# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5640 | 0 | 1.0000 | Antibiotic consumption and faecal bacterial susceptibility in surgical in-patients. A one-day prevalence study of resistance of faecal bacteria to 19 antibacterial agents was performed in 144 surgical inpatients. Most of the drug-resistant isolates were of aerobic and anaerobic species commonly seen in infections, which indicates that surveys of faecal flora can yield rapid information on local patterns of drug resistance in pathogens relevant to abdominal infection. In faecal bacteria the drug resistance pattern only weakly reflected the local antibiotic consumption. The amount of administered aminoglycosides was relatively small, and no gentamicin-resistant aerobes were found. Absence of resistance was found also for some of the newer agents not yet in clinical use (aztreonam, latamoxef, norfloxacin), but not for others (ceftazidime, ceftriaxone). Despite heavy use of fosfomycin and metronidazole, resistance had not emerged among aerobic and anaerobic bacteria, respectively. Imipenem was unique in inhibiting growth of all aerobic and anaerobic faecal bacteria, in the studied patients with the single exception of a strain of Enterobacter. | 1987 | 3673450 |
| 5642 | 1 | 0.9999 | Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin. The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the environment. | 2015 | 26385434 |
| 5641 | 2 | 0.9999 | A 7-year survey of drug resistance in aerobic and anaerobic fecal bacteria of surgical inpatients: clinical relevance and relation to local antibiotic consumption. One-day studies of bacteriological cultures of fecal specimens obtained from 409 surgical inpatients at 5 occasions enabled rapid assessment of antibiotic resistance in aerobic and anaerobic bacteria, relevant to abdominal infection. This novel approach to surveillance of drug resistance was tested in a 7-year survey at a surgical department. A distinct correlation between local drug consumption and prevalence of resistant fecal bacteria was recorded for ampicillin and doxycycline. 17 other agents studied showed no such obvious correlations. Huge increases of cefuroxime and metronidazole consumption caused no emergence of drug resistant aerobic and anaerobic fecal bacteria. Imipenem was the only agent tested, which inhibited both the aerobic and anaerobic fecal bacteria of nearly all patients. | 1989 | 2617202 |
| 5674 | 3 | 0.9999 | Evaluation of Resistance by Clinically Pathogenic Bacteria to Antimicrobials and Common Disinfectants in Beijing, China. BACKGROUND: Antibiotic resistance of pathogenic bacteria is well recognized among clinicians; however, studies that directly evaluate the bacterial resistance to commonly used disinfectants in clinical settings are lacking. Currently available reports focus on the resistance of single strains to single disinfectants and do not adequately examine the degree of resistance and cross-resistance to antimicrobials in the large-scale clinical use of disinfectants. METHODS: We investigated the resistance capacity to 11 antibiotics and 7 chemical disinfectants by bacterial strains collected from body fluids of patients in 10 hospitals in Beijing, China over a 1-year period. Bacterial resistance to disinfectants was tested using minimum inhibitory concentration and minimum bactericidal concentration using agar dilution methods based on commercially available reference strains. RESULTS: A total of 1,104 pathogenic strains were identified, of which 23% were Gram-positive bacteria, 74% were Gram-negative bacteria, and 3% were fungi. Overall, resistance to antibiotics for the most common strains was significantly higher than their resistance to disinfectants. The least effective antibiotics and disinfectants were aztreonam and glutaral, respectively, exhibiting the highest overall resistance rates; while amikacin and alcohol had the lowest resistance rates. Consistently, Acinetobacter baumannii exhibited the most resistance, while Escherichia coli had the least resistance for both antibiotics and disinfectants. CONCLUSIONS: Based on the pathogen spectrum for bacterial infective pathogens evaluated in this study, as well as the status quo of their resistance to antimicrobial agents and common clinical disinfectants, it is essential for healthcare professionals to pay attention not only to the standardized use of antimicrobial agents but also to the rational application of disinfectants. | 2018 | 30568055 |
| 5513 | 4 | 0.9999 | The genetic background of antibiotic resistance among clinical uropathogenic Escherichia coli strains. The spreading mechanisms of antibiotic resistance are related to many bacterial and environment factors. The overuse of antibiotics is leading to an unceasing emergence of new multidrug resistant strains. This problem also concerns uropathogenic Escherichia coli strains, which is the most common pathogen causing urinary tract infections. The aim of this study was the genetic analysis of antibiotic resistance in comparison to the phenotypic background of E. coli strains. The characterized collection of E. coli strains isolated 10 years ago from the urine samples of patients with urinary tract infections was used for antimicrobial susceptibility testing (the disc diffusion method) and analysis of antibiotic resistance genes (PCR reaction, sequencing). Additionally, the presence of ESBL strains was analyzed. Fourteen genes were associated with resistance to beta-lactams, aminoglycosides, sulfonamides and quinolones. The genetic analysis revealed that bla(TEM-1) and sul2 were present in almost all of the studied strains. Other drug-resistance genes were very rare or non-existent. Otherwise, the phenotypic resistance to fluoroquinolones was well correlated with the genotypic background of the studied bacteria. The presence of particular genes and specific mutations indicate a high bacterial potential to multidrug resistance. On the other hand, it needs to be emphasized that the standard disk diffusion test for the routine antimicrobial susceptibility analysis is still the best way to estimate the current situation of bacterial drug-resistance. | 2018 | 30008141 |
| 5578 | 5 | 0.9998 | Resistance of Escherichia coli from healthy donors and from food--an indicator of antimicrobial resistance level in the population. Escherichia coli, being an important part of normal intestinal flora, is a frequent carrier of antimicrobial drug resistance markers and food is the most important vector of antimicrobial resistance genes between humans and animals. The aim of this study was to confirm the presence and frequency of resistance markers in Escherichia coli from intestinal flora and from food as an indicator of antimicrobial resistance level in the population. The experiment included 100 fecal Escherichia coli isolates from healthy donors, 50 isolated in 2007 and 50 in 2010, and 50 from food samples. The resistance markers were found in all groups of isolates. The resistance to ampicillin and cotrimoxazole was most commonly found. The finding of multi-drug-resistant strains and resistance to ciprofloxacin is important. The frequency of resistance markers was similar in food and feces. The results of this study show the need to introduce systematic monitoring of antimicrobial resistance of these bacteria. | 2011 | 21970069 |
| 5643 | 6 | 0.9998 | Antibiotic resistance gene profiling of faecal and oral anaerobes collected during an antibiotic challenge trial. Here we describe a study examining the antibiotic resistance gene carriage in anaerobes collected during a clinical study. The results demonstrated that genes normally associated with anaerobes were most prevalent such as tetQ, cepA and cblA although several genes associated with Enterobacteriaceae including sul2, blaSHV and strB were also detected. | 2013 | 23933434 |
| 5508 | 7 | 0.9998 | Genomic and phenotypic comparison of environmental and patient-derived isolates of Pseudomonas aeruginosa suggest that antimicrobial resistance is rare within the environment. Patient-derived isolates of the opportunistic pathogen Pseudomonas aeruginosa are frequently resistant to antibiotics due to the presence of sequence variants in resistance-associated genes. However, the frequency of antibiotic resistance and of resistance-associated sequence variants in environmental isolates of P. aeruginosa has not been well studied. Antimicrobial susceptibility testing (ciprofloxacin, ceftazidime, meropenem, tobramycin) of environmental (n=50) and cystic fibrosis (n=42) P. aeruginosa isolates was carried out. Following whole genome sequencing of all isolates, 25 resistance-associated genes were analysed for the presence of likely function-altering sequence variants. Environmental isolates were susceptible to all antibiotics with one exception, whereas patient-derived isolates had significant frequencies of resistance to each antibiotic and a greater number of likely resistance-associated genetic variants. These findings indicate that the natural environment does not act as a reservoir of antibiotic-resistant P. aeruginosa, supporting a model in which antibiotic susceptible environmental bacteria infect patients and develop resistance during infection. | 2019 | 31553303 |
| 5645 | 8 | 0.9998 | Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province. Bacillus cereus is a common pathogen causing foodborne diseases, secreting and producing a large number of toxins that can cause a variety of diseases and pose many threats to human health. In this study, 73 strains of Bacillus cereus were isolated and identified from six types of foods from seven different cities in a province, and the antibiotic-resistant phenotype was detected by using the Bauer-Kirby method. Results showed that the 73 isolates were completely sensitive to gentamicin and 100% resistant to chloramphenicol, in addition to which all strains showed varying degrees of resistance to 13 other common antibiotics, and a large number of strains resistant to multiple antibiotics were found. A bioinformatic analysis of the expression of resistance genes in Bacillus cereus showed three classes of antibiotic-resistant genes, which were three of the six classes of antibiotics identified according to the resistance phenotype. The presence of other classes of antibiotic-resistant genes was identified from genome-wide information. Antibiotic-resistant phenotypes were analyzed for correlations with genotype, and remarkable differences were found among the phenotypes. The spread of antibiotic-resistant strains is a serious public health problem that requires the long-term monitoring of antimicrobial resistance in Bacillus cereus, and the present study provides important information for monitoring antibiotic resistance in bacteria from different types of food. | 2023 | 38138092 |
| 5650 | 9 | 0.9998 | High-level trimethoprim resistance in urinary bacteria. The results of a three year evaluation of the incidence and type of trimethoprim resistance in pathogens responsible for significant bacteriuria in a general hospital in Edinburgh UK, are presented and compared to results of a previous study. In the present study, trimethoprim resistance was 50% more frequent in bacteria isolated from men and nearly twice as frequent in bacteria from elderly patients. However, the proportion of trimethoprim resistant strains fell annually when resistance was measured at trimethoprim concentrations of both 10 mg/l and 1000 mg/l. The proportion of strains able to transfer trimethoprim resistance also fell by half, and there was some movement of trimethoprim resistance transposons into the bacterial chromosome. These results suggest that migration of high-level trimethoprim resistance genes into the permanent location of the bacterial chromosome is occurring. | 1986 | 3527699 |
| 5647 | 10 | 0.9998 | Resistance of bacterial isolates from poultry products to therapeutic veterinary antibiotics. Bacterial isolates from poultry products were tested for their susceptibility to 10 antibiotics commonly used in the therapeutic treatment of poultry. Bacteria were isolated from fresh whole broiler carcasses or from cut-up meat samples (breast with or without skin, wings, and thighs) that were either fresh or stored at 4 or 13 degrees C (temperatures relevant to poultry-processing facilities). The Biolog system was used to identify isolates, and a broth dilution method was used to determine the antibiotic resistance properties of both these isolates and complementary cultures from the American Type Culture Collection. The antibiotics to which the most resistance was noted were penicillin G, sulfadimethoxine, and erythromycin; the antibiotic to which the least resistance was noted was enrofloxacin. Individual isolates exhibited resistances to as many as six antibiotics, with the most common resistance pattern involving the resistance of gram-negative bacteria to penicillin G, sulfadimethoxine, and erythromycin. Differences in resistance patterns were noted among 18 gram-positive and 7 gram-negative bacteria, and comparisons were made between species within the same genus. The data obtained in this study provide a useful reference for the species and resistance properties of bacteria found on various raw poultry products, either fresh or stored at temperatures and for times relevant to commercial processing, storage, and distribution. The results of this study show that resistance to antibiotics used for the therapeutic treatment of poultry occurs in bacteria in the processing environment. | 2003 | 12540187 |
| 3392 | 11 | 0.9998 | Coselection for resistance to multiple late-generation human therapeutic antibiotics encoded on tetracycline resistance plasmids captured from uncultivated stream and soil bacteria. AIMS: Transmissible plasmids captured from stream and soil bacteria conferring resistance to tetracycline in Pseudomonas were evaluated for linked resistance to antibiotics used in the treatment of human infections. METHODS AND RESULTS: Cells released from stream sediments and soils were conjugated with a rifampicin-resistant, plasmid-free Pseudomonas putida recipient and selected on tetracycline and rifampicin. Each transconjugant contained a single 50-80 kb plasmid. Resistance to 11 antibiotics, in addition to tetracycline, was determined for the stream transconjugants using a modification of the Stokes disc diffusion antibiotic susceptibility assay. Nearly half of plasmids conferred resistance to six or more antibiotics. Resistance to streptomycin, gentamicin, and/or ticarcillin was conferred by a majority of the plasmids, and resistance to additional human clinical use antibiotics such as piperacillin/tazobactam, ciprofloxacin and aztreonam was observed. MICs of 16 antibiotics for representative sediment and soil transconjugants revealed large increases, relative to the Ps. putida recipient, for 11 of 16 antibiotics tested, including the expanded spectrum antibiotics cefotaxime and ceftazidime, as well as piperacillin/tazobactam, lomefloxacin and levofloxacin. CONCLUSIONS: Resistance to multiple antibiotics-including those typically used in clinical Pseudomonas and enterobacterial infections-can be conferred by transmissible plasmids in streams and soils. SIGNIFICANCE AND IMPACT OF STUDY: Selective pressure exerted by the use of one antibiotic, such as the common agricultural antibiotic tetracycline, may result in the persistence of linked genes conferring resistance to important human clinical antibiotics. This may impact the spread of resistance to human use antibiotics even in the absence of direct selection. | 2014 | 24797476 |
| 5972 | 12 | 0.9998 | Method of Selection of Bacteria Antibiotic Resistance Genes Based on Clustering of Similar Nucleotide Sequences. A new method for selection of bacterium antibiotic resistance genes is proposed and tested for solving the problems related to selection of primers for PCR assay. The method implies clustering of similar nucleotide sequences and selection of group primers for all genes of each cluster. Clustering of resistance genes for six groups of antibiotics (aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, macrolides and lincosamides, and fusidic acid) was performed. The method was tested for 81 strains of bacteria of different genera isolated from patients (K. pneumoniae, Staphylococcus spp., S. agalactiae, E. faecalis, E. coli, and G. vaginalis). The results obtained by us are comparable to those in the selection of individual genes; this allows reducing the number of primers necessary for maximum coverage of the known antibiotic resistance genes during PCR analysis. | 2017 | 29063318 |
| 2281 | 13 | 0.9998 | Genetic basis of aminoglycoside resistance following changes in aminoglycoside prescription patterns. Aminoglycosides (AG) offer an important therapeutic option for the treatment of infections caused by multiresistant Enterobacteriaceae. We observed a change in AG usage patterns in our institution between 1997 and 2006, namely a reduction in use of all AG except amikacin. We studied the changes in AG susceptibility rates in these time periods and correlated with prevalence of different molecular resistance mechanisms. Enterobacteriaceae isolated from blood cultures from 1997 and 2006 were studied. Susceptibilities to AG were determined with the disk diffusion method. PCR was used to detect genes encoding AG-modifying enzymes and methylases. Gentamicin resistance rates dropped from 14·5 to 8·8%, whereas resistance rates to other AG remained unchanged. The AAC(6')-I+AAC(3)-I combination was more common in 1997, whereas AAC(6')-I was the most common mechanism in 2006. Reduction in gentamicin use may preserve the usefulness of this agent against severe infections by multiresistant bacteria such as carbapenemase-producing Enterobacteriaceae. | 2013 | 23906075 |
| 3393 | 14 | 0.9998 | Antibiotic resistance of gram-negative bacteria in rivers, United States. Bacteria with intrinsic resistance to antibiotics are found in nature. Such organisms may acquire additional resistance genes from bacteria introduced into soil or water, and the resident bacteria may be the reservoir or source of widespread resistant organisms found in many environments. We isolated antibiotic-resistant bacteria in freshwater samples from 16 U.S. rivers at 22 sites and measured the prevalence of organisms resistant to beta-lactam and non-beta-lactam antibiotics. Over 40% of the bacteria resistant to more than one antibiotic had at least one plasmid. Ampicillin resistance genes, as well as other resistance traits, were identified in 70% of the plasmids. The most common resistant organisms belonged to the following genera: Acinetobacter, Alcaligenes, Citrobacter, Enterobacter, Pseudomonas, and Serratia. | 2002 | 12095440 |
| 4592 | 15 | 0.9998 | The Genetic Diversity and Antimicrobial Resistance of Pyogenic Pathogens Isolated from Porcine Lymph Nodes. According to the Food and Agriculture Organization of the United Nations, pork remains the most consumed meat in the world. Consequently, it is very important to ensure that it is of the highest microbiological quality. Many of the pathogens that cause lymph node lesions in pigs are zoonotic agents, and the most commonly isolated bacteria are Mycobacterium spp., Streptococcus spp., Staphylococcus aureus and Rhodococcus equi (synonymous with Prescottella equi). The prevention and treatment of zoonotic infections caused by these bacteria are mainly based on antimicrobials. However, an overuse of antimicrobials contributes to the emergence and high prevalence of antimicrobial-resistant strains, which are becoming a serious challenge in many countries. The aim of this study was to evaluate the genetic diversity and antimicrobial resistance of the Streptococcus spp. (n = 48), S. aureus (n = 5) and R. equi (n = 17) strains isolated from swine lymph nodes with and without lesions. All isolates of S. dysgalactiae, S. aureus and R. equi were subjected to PFGE analysis, which showed the genetic relatedness of the tested bacteria in the studied pig populations. Additionally, selected tetracycline and macrolide resistance genes in the streptococcal strains were also studied. The results obtained in the present study provide valuable data on the prevalence, diversity, and antimicrobial resistance of the studied bacteria. Numerous isolated bacterial Streptococcus spp. strains presented resistance to doxycycline, and almost half of them carried tetracycline resistance genes. In addition, R. equi and S. aureus bacteria presented a high level of resistance to beta-lactam antibiotics and to cefotaxime, respectively. | 2023 | 37370345 |
| 5511 | 16 | 0.9998 | Escherichia coli as a Potential Reservoir of Antimicrobial Resistance Genes on the Island of O'ahu. The problem of antimicrobial-resistant bacteria has not been adequately explored in the tropical island environment. To date, there has not been a systematic investigation into the prevalence and distribution of antimicrobial resistance determinants in the Hawaiian Islands. Urinary isolates are the most common bacterial pathogens encountered in the clinical laboratory. Therefore, the antimicrobial resistance determinant profiles of these organisms can serve as a sentinel of the overall antimicrobial resistance situation in a localized patient population. In this study, 82 clinical isolates of Escherichia coli derived from 82 distinct patients were collected at a large medical center on the island of O'ahu. Each isolate was evaluated for the presence of antimicrobial resistance genes using a microarray-based approach. A total of 36 antimicrobial resistance genes covering 10 classes of antimicrobial compounds were identified. Most isolates were found to harbor between 3 and 5 antimicrobial resistance genes. Only a few isolates were found to harbor more than 12 genes. Significantly, a high rate of phenotypic resistance to one of the first-line treatments for uncomplicated urinary tract infection (sulfamethoxazole) was identified. This phenotype was correlated to the presence of sulfonamides and trimethoprim resistance determinants. Since E. coli is one of the most encountered pathogens in the hospital environment, the presence of clinically relevant resistance determinants in isolates of this organism from a clinical setting on O'ahu is a significant finding that warrants further investigation. | 2021 | 33490961 |
| 2819 | 17 | 0.9998 | Prevalence of Antibiotic-Resistant Lactobacilli in Sepsis Patients with Long-Term Antibiotic Therapy. Lactobacilli are the most common probiotic bacteria found in the human gut microbiota, and the presence of acquired antibiotic resistance determinants carried on mobile genetic elements must be screened due to safety concerns. Unnecessary and inappropriate antibiotic therapy, as well as ingested antibiotic resistance bacteria (originating from food or food products), influence the abundance of antibiotic resistance genes in human guts, with serious clinical consequences. The current study looked into the antibiotic resistance of lactobacilli isolated from the guts of sepsis patients on long-term antibiotic therapy. The broth microdilution method was used to investigate the minimum inhibitory concentrations (MICs) of antibiotics such as imipenem, meropenem, erythromycin, tetracycline, cefepime, ciprofloxacin, and gentamycin, and the molecular genetic basis of resistance was studied based on the MIC values. The isolates were phenotypically resistant to tetracycline (20%), fluoroquinolone (20%), and macrolide (5%). Following that, resistance genes for tetracycline [tet(L), tet(O), tet(K), and tet(M)], macrolide [erm(B) and erm(C)], and beta-lactams [bla(CMY)] were investigated. Tetracycline or macrolide resistance genes were not found in the isolates, and only one isolate possessed the bla(CMY) resistance gene. The findings suggested that tetracycline and macrolide resistance may be linked to other resistance genes that were not investigated in this study. Because tetracyclines, fluoroquinolones, and macrolides are commonly used in clinics and animals, there has been concern about the spread of resistance in humans. If acquired antibiotic resistance is passed down through mobile genetic elements, it may serve as a reservoir of resistance for gut pathogens and other microbiome environments. | 2022 | 36088413 |
| 5672 | 18 | 0.9998 | Antibiotic Resistance, Biofilm Formation, and Presence of Genes Encoding Virulence Factors in Strains Isolated from the Pharmaceutical Production Environment. The spread of bacterial resistance to antibiotics affects various areas of life. The aim of this study was to assess the occurrence of Pseudomonas aeruginosa, and other bacteria mainly from orders Enterobacterales and Staphylococcus in the pharmaceutical production sites, and to characterize isolated strains in the aspects of antibiotic resistance, biofilm formation, and presence of genes encoding virulence factors. Genes encoding selected virulence factors were detected using PCR techniques. Antimicrobial susceptibility testing was applied in accordance with the EUCAST recommendations. A total of 46 P. aeruginosa strains were isolated and 85% strains showed a strong biofilm-forming ability. The qualitative identification of genes taking part in Quorum Sensing system demonstrated that over 89% of strains contained lasR and rhlI genes. An antimicrobial susceptibility testing revealed nine strains resistant to at least one antibiotic, and two isolates were the metallo-β-lactamase producers. Moreover, the majority of P. aeruginosa strains contained genes encoding various virulence factors. Presence of even low level of pathogenic microorganisms or higher level of opportunistic pathogens and their toxic metabolites might result in the production inefficiency. Therefore, the prevention of microbial contamination, effectiveness of sanitary and hygienic applied protocols, and constant microbiological monitoring of the environment are of great importance. | 2021 | 33513933 |
| 3391 | 19 | 0.9998 | Phenotypic and genotypic analysis of bacteria isolated from three municipal wastewater treatment plants on tetracycline-amended and ciprofloxacin-amended growth media. AIMS: The goal of this study was to determine the antimicrobial susceptibility of bacteria isolated from three municipal wastewater treatment plants. METHODS AND RESULTS: Numerous bacterial strains were isolated from three municipal wastewater treatment facilities on tetracycline- (n=164) and ciprofloxacin-amended (n=65) growth media. These bacteria were then characterized with respect to their resistance to as many as 10 different antimicrobials, the presence of 14 common genes that encode resistance to tetracycline, the presence of integrons and/or the ability to transfer resistance via conjugation. All of the characterized strains exhibited some degree of multiple antimicrobial resistance, with nearly 50% demonstrating resistance to every antimicrobial that was tested. Genes encoding resistance to tetracycline were commonly detected among these strains, although intriguingly the frequency of detection was slightly higher for the bacteria isolated on ciprofloxacin-amended growth media (62%) compared to the bacteria isolated on tetracycline-amended growth media (53%). Class 1 integrons were also detected in 100% of the queried tetracycline-resistant bacteria and almost half of the ciprofloxacin-resistant strains. Conjugation experiments demonstrated that at least one of the tetracycline-resistant bacteria was capable of lateral gene transfer. CONCLUSIONS: Our results demonstrate that multiple antimicrobial resistance is a common trait among tetracycline-resistant and ciprofloxacin-resistant bacteria in municipal wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY: These organisms are potentially important in the proliferation of antimicrobial resistance because they appear to have acquired multiple genetic determinants that confer resistance and because they have the potential to laterally transfer these genetic determinants to strains of clinical importance. | 2010 | 20629799 |