# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5646 | 0 | 1.0000 | Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. Staphylococcus spp. and Mammaliicoccus spp. colonize the skin and mucosa of humans and other animals and are responsible for several opportunistic infections. Staphylococci antibiotic resistance may be present in the environment due to the spread of treated and untreated manure from the livestock industry due to antibiotic use to disease control or growth promoter. In this work, we analyzed the species distribution and antimicrobial susceptibility of Staphylococcus and Mammaliicoccus species along different sites of a swine manure treatment plant from Southeastern Brazil. Bacterial colonies were obtained on mannitol salt agar, selected after catalase test and Gram staining, and finally identified by mass spectrometry and sequencing of the tuf gene. According to the results, S.cohnii and S. simulans were the most prevalent species. Antibiotic resistance test revealed that several strains were resistant to multiple drugs, with high levels of chloramphenicol resistance (98%), followed by erythromycin (79%), tetracycline (73%), gentamicin (46%), ciprofloxacin (42%), cefoxitin (18%), sulfamethoxazole + trimethoprim (12%), and linezolid (4%). In addition, gene detection by PCR showed that all strains carried at least 2 resistance genes and one of them carried all 11 genes investigated. Using the GTG(5)-PCR approach, a high genetic similarity was observed between some strains that were isolated from different points of the treatment plant. Although some were seemingly identical, differences in their resistance phenotype and genotype suggest horizontal gene transfer. The presence of resistant bacteria and resistance genes along the treatment system highlights the potential risk of contamination by people in direct contact with these animals and the soil since the effluent is used as a biofertilizer in the surrounding environment. | 2023 | 36515883 |
| 1935 | 1 | 0.9999 | Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related. | 2021 | 34356729 |
| 5598 | 2 | 0.9999 | Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products. | 2025 | 40298519 |
| 5644 | 3 | 0.9999 | Identification and Characterization of Antibiotic-Resistant, Gram-Negative Bacteria Isolated from Korean Fresh Produce and Agricultural Environment. The consumption of fresh produce and fruits has increased over the last few years as a result of increasing consumer awareness of healthy lifestyles. Several studies have shown that fresh produces and fruits could be potential sources of human pathogens and antibiotic-resistant bacteria. In this study, 248 strains were isolated from lettuce and surrounding soil samples, and 202 single isolates selected by the random amplified polymorphic DNA (RAPD) fingerprinting method were further characterized. From 202 strains, 184 (91.2%) could be identified based on 16S rRNA gene sequencing, while 18 isolates (8.9%) could not be unequivocally identified. A total of 133 (69.3%) and 105 (54.7%) strains showed a resistance phenotype to ampicillin and cefoxitin, respectively, while resistance to gentamicin, tobramycin, ciprofloxacin, and tetracycline occurred only at low incidences. A closer investigation of selected strains by whole genome sequencing showed that seven of the fifteen sequenced strains did not possess any genes related to acquired antibiotic resistance. In addition, only one strain possessed potentially transferable antibiotic resistance genes together with plasmid-related sequences. Therefore, this study indicates that there is a low possibility of transferring antibiotic resistance by potential pathogenic enterobacteria via fresh produce in Korea. However, with regards to public health and consumer safety, fresh produce should nevertheless be continuously monitored to detect the occurrence of foodborne pathogens and to hinder the transfer of antibiotic resistance genes potentially present in these bacteria. | 2023 | 37317216 |
| 5647 | 4 | 0.9999 | Resistance of bacterial isolates from poultry products to therapeutic veterinary antibiotics. Bacterial isolates from poultry products were tested for their susceptibility to 10 antibiotics commonly used in the therapeutic treatment of poultry. Bacteria were isolated from fresh whole broiler carcasses or from cut-up meat samples (breast with or without skin, wings, and thighs) that were either fresh or stored at 4 or 13 degrees C (temperatures relevant to poultry-processing facilities). The Biolog system was used to identify isolates, and a broth dilution method was used to determine the antibiotic resistance properties of both these isolates and complementary cultures from the American Type Culture Collection. The antibiotics to which the most resistance was noted were penicillin G, sulfadimethoxine, and erythromycin; the antibiotic to which the least resistance was noted was enrofloxacin. Individual isolates exhibited resistances to as many as six antibiotics, with the most common resistance pattern involving the resistance of gram-negative bacteria to penicillin G, sulfadimethoxine, and erythromycin. Differences in resistance patterns were noted among 18 gram-positive and 7 gram-negative bacteria, and comparisons were made between species within the same genus. The data obtained in this study provide a useful reference for the species and resistance properties of bacteria found on various raw poultry products, either fresh or stored at temperatures and for times relevant to commercial processing, storage, and distribution. The results of this study show that resistance to antibiotics used for the therapeutic treatment of poultry occurs in bacteria in the processing environment. | 2003 | 12540187 |
| 5543 | 5 | 0.9999 | Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. AIMS: To carry out a preliminary assessment of the occurrence of resistance to antimicrobials in bacteria that has been isolated from a variety of aquaculture species and environments in Australia. METHOD AND RESULTS: A total of 100 Gram-negative (Vibrio spp. and Aeromonas spp. predominantly) and four Gram-positive bacteria isolated from farmed fish, crustaceans and water from crab larval rearing tanks were obtained from diagnostic laboratories from different parts of Australia. All the isolates were tested for sensitivity to 19 antibiotics and Minimal Inhibitory Concentrations were determined by the agar dilution method. Plasmid DNA was isolated by the alkali lysis method. Resistance to ampicillin, amoxycillin, cephalexin and erythromycin was widespread; resistance to oxytetracycline, tetracycline, nalidixic acid and sulfonamides was common but resistance to chloramphenicol, florfenicol, ceftiofur, cephalothin, cefoperazone, oxolinic acid, gentamicin, kanamycin and trimethoprim was less common. All strains were susceptible to ciprofloxacin. Multiple resistance was also observed and 74.4% of resistant isolates had between one and ten plasmids with sizes ranging 2-51 kbp. CONCLUSIONS: No antibiotics are registered for use in aquaculture in Australia but these results suggest that there has been significant off-label use. SIGNIFICANCE AND IMPACT OF STUDY: Transfer of antibiotic resistant bacteria to humans via the food chain is a significant health concern. In comparison with studies on terrestrial food producing animals, there are fewer studies on antibiotic resistance in bacteria from aquaculture enterprises and this study provides further support to the view that there is the risk of transfer of resistant bacteria to humans from consumption of aquaculture products. From the Australian perspective, although there are no products registered for use in aquaculture, antimicrobial resistance is present in isolates from aquaculture and aquaculture environments. | 2006 | 16630011 |
| 2819 | 6 | 0.9999 | Prevalence of Antibiotic-Resistant Lactobacilli in Sepsis Patients with Long-Term Antibiotic Therapy. Lactobacilli are the most common probiotic bacteria found in the human gut microbiota, and the presence of acquired antibiotic resistance determinants carried on mobile genetic elements must be screened due to safety concerns. Unnecessary and inappropriate antibiotic therapy, as well as ingested antibiotic resistance bacteria (originating from food or food products), influence the abundance of antibiotic resistance genes in human guts, with serious clinical consequences. The current study looked into the antibiotic resistance of lactobacilli isolated from the guts of sepsis patients on long-term antibiotic therapy. The broth microdilution method was used to investigate the minimum inhibitory concentrations (MICs) of antibiotics such as imipenem, meropenem, erythromycin, tetracycline, cefepime, ciprofloxacin, and gentamycin, and the molecular genetic basis of resistance was studied based on the MIC values. The isolates were phenotypically resistant to tetracycline (20%), fluoroquinolone (20%), and macrolide (5%). Following that, resistance genes for tetracycline [tet(L), tet(O), tet(K), and tet(M)], macrolide [erm(B) and erm(C)], and beta-lactams [bla(CMY)] were investigated. Tetracycline or macrolide resistance genes were not found in the isolates, and only one isolate possessed the bla(CMY) resistance gene. The findings suggested that tetracycline and macrolide resistance may be linked to other resistance genes that were not investigated in this study. Because tetracyclines, fluoroquinolones, and macrolides are commonly used in clinics and animals, there has been concern about the spread of resistance in humans. If acquired antibiotic resistance is passed down through mobile genetic elements, it may serve as a reservoir of resistance for gut pathogens and other microbiome environments. | 2022 | 36088413 |
| 3397 | 7 | 0.9999 | Characterization of antibiotic resistance in commensal bacteria from an aquaculture ecosystem. The objective of the study was to improve the understanding of antibiotic resistance (AR) ecology through characterization of antibiotic-resistant commensal isolates associated with an aquaculture production system. A total of 4767 isolates non-susceptible to sulfamethoxazole/trimethoprim (Sul/Tri), tetracycline (Tet), erythromycin (Erm), or cefotaxime (Ctx), originated from fish, feed, and environmental samples of an aquaculture farm with no known history of antibiotic applications were examined. Close to 80% of the isolates exhibited multi-drug resistance in media containing the corresponding antibiotics, and representative AR genes were detected in various isolates by PCR, with feed isolates had the highest positive rate detected. Identified AR gene carriers involved 18 bacterial genera. Selected AR genes led to acquired resistance in other bacteria by transformation. The AR traits in many isolates were stable in the absence of selective pressure. AR-rich feed and possibly environmental factors may contribute to AR in the aquaculture ecosystem. For minimum inhibitory concentration test, brain heart infusion medium was found more suitable for majority of the bacteria examined than cation-adjusted Mueller Hinton broth, with latter being the recommended medium for clinical isolates by standard protocol. The data indicated a need to update the methodology due to genetic diversity of microbiota for better understanding of the AR ecology. | 2015 | 26441859 |
| 2865 | 8 | 0.9999 | Antibiotic resistance in soil and water environments. Seven locations were screened for antibiotic-resistant bacteria using a modified agar dilution technique. Isolates resistant to high levels of antibiotics were screened for r plasmids. Low-level resistance (25 micro g x ml(-1)) was widespread for ampicillin, penicillin, tetracycline, vancomycin and streptomycin but not for kanamycin. Resistant populations dropped sharply at high antibiotic levels, suggesting that intrinsic non-emergent mechanisms were responsible for the multiple drug resistance exhibited at low doses. Dairy farm manure contained significantly (P < 0.01) more (%) resistant bacteria than the other sites. Bacteria isolated from a dairy water canal, a lake by a hospital and a residential garden (fertilized by farm manure) displayed resistance frequencies of 77, 75 and 70%, respectively. Incidence of tetracycline resistance was most prevalent at 47-89% of total bacteria. Out of 200 representative isolates analyzed, Pseudomonas, Enterococcus-like bacteria, Enterobacter and Burkholderia species constituted the dominant reservoirs of resistance at high drug levels (50-170 micro g x ml(-1)). Plasmids were detected in only 29% (58) of these bacteria with tetracycline resistance accounting for 65% of the plasmid pool. Overall, resistance trends correlated to the abundance and type of bacterial species present in the habitat. Environmental reservoirs of resistance include opportunistic pathogens and constitute some public health concern. | 2002 | 12396530 |
| 5545 | 9 | 0.9999 | Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Wide varieties of antibiotics are used in poultry farms to improve the growth and also to control the infection in broiler chicken. To identify the seriousness of the same in the poultry sector, current study has been designed to analyze the presence of tetracycline in poultry feed and also the tetracycline resistance among the bacteria released through the excreta of poultry. In the study, 27 bacteria belonging to the Escherichiacoli and Klebsiellapneumoniae. were isolated from the faecal samples collected from five different farms. Antibiotic susceptibility analysis showed 77% of E. coli and 100% of the K. pneumoniae. to be resistant to tetracycline. Further, molecular screening for tetA and tetB genes showed 85.18% of isolates to have tetA and 22.22% with tetB. The presence of tetracycline in collected feed samples was also analysed quantitatively by Liquid chromatography-mass spectrometry (LC-MS). Here, three out of five feed samples were found to be positive for tetracycline. The study showed a direct correlation between the antibiotic supplemented feed and the emergence of antimicrobial resistance among the intestinal microflora. The results of the study indicate the need for strict control over antibiotic use in animal feed to limit the rapid evolution and spread of antimicrobial resistance. | 2020 | 33039593 |
| 5645 | 10 | 0.9999 | Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province. Bacillus cereus is a common pathogen causing foodborne diseases, secreting and producing a large number of toxins that can cause a variety of diseases and pose many threats to human health. In this study, 73 strains of Bacillus cereus were isolated and identified from six types of foods from seven different cities in a province, and the antibiotic-resistant phenotype was detected by using the Bauer-Kirby method. Results showed that the 73 isolates were completely sensitive to gentamicin and 100% resistant to chloramphenicol, in addition to which all strains showed varying degrees of resistance to 13 other common antibiotics, and a large number of strains resistant to multiple antibiotics were found. A bioinformatic analysis of the expression of resistance genes in Bacillus cereus showed three classes of antibiotic-resistant genes, which were three of the six classes of antibiotics identified according to the resistance phenotype. The presence of other classes of antibiotic-resistant genes was identified from genome-wide information. Antibiotic-resistant phenotypes were analyzed for correlations with genotype, and remarkable differences were found among the phenotypes. The spread of antibiotic-resistant strains is a serious public health problem that requires the long-term monitoring of antimicrobial resistance in Bacillus cereus, and the present study provides important information for monitoring antibiotic resistance in bacteria from different types of food. | 2023 | 38138092 |
| 2820 | 11 | 0.9999 | Direct detection of antibiotic resistance genes in specimens of chicken and pork meat. Antibiotic resistance (AR) in bacteria, a major threat to human health, has emerged in the last few decades as a consequence of the selective pressure exerted by the widespread use of antibiotics in medicine, agriculture and veterinary practice and as growth promoters in animal husbandry. The frequency of 11 genes [tet(M), tet(O), tet(K), erm(A), erm(B), erm(C), vanA, vanB, aac (6')-Ie aph (2'')-Ia, mecA, blaZ] encoding resistance to some antibiotics widely used in clinical practice was analysed in raw pork and chicken meat and in fermented sausages as well as in faecal samples from the relevant farm animals using a molecular approach based on PCR amplification of bacterial DNA directly extracted from specimens. Some of the 11 AR genes were highly prevalent, the largest number being detected in chicken meat and pig faeces. The genes found most frequently in meat were tet(K) and erm(B); vanB and mecA were the least represented. All 11 determinants were detected in faecal samples except mecA, which was found only in chicken faeces. erm(B) and erm(C) were detected in all faecal samples. The frequency of AR genes was not appreciably different in meat compared to faecal specimens of the relevant animal except for vanB, which was more prevalent in faeces. Our findings suggest that AR genes are highly prevalent in food-associated bacteria and that AR contamination is likely related to breeding rather than processing techniques. Finally, the cultivation-independent molecular method used in this work to determine the prevalence of AR genes in foods proved to be a rapid and reliable alternative to traditional tools. | 2007 | 17005283 |
| 5597 | 12 | 0.9999 | Prevalence of macrolide-lincosamide-streptogramin resistant lactic acid bacteria isolated from food samples. Lactic acid bacteria (LAB) being a reservoir of antibiotic resistance genes, tend to disseminate antibiotic resistance that possibly pose a threat to human and animal health. Therefore, the study focuses on the prevalence of macrolide-lincosamide-streptogramin- (MLS) resistance among LAB isolated from various food samples. Diverse phenotypic and genotypic MLS resistance were determined among the LAB species (n = 146) isolated from fermented food products (n = 6) and intestine of food-producing animals (n = 4). Double disc, triple disc diffusion and standard minimum inhibitory concentration (MIC) tests were evaluated for phenotypic MLS resistance. Specific primers for MLS resistance genes were used for the evaluation of genotypic MLS resistance and gene expressions using total RNA of each isolate at different antibiotic concentrations. The isolates identified are Levilactobacillus brevis (n = 1), Enterococcus hirae (n = 1), Limosilactobacillus fermentum (n = 2), Pediococcus acidilactici (n = 3), Enterococcus faecalis (n = 1). The MIC tests along with induction studies displayed cMLS(b), L phenotype, M phenotype, KH phenotype, I phenotype resistance among MLS antibiotics. Genotypic evaluation tests revealed the presence of ermB, mefA/E, msrA/B and msrC genes. Also, gene expression studies displayed increased level of gene expression to the twofold increased antibiotic concentrations. In the view of global health concern, this study identified that food samples and food-producing animals represent source of antibiotic resistant LAB that can disseminate resistance through food chain. This suggests the implementation of awareness in the use of antibiotics as growth promoters and judicious use of antibiotics in veterinary sectors in order to prevent the spread of antibiotic resistance. | 2023 | 36712199 |
| 2821 | 13 | 0.9999 | Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Use of antibiotics as feed additives in poultry production has been linked to the presence of antibiotic resistant bacteria in farm workers, consumer poultry products and the environs of confined poultry operations. There are concerns that these resistant bacteria may be transferred to communities near these operations; however, environmental pathways of exposure are not well documented. We assessed the prevalence of antibiotic resistant enterococci and staphylococci in stored poultry litter and flies collected near broiler chicken houses. Drug resistant enterococci and staphylococci were isolated from flies caught near confined poultry feeding operations in the summer of 2006. Susceptibility testing was conducted on isolates using antibiotics selected on the basis of their importance to human medicine and use in poultry production. Resistant isolates were then screened for genetic determinants of antibiotic resistance. A total of 142 enterococcal isolates and 144 staphylococcal isolates from both fly and poultry litter samples were identified. Resistance genes erm(B), erm(A), msr(C), msr(A/B) and mobile genetic elements associated with the conjugative transposon Tn916, were found in isolates recovered from both poultry litter and flies. Erm(B) was the most common resistance gene in enterococci, while erm(A) was the most common in staphylococci. We report that flies collected near broiler poultry operations may be involved in the spread of drug resistant bacteria from these operations and may increase the potential for human exposure to drug resistant bacteria. | 2009 | 19157515 |
| 2818 | 14 | 0.9999 | Tetracycline resistance associated with commensal bacteria from representative ready-to-consume deli and restaurant foods. Proper knowledge of antibiotic resistance (AR) dissemination is essential for effective mitigation. This study examined the profiles of tetracycline-resistant (Tetr) commensal bacteria from representative ready-to-consume food samples from salad bars at local grocery stores and restaurants. Out of 900 Tetr isolates examined, 158 (17.6%) carried one or more of tetM, tetL, tetS, and tetK genes by conventional PCR, 28 harbored more than one Tetr determinants. The most prevalent genotype was tetM, which was detected in 70.9% of the AR gene carriers, followed by tetL (31.6%), tetS (13.9%), and tetK (2.5%). Identified AR gene carriers included Enterococcus, Lactococcus, Staphylococcus, Brochothrix, Carnobacterium, Stenotrophomonas, Pseudomonas, and Sphingobacterium, by 16S rRNA gene sequence analysis. AR determinants were successfully transmitted, and led to resistance in Streptococcus mutans via natural gene transformation and Enterococcus faecalis via electroporation, suggesting the functionality and mobility of the AR genes from the food commensal bacteria. In addition, the AR traits in many isolates are quite stable, even in the absence of the selective pressure. The identification of new commensal carriers for representative AR genes revealed the involvement of a broad spectrum of bacteria in the horizontal transmission of AR genes. Meanwhile, the spectrum of the antibiotic-resistant bacteria differed from the spectrum of the total bacteria (by denaturing gradient gel electrophoresis) associated with the food items. Our data revealed a common avenue in AR exposure and will assist in proper risk assessment and the development of comprehensive mitigation strategies to effectively combat AR. | 2010 | 21067672 |
| 5642 | 15 | 0.9999 | Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin. The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the environment. | 2015 | 26385434 |
| 5544 | 16 | 0.9999 | Assessing the Effect of Oxytetracycline on the Selection of Resistant Escherichia coli in Treated and Untreated Broiler Chickens. Oxytetracycline (OTC) is administered in the poultry industry for the treatment of digestive and respiratory diseases. The use of OTC may contribute to the selection of resistant bacteria in the gastrointestinal tract of birds or in the environment. To determine the effect of OTC on the selection of resistant Escherichia coli strains post-treatment, bacteria were isolated from droppings and litter sampled from untreated and treated birds. Bacterial susceptibility to tetracyclines was determined by the Kirby-Bauer test. A total of 187 resistant isolates were analyzed for the presence of tet(A), (B), (C), (D), (E), and (M) genes by PCR. Fifty-four strains were analyzed by PFGE for subtyping. The proportion of tetracycline-resistant E. coli strains isolated was 42.88%. The susceptibility of the strains was treatment-dependent. A high clonal diversity was observed, with the tet(A) gene being the most prevalent, followed by tet(C). Even at therapeutic doses, there is selection pressure on resistant E. coli strains. The most prevalent resistance genes were tet(A) and tet(C), which could suggest that one of the main mechanisms of resistance of E. coli to tetracyclines is through active efflux pumps. | 2023 | 38136686 |
| 5550 | 17 | 0.9999 | Prevalence, plasmids and antibiotic resistance correlation of enteric bacteria in different drinking water resources in sohag, egypt. BACKGROUND: One of the major health causing problems is contamination of drinking water sources with human pathogenic bacteria. Enteric bacteria such as Shigella, Salmonella and Escherichia coli are most enteric bacteria causing serious health problems. Occurrence of such bacteria infection, which may resist antibiotics, increases the seriousness of problem. OBJECTIVES: The aim of this study was to examine the prevalence of some enteric bacteria (Shigella, Salmonella and E. coli) in addition to Pseudomonas. The antibiotic susceptibility of these bacteria was also tested, in addition to assessing plasmid(s) roles in supposed resistance. MRSA genes in non-staphylococci were clarified. MATERIALS AND METHODS: Water samples were collected from different drinking sources (Nile, ground water) and treated tap water. Selective media were used to isolate enteric bacteria and Pseudomonas. These bacteria were identified, counted and examined for its susceptibility against 10 antibiotics. The plasmids were screened in these strains. MRSA genes were also examined using PCR. RESULTS: Thirty-two bacterial strains were isolated from Nile and ground water and identified as S. flexneri, S. sonnei, S. serovar Newport, Pseudomonas aeruginosa and E. coli strains according to standard methods. According to antibiotic susceptibility test, 81% of strains were resistant to Cefepime, whereas 93.75% were sensitive to Ciprofloxacin. Correlation analysis between plasmids profiles and antibiotics sensitivities showed that 50% of the total strains had plasmids. These strains showed resistance to 50% of the used antibiotics (as average value); whereas, the plasmids free strains (50%) were resistant to 48.7% of the antibiotics. No distinct correlation between plasmids and antibiotic resistance in some strains could be concluded in this study. No MRSA gene was detected among these non-staphylococci strains. No bacteria were isolated from treated tap water. CONCLUSIONS: Thirty-three bacterial strains; 10 strains of E. coli, 10 strains of S. flexneri, 3 strains S. sonnei, 2 strains of S. serovar Newport, and 7 strains of P. aeruginosa, were isolated and identified from Nile water and ground water in Sohag governorate. The prevalence of enteric bacteria in water sources in studying area was considerable. No clear or distinct correlation could be concluded between plasmids and antibiotic resistance. No MRSA gene was detected in these non-staphylococci strains, and no pathogenic bacteria were isolated from treated tap water. The hygiene procedures in the studying area seem to be adequate, despite the failure to maintain water sources form sewage pollution. | 2015 | 25763135 |
| 5636 | 18 | 0.9999 | Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor. The aim of this study was to assess the impact of ciprofloxacin, clindamycin, and placebo administration on culturable Gram-negative isolates and the antibiotic resistance genes they harbor. Saliva and fecal samples were collected from healthy human volunteers before and at intervals, up to 1 year after antibiotic administration. Samples were plated on selective and nonselective media to monitor changes in different colony types or bacterial species. Following ciprofloxacin administration, there was a decrease of Escherichia coli in feces and after clindamycin administration a decrease of Bacteroides in feces and Leptotrichia in saliva, which all returned to pretreatment levels within 1 to 4 months. Ciprofloxacin administration also resulted in an increase in ciprofloxacin-resistant Veillonella in saliva, which persisted for 12 months. Additionally, 949 aerobic and anaerobic isolates purified from ciprofloxacin- and clindamycin-containing plates were screened for the presence of resistance genes. Resistance gene carriage was widespread in isolates from all three treatment groups, and no association was observed between genes and antibiotic administration. Although the anaerobic component of the microbiota was not a major reservoir of aerobe-associated antimicrobial resistance (AMR) genes, we detected the sulfonamide resistance gene sul2 in anaerobic isolates. The longitudinal nature of the study allowed identification of distinct Escherichia coli clones harboring multiple resistance genes, including one carrying an extended-spectrum β-lactamase blaCTX-M group 9 gene, which persisted in the gut for up to 4 months. This study provided insight into the effects of antibiotic administration on healthy microbiota and the diversity of resistance genes harbored therein. | 2015 | 25987611 |
| 5549 | 19 | 0.9999 | Analysis of Antibiotic Resistance and Biofilm-Forming Capacity in Tetracycline-Resistant Bacteria from a Coastal Lagoon. Concerns have been raised regarding co-selection for antibiotic resistance among bacteria exposed to antibiotics used as growth promoters for some livestock and poultry species. Tetracycline had been commonly used for this purpose worldwide, and its residue has been associated with selection of resistant bacteria in aquatic biofilms. This study aimed to determine the resistance profile, the existence of some beta-lactamases genes and the capacity to form biofilm of bacteria isolated from water samples previously exposed to tetracycline (20 mg/L). Thirty-seven tetracycline-resistant bacterial strains were identified as Serratia marcescens, Escherichia coli, Morganella morganii, Pseudomonas aeruginosa, Citrobacter freundii, Providencia alcalifaciens, and Enterococcus faecium. The highest percentage of resistance was for ampicillin (75.75%) and amoxicillin/clavulanic acid (66.66%) in the Gram-negative bacteria and an E. faecium strain showed high resistance to vancomycin (minimum inhibitory concentration 250 μg/mL). Among the strains analyzed, 81.09% had multidrug resistance and eight Gram-negatives carried the bla(OXA-48) gene. All strains were able to form biofilm and 43.23% were strong biofilm formers. This study suggests that resistant bacteria can be selected under selection pressure of tetracycline, and that these bacteria could contribute to the maintenance and spread of antimicrobial resistance in this environment. | 2022 | 35325574 |