic antibiotics encoded on tetracycline resistance plasmids captured from uncultivated stream and soil bacteria. AIMS: Transmissible plasmids captured from stream and soil bacteria conferring resistance to tetracycline in Pseudomonas were evaluated for linked resistance to antibiotics used in the treatment of human infections. METHODS AND RESULTS: Cells released from stream sediments and soils were conjugated with a rifampicin-resistant, plasmid-free Pseudomonas putida recipient and selected on tetracycline and rifampicin. Each transconjugant contained a single 50-80 kb plasmid. Resistance to 11 antibiotics, in addition to tetracycline, was determined for the stream transconjugants using a modification of the Stokes disc diffusion antibiotic susceptibility assay. Nearly half of plasmids conferred resistance to six or more antibiotics. Resistance to streptomycin, gentamicin, and/or ticarcillin was conferred by a majority of the plasmids, and resistance to additional human clinical use antibiotics such as piperacillin/tazobactam, ciprofloxacin and aztreonam was observed. MICs of 16 antibiotics for representative sediment and soil transconjugants revealed large increases, relative to the Ps. putida recipient, for 11 of 16 antibiotics tested, including the expanded spectrum antibiotics cefotaxime and ceftazidime, as well as piperacillin/tazobactam, lomefloxacin and levofloxacin. CONCLUSIONS: Resistance to multiple antibiotics-including those typically used in clinical Pseudomonas and enterobacterial infections-can be conferred by transmissible plasmids in streams and soils. SIGNIFICANCE AND IMPACT OF STUDY: Selective pressure exerted by the use of one antibiotic, such as the common agricultural antibiotic tetracycline, may result in the persistence of linked genes conferring resistance to important human clinical antibiotics. This may impact the spread of resistance to human use antibiotics even in the absence of direct selection. | 2014 | 24797476 |
| 3701 | 2 | 0.9998 | Genetic Determinants for Metal Tolerance and Antimicrobial Resistance Detected in Bacteria Isolated from Soils of Olive Tree Farms. Copper-derived compounds are often used in olive tree farms. In a previous study, a collection of bacterial strains isolated from olive tree farms were identified and tested for phenotypic antimicrobial resistance and heavy metal tolerance. The aim of this work was to study the genetic determinants of resistance and to evaluate the co-occurrence of metal tolerance and antibiotic resistance genes. Both metal tolerance and antibiotic resistance genes (including beta-lactamase genes) were detected in the bacterial strains from Cu-treated soils. A high percentage of the strains positive for metal tolerance genes also carried antibiotic resistance genes, especially for genes involved in resistances to beta-lactams and tetracycline. Significant associations were detected between genes involved in copper tolerance and genes coding for beta-lactamases or tetracycline resistance mechanisms. A significant association was also detected between zntA (coding for a Zn(II)-translocating P-type ATPase) and tetC genes. In conclusion, bacteria from soils of Cu-treated olive farms may carry both metal tolerance and antibiotic resistance genes. The positive associations detected between metal tolerance genes and antibiotic resistance genes suggests co-selection of such genetic traits by exposure to metals. | 2020 | 32756388 |
| 3391 | 3 | 0.9998 | Phenotypic and genotypic analysis of bacteria isolated from three municipal wastewater treatment plants on tetracycline-amended and ciprofloxacin-amended growth media. AIMS: The goal of this study was to determine the antimicrobial susceptibility of bacteria isolated from three municipal wastewater treatment plants. METHODS AND RESULTS: Numerous bacterial strains were isolated from three municipal wastewater treatment facilities on tetracycline- (n=164) and ciprofloxacin-amended (n=65) growth media. These bacteria were then characterized with respect to their resistance to as many as 10 different antimicrobials, the presence of 14 common genes that encode resistance to tetracycline, the presence of integrons and/or the ability to transfer resistance via conjugation. All of the characterized strains exhibited some degree of multiple antimicrobial resistance, with nearly 50% demonstrating resistance to every antimicrobial that was tested. Genes encoding resistance to tetracycline were commonly detected among these strains, although intriguingly the frequency of detection was slightly higher for the bacteria isolated on ciprofloxacin-amended growth media (62%) compared to the bacteria isolated on tetracycline-amended growth media (53%). Class 1 integrons were also detected in 100% of the queried tetracycline-resistant bacteria and almost half of the ciprofloxacin-resistant strains. Conjugation experiments demonstrated that at least one of the tetracycline-resistant bacteria was capable of lateral gene transfer. CONCLUSIONS: Our results demonstrate that multiple antimicrobial resistance is a common trait among tetracycline-resistant and ciprofloxacin-resistant bacteria in municipal wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY: These organisms are potentially important in the proliferation of antimicrobial resistance because they appear to have acquired multiple genetic determinants that confer resistance and because they have the potential to laterally transfer these genetic determinants to strains of clinical importance. | 2010 | 20629799 |
| 5650 | 4 | 0.9998 | High-level trimethoprim resistance in urinary bacteria. The results of a three year evaluation of the incidence and type of trimethoprim resistance in pathogens responsible for significant bacteriuria in a general hospital in Edinburgh UK, are presented and compared to results of a previous study. In the present study, trimethoprim resistance was 50% more frequent in bacteria isolated from men and nearly twice as frequent in bacteria from elderly patients. However, the proportion of trimethoprim resistant strains fell annually when resistance was measured at trimethoprim concentrations of both 10 mg/l and 1000 mg/l. The proportion of strains able to transfer trimethoprim resistance also fell by half, and there was some movement of trimethoprim resistance transposons into the bacterial chromosome. These results suggest that migration of high-level trimethoprim resistance genes into the permanent location of the bacterial chromosome is occurring. | 1986 | 3527699 |
| 5647 | 5 | 0.9998 | Resistance of bacterial isolates from poultry products to therapeutic veterinary antibiotics. Bacterial isolates from poultry products were tested for their susceptibility to 10 antibiotics commonly used in the therapeutic treatment of poultry. Bacteria were isolated from fresh whole broiler carcasses or from cut-up meat samples (breast with or without skin, wings, and thighs) that were either fresh or stored at 4 or 13 degrees C (temperatures relevant to poultry-processing facilities). The Biolog system was used to identify isolates, and a broth dilution method was used to determine the antibiotic resistance properties of both these isolates and complementary cultures from the American Type Culture Collection. The antibiotics to which the most resistance was noted were penicillin G, sulfadimethoxine, and erythromycin; the antibiotic to which the least resistance was noted was enrofloxacin. Individual isolates exhibited resistances to as many as six antibiotics, with the most common resistance pattern involving the resistance of gram-negative bacteria to penicillin G, sulfadimethoxine, and erythromycin. Differences in resistance patterns were noted among 18 gram-positive and 7 gram-negative bacteria, and comparisons were made between species within the same genus. The data obtained in this study provide a useful reference for the species and resistance properties of bacteria found on various raw poultry products, either fresh or stored at temperatures and for times relevant to commercial processing, storage, and distribution. The results of this study show that resistance to antibiotics used for the therapeutic treatment of poultry occurs in bacteria in the processing environment. | 2003 | 12540187 |
| 3394 | 6 | 0.9998 | Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. The Pseudomonas genus, which includes environmental and pathogenic species, is known to present antibiotic resistances, and can receive resistance genes from multi-resistant enteric bacteria released into the environment via faecal rejects. This study was aimed to investigate the resistome of Pseudomonas populations that have been in contact with these faecal bacteria. Thus, faecal discharges originating from human or cattle were sampled (from 12 points and two sampling campaigns) and 41 Pseudomonas species identified (316 isolates studied). The resistance phenotype to 25 antibiotics was determined in all isolates, and we propose a specific antibiotic resistance pattern for 14 species (from 2 to 9 resistances). None showed resistance to aminoglycosides, tetracycline, or polymyxins. Four species carried a very low number of resistances, with none to β-lactams. Interestingly, we observed the absence of the transcriptional activator soxR gene in these four species. No plasmid transfer was highlighted by conjugation assays, and a few class 1 but no class 2 integrons were detected in strains that may have received resistance genes from Enterobacteria. These results imply that the contribution of the Pseudomonas genus to the resistome of an ecosystem first depends on the structure of the Pseudomonas populations, as they may have very different resistance profiles. | 2020 | 31930390 |
| 3398 | 7 | 0.9998 | Ubiquity of R factor-mediated antibiotic resistance in the healthy population. An attempt was made to assess the occurrence of R factor-mediated antibiotic resistance in the healthy population. Samples of aerobic, gram-negative intestinal bacteria from men from various parts of the country at military conscription were analysed for transferable drug resistance. The obtained frequency, about 15% of R factor carriers in the studied group, was interpreted to reflect the existence of a reservoir of R factors, from which resistant, pathogenic bacteria could be selected under antibiotic therapy. Resistance to tetracycline, streptomycin and sulfonamides dominated among the identified R factor-borne resistance traits. | 1977 | 320655 |
| 3393 | 8 | 0.9998 | Antibiotic resistance of gram-negative bacteria in rivers, United States. Bacteria with intrinsic resistance to antibiotics are found in nature. Such organisms may acquire additional resistance genes from bacteria introduced into soil or water, and the resident bacteria may be the reservoir or source of widespread resistant organisms found in many environments. We isolated antibiotic-resistant bacteria in freshwater samples from 16 U.S. rivers at 22 sites and measured the prevalence of organisms resistant to beta-lactam and non-beta-lactam antibiotics. Over 40% of the bacteria resistant to more than one antibiotic had at least one plasmid. Ampicillin resistance genes, as well as other resistance traits, were identified in 70% of the plasmids. The most common resistant organisms belonged to the following genera: Acinetobacter, Alcaligenes, Citrobacter, Enterobacter, Pseudomonas, and Serratia. | 2002 | 12095440 |
| 4473 | 9 | 0.9998 | The genetics of bacterial trimethoprim resistance in tropical areas. Resistance to trimethoprim in Gram-negative bacteria is largely manifested by two trimethoprim resistant dihydrofolate reductases (types I and II) encoded by genes originally located on resistance plasmids. Although trimethoprim resistance increased markedly after the clinical introduction of trimethoprim in the West, its spread has slowed and, in Edinburgh at least, has actually been declining. This reduction has been accompanied by the migration of a transposon, encoding the type I plasmid resistance gene, into the bacterial chromosome. In tropical areas, the incidence of trimethoprim resistance is very much higher. In Tanzania, it has spilled over into other bacteria outside the Enterobacteriaceae, but it was in India where the major problem existed. The majority (64%) of the Indian Enterobacteriaceae studied were resistant to the drug and most of the resistance genes were located on very large plasmids which also conferred resistance to many other antibacterial drugs. Some Indian plasmids carried a new trimethoprim resistance gene which is not detectable by conventional sensitivity tests and may be spreading unnoticed elsewhere. The proportion of trimethoprim resistance has been related to the volume of antibacterial drugs used. | 1987 | 3318025 |
| 4580 | 10 | 0.9998 | Antimicrobial resistance of bacteria isolated from slaughtered and retail chickens in South Africa. Animal feed is increasingly being supplemented with antibiotics to decrease the risk of epidemics in animal husbandry. This practice could lead to the selection for antibiotic resistant micro-organisms. The aim of this study was to determine the level of antibiotic resistant bacteria present on retail and abattoir chicken. Staphylococci, Enterobacteriaceae, Salmonella and isolates from total aerobic plate count were tested for resistance to vancomycin, streptomycin, methicillin, tetracycline and gentamicin using the disc diffusion susceptibility test; resistance to penicillin was determined using oxacillin. Results from the antibiotic code profile indicated that many of the bacterial strains were displaying multiple antibiotic resistance (MAR). A larger proportion of resistance to most antibiotics, except for vancomycin, was displayed by the abattoir samples, therefore suggesting that the incidence of MAR pathogenic bacteria was also higher in the abattoir samples. This resistance spectrum of abattoir samples is a result of farmers adding low doses of antibiotics to livestock feed to improve feeding efficiency so that the animals need less food to reach marketable weight. The lower incidence of MAR pathogenic bacteria in the retail samples is a result of resistance genes being lost due to lack of selective pressure, or to the fact that the resistant flora are being replaced by more sensitive flora during processing. The use of subtherapeutic levels of antibiotics for prophylaxis and as growth promoters remains a concern as the laws of evolution dictate that microbes will eventually develop resistance to practically any antibiotic. Selective pressure exerted by widespread antimicrobial use is therefore the driving force in the development of antibiotic resistance. This study indicated that a large proportion of the bacterial flora on fresh chicken is resistant to a variety of antibiotics, and that resultant food-related infections will be more difficult to treat. | 1998 | 9633089 |
| 3606 | 11 | 0.9998 | Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. The widespread use of antibiotics for medical and veterinary purposes has led to an increase of microbial resistance. The antibiotic resistance of pathogenic bacteria has been studied extensively. However, antibiotics are not only selective for pathogens: they also affect all members of the gut microbiota. These microorganisms may constitute a reservoir of genes carrying resistance to specific antibiotics. This study was designed to characterize the gut microbiota with regard to the presence of genes encoding tetracycline resistance proteins (tet) in the gut of healthy exclusively breast-fed infants and their mothers. For this purpose we determined the prevalence of genes encoding ribosomal protection proteins (tet M, tet W, tet O, tet S, tet T and tet B) by PCR and characterized the gut microbiota by FISH in stools of infants and their mothers. The gene tet M was found in all the breast-fed infants and their mothers. tet O was found in all of the mothers' samples, whilst only 35% of the infants harboured this gene. tet W was less frequently found (85% of the mothers and 13% of the infants). None of the other genes analysed was found in any sample. Our results suggest that genes carrying antibiotic resistance are common in the environment, as even healthy breast-fed infants with no direct or indirect previous exposure to antibiotics harbour these genes. | 2006 | 16965348 |
| 3387 | 12 | 0.9998 | Occurrence of Antibiotic Resistance in the Mediterranean Sea. Seawater could be considered a reservoir of antibiotic-resistant bacteria and antibiotic resistance genes. In this communication, we evaluated the presence of bacterial strains in seawater collected from different coasts of Sicily by combining microbiological and molecular methods. Specifically, we isolated viable bacteria that were tested for their antibiotic resistance profile and detected both antibiotic and heavy metal resistance genes. Both antibiotic-resistant Gram-negative bacteria, Vibrio and Aeromonas, and specific antibiotic resistance genes were found in the seawater samples. Alarming levels of resistance were determined towards cefazolin, streptomycin, amoxicillin/clavulanic acid, ceftriaxone, and sulfamethoxazole/trimethoprim, and mainly genes conferring resistance to β-lactamic and sulfonamide antibiotics were detected. This survey, on the one hand, presents a picture of the actual situation, showing the pollution status of the Tyrrhenian coast of Sicily, and, on the other hand, can be considered as a baseline to be used as a reference time for future analysis. | 2022 | 35326795 |
| 3396 | 13 | 0.9998 | Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. The high use of antibiotics for the treatment of bacterial diseases is one of the main problems in the mass production of animal protein. Salmon farming in Chile is a clear example of the above statement, where more than 5,500 tonnes of antibiotics have been used over the last 10 years. This has caused a great impact both at the production level and on the environment; however, there are still few works in relation to it. In order to demonstrate the impact of the high use of antibiotics on fish gut microbiota, we have selected four salmon farms presenting a similar amount of fish of the Atlantic salmon species (Salmo salar), ranging from 4,500 to 6,000 tonnes. All of these farms used treatments with high doses of antibiotics. Thus, 15 healthy fish were selected and euthanised in order to isolate the bacteria resistant to the antibiotics oxytetracycline and florfenicol from the gut microbiota. In total, 47 bacterial isolates resistant to florfenicol and 44 resistant to oxytetracycline were isolated, among which isolates with Minimum Inhibitory Concentrations (MIC) exceeding 2048 μg/mL for florfenicol and 1024 μg/mL for oxytetracycline were found. In addition, another six different antibiotics were tested in order to demonstrate the multiresistance phenomenon. In this regard, six isolates of 91 showed elevated resistance values for the eight tested antibiotics, including florfenicol and oxytetracycline, were found. These bacteria were called "super-resistant" bacteria. This phenotypic resistance was verified at a genotypic level since most isolates showed antibiotic resistance genes (ARGs) to florfenicol and oxytetracycline. Specifically, 77% of antibiotic resistant bacteria showed at least one gene resistant to florfenicol and 89% showed at least one gene resistant to oxytetracycline. In the present study, it was demonstrated that the high use of the antibiotics florfenicol and oxytetracycline has, as a consequence, the selection of multiresistant bacteria in the gut microbiota of farmed fish of the Salmo salar species at the seawater stage. Also, the phenotypic resistance of these bacteria can be correlated with the presence of antibiotic resistance genes. | 2018 | 30204782 |
| 3395 | 14 | 0.9998 | Presence of multidrug-resistant enteric bacteria in dairy farm topsoil. In addition to human and veterinary medicine, antibiotics are extensively used in agricultural settings, such as for treatment of infections, growth enhancement, and prophylaxis in food animals, leading to selection of drug and multidrug-resistant bacteria. To help circumvent the problem of bacterial antibiotic resistance, it is first necessary to understand the scope of the problem. However, it is not fully understood how widespread antibiotic-resistant bacteria are in agricultural settings. The lack of such surveillance data is especially evident in dairy farm environments, such as soil. It is also unknown to what extent various physiological modulators, such as salicylate, a component of aspirin and known model modulator of multiple antibiotic resistance (mar) genes, influence bacterial multi-drug resistance. We isolated and identified enteric soil bacteria from local dairy farms within Roosevelt County, NM, determined the resistance profiles to antibiotics associated with mar, such as chloramphenicol, nalidixic acid, penicillin G, and tetracycline. We then purified and characterized plasmid DNA and detected mar phenotypic activity. The minimal inhibitory concentrations (MIC) of antibiotics for the isolates ranged from 6 to >50 microg/mL for chloramphenicol, 2 to 8 microg/mL for nalidixic acid, 25 to >300 microg/mL for penicillin G, and 1 to >80 microg/mL for tetracycline. On the other hand, many of the isolates had significantly enhanced MIC for the same antibiotics in the presence of 5 mM salicylate. Plasmid DNA extracted from 12 randomly chosen isolates ranged in size from 6 to 12.5 kb and, in several cases, conferred resistance to chloramphenicol and penicillin G. It is concluded that enteric bacteria from dairy farm topsoil are multidrug resistant and harbor antibiotic-resistance plasmids. A role for dairy topsoil in zoonoses is suggested, implicating this environment as a reservoir for development of bacterial resistance against clinically relevant antibiotics. | 2005 | 15778307 |
| 3597 | 15 | 0.9997 | Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria. | 2001 | 11157217 |
| 4608 | 16 | 0.9997 | Presence of Tetracycline and Sulfonamide Resistance Genes in Salmonella spp.: Literature Review. Tetracyclines and sulfonamides are broad-spectrum antibacterial agents which have been used to treat bacterial infections for over half a century. The widespread use of tetracyclines and sulfonamides led to the emergence of resistance in a diverse group of bacteria. This resistance can be studied by searching for resistance genes present in the bacteria responsible for different resistance mechanisms. Salmonella is one of the leading bacteria causing foodborne diseases worldwide, and its resistance to tetracyclines and sulfonamides has been widely reported. The literature review searched the Virtual Health Library for articles with specific data in the studied samples: the resistance genes found, the primers used in PCR, and the thermocycler conditions. The results revealed that Salmonella presented high rates of resistance to tetracycline and sulfonamide, and the most frequent samples used to isolate Salmonella were poultry and pork. The tetracycline resistance genes most frequently detected from Salmonella spp. were tetA followed by tetB. The gene sul1 followed by sul2 were the most frequently sulfonamide resistance genes present in Salmonella. These genes are associated with plasmids, transposons, or both, and are often conjugative, highlighting the transference potential of these genes to other bacteria, environments, animals, and humans. | 2021 | 34827252 |
| 5640 | 17 | 0.9997 | Antibiotic consumption and faecal bacterial susceptibility in surgical in-patients. A one-day prevalence study of resistance of faecal bacteria to 19 antibacterial agents was performed in 144 surgical inpatients. Most of the drug-resistant isolates were of aerobic and anaerobic species commonly seen in infections, which indicates that surveys of faecal flora can yield rapid information on local patterns of drug resistance in pathogens relevant to abdominal infection. In faecal bacteria the drug resistance pattern only weakly reflected the local antibiotic consumption. The amount of administered aminoglycosides was relatively small, and no gentamicin-resistant aerobes were found. Absence of resistance was found also for some of the newer agents not yet in clinical use (aztreonam, latamoxef, norfloxacin), but not for others (ceftazidime, ceftriaxone). Despite heavy use of fosfomycin and metronidazole, resistance had not emerged among aerobic and anaerobic bacteria, respectively. Imipenem was unique in inhibiting growth of all aerobic and anaerobic faecal bacteria, in the studied patients with the single exception of a strain of Enterobacter. | 1987 | 3673450 |
| 3704 | 18 | 0.9997 | Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Various natural environments have been examined for the presence of antibiotic-resistant bacteria and/or novel resistance mechanisms, but little is known about resistance in the terrestrial deep subsurface. This study examined two deep environments that differ in their known period of isolation from surface environments and the bacteria therein. One hundred fifty-four strains of bacteria were isolated from sediments located 170-259 m below land surface at the US Department of Energy Savannah River Site (SRS) in South Carolina and Hanford Site (HS) in Washington. Analyses of 16S rRNA gene sequences showed that both sets of strains were phylogenetically diverse and could be assigned to several genera in three to four phyla. All of the strains were screened for resistance to 13 antibiotics by plating on selective media and 90% were resistant to at least one antibiotic. Eighty-six percent of the SRS and 62% of the HS strains were resistant to more than one antibiotic. Resistance to nalidixic acid, mupirocin, or ampicillin was noted most frequently. The results indicate that antibiotic resistance is common among subsurface bacteria. The somewhat higher frequencies of resistance and multiple resistance at the SRS may, in part, be due to recent surface influence, such as exposure to antibiotics used in agriculture. However, the HS strains have never been exposed to anthropogenic antibiotics but still had a reasonably high frequency of resistance. Given their long period of isolation from surface influences, it is possible that they possess some novel antibiotic resistance genes and/or resistance mechanisms. | 2009 | 18677528 |
| 3409 | 19 | 0.9997 | Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, β-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to β-lactam antibiotics is conferred by β-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to β-lactam antibiotics, namely two β-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment. | 2011 | 21390233 |