PCR monitoring for tetracycline resistance genes in subgingival plaque following site-specific periodontal therapy. A preliminary report. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
563801.0000PCR monitoring for tetracycline resistance genes in subgingival plaque following site-specific periodontal therapy. A preliminary report. BACKGROUND: The selection of antibiotic resistance genes during antibiotic therapy is a critical problem complicated by the transmission of resistance genes to previously sensitive strains via conjugative plasmids and transposons and by the transfer of resistance genes between gram-positive and gram-negative bacteria. The purpose of this investigation was to monitor the presence of selected tetracycline resistance genes in subgingival plaque during site specific tetracycline fiber therapy in 10 patients with adult periodontitis. METHOD: The polymerase chain reaction (PCR) was used in separate tests for the presence of 3 tetracycline resistance genes (tetM, tetO and tetQ) in DNA purified from subgingival plaque samples. Samples were collected at baseline, i.e., immediately prior to treatment, and at 2 weeks, and 1, 3, and 6 months post-fiber placement. The baseline and 6-month samples were also subjected to DNA hybridization tests for the presence of 8 putative periodontal pathogenic bacteria. RESULTS: PCR analysis for the tetM resistance gene showed little or no change in 5 patients and a decrease in detectability in the remaining 5 patients over the 6 months following tetracycline fiber placement. The results for tetO and tetQ were variable showing either no change in detectability from baseline through the 6-month sampling interval or a slight increase in detectability over time in 4 of the 10 patients. DNA hybridization analysis showed reductions to unmeasurable levels of the putative periodontal pathogenic bacteria in all but 2 of the 10 patients. CONCLUSIONS: These results complement earlier studies of tet resistance and demonstrate the efficacy of PCR monitoring for the appearance of specific resistance genes during and after antibiotic therapy.200010883874
509110.9999Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. OBJECTIVES: Integrons are bacterial genetic elements that can capture and express genes contained in mobile cassettes. Integrons have been described worldwide in Gram-negative bacteria and are a marker of antibiotic resistance. We developed a specific and sensitive Taqman probe-based real-time PCR method with three different primer-probe pairs for simultaneous detection of the three main classes of integron. METHODS: Sensitivity was assessed by testing mixtures of the three targets (intI integrase genes of each integron class) ranging from 10 to 10(8) copies. Specificity was determined with a panel of integron-containing and integron-free control strains. The method was then applied to clinical samples. RESULTS: The PCR method was specific and had a sensitivity of 10(2) copies for all three genes, regardless of their respective quantities. The method was quantitative from 10(3) to 10(7) copies, and was able to detect integrons directly in biological samples. CONCLUSIONS: We have developed a rapid, quantitative, specific and sensitive method that could prove useful for initial screening of Gram-negative isolates, or clinical samples, for likely multidrug resistance.201020542899
563920.9998Disinfectant and antibiotic resistance of lactic acid bacteria isolated from the food industry. Quaternary ammonium compounds (QACs) are widely used as disinfectant in medical and food environments. There is a growing concern about the increasing incidence of disinfectant-resistant microorganisms from food. Disinfectant-resistant lactic acid bacteria (LAB) may survive disinfection and cause spoilage problems. Moreover, resistant LAB may potentially act as a reservoir for resistance genes. A total number of 320 LAB from food industry and meat were screened for resistance to the QAC benzalkonium chloride (BC). Out of 320 strains, five strains (1.5%) were considered to be resistant and 56 (17.5%) were tolerant to BC. The resistant strains were isolated from food processing equipment after disinfection. The resistant, tolerant, and some sensitive control bacteria were examined for susceptibility to 18 different antibiotics, disinfectants, and dyes using disc agar diffusion test and microdilution method. Little systematic cross-resistance between BC and any of the antimicrobial agents tested were detected except for gentamycin and chlorhexidine. A BC-tolerant strain was much easier to adapt to higher levels of BC as compared to a BC-sensitive strain. No known gram-positive QAC resistance genes (qacA/B, qacC, qacG, and qacH) were detected in the BC-resistant strains. Identification to species level of the BC-resistant isolates was carried out by comparative analysis of 16S-rDNA sequencing. In conclusion, resistance to BC is not frequent in LAB isolated from food and food environments. Resistance may occur after exposure to BC. The BC resistant isolates showed no cross-resistance with other antimicrobial compounds, except for gentamycin and chlorhexidine. Nevertheless, BC-resistant LAB may be isolated after disinfection and may contribute to the dissemination of resistance.200111310806
563730.9998Preparation and application of microarrays for the detection of antibiotic resistance genes in samples isolated from Changchun, China. The emergence of antibiotic-resistant bacteria, especially tetracycline- and beta-lactam-resistant bacteria, poses a great threat to human health. The purpose of this study was to develop and apply a suitable gene microarray for the detection of antibiotic resistance genes. We isolated 463 strains of bacteria from a hospital, a veterinary station, an animal nursery, and living environment of Changchun, China. After screening, it was found that 93.9% of these bacteria were resistant to tetracycline, 74.9% to ampicillin, 55.6% to deoxycycline, and 41.7% to ciprofloxacin. For amplification of antibiotic genes, we designed 28 pairs of primers. In addition, 28 hybridization probes for these genes were developed. The DNA microarray analysis was performed at 42 degrees C for 5 h. We were successful in detecting 12 resistance genes by microarray analysis. After detection, we also evaluated the sensitivity of the microarray analysis. The LDL (Lowest Detection Level) of the microarray was 1 x 10(6) copies/ml of template DNA. It is believed that such microarray-based determination of tetracycline and beta-lactam resistance genes can have a potential application in clinical studies in the future.201019642018
564340.9998Antibiotic resistance gene profiling of faecal and oral anaerobes collected during an antibiotic challenge trial. Here we describe a study examining the antibiotic resistance gene carriage in anaerobes collected during a clinical study. The results demonstrated that genes normally associated with anaerobes were most prevalent such as tetQ, cepA and cblA although several genes associated with Enterobacteriaceae including sul2, blaSHV and strB were also detected.201323933434
509050.9998A TaqMan real-time PCR assay for detection of qacEΔ1 gene in Gram-negative bacteria. The transfer of biocide and antibiotic resistance genes by mobile genetic elements is the most common mechanism for rapidly acquiring and spreading resistance among bacteria. The qacEΔ1 gene confers the resistance to quaternary ammonium compounds (QACs). It has also been considered a genetic marker for the presence of class 1 integrons associated with multidrug-resistant (MDR) phenotypes in Gram-negative bacteria. In this study, a TaqMan real-time PCR assay was developed to detect the qacEΔ1 gene in Gram-negative bacteria. The assay has a detection limit of 80 copies of the qacEΔ1 gene per reaction. No false-positive or false-negative results have been observed. Simultaneous amplification and detection of the 16S rRNA gene is performed as an endogenous internal amplification control (IAC). The TaqMan real-time PCR assay developed is a rapid, sensitive, and specific method that could be used to monitor resistance to QACs, the spread of class 1 integrons, and the prediction of associated MDR phenotypes in Gram-negative bacteria.202439395725
597260.9998Method of Selection of Bacteria Antibiotic Resistance Genes Based on Clustering of Similar Nucleotide Sequences. A new method for selection of bacterium antibiotic resistance genes is proposed and tested for solving the problems related to selection of primers for PCR assay. The method implies clustering of similar nucleotide sequences and selection of group primers for all genes of each cluster. Clustering of resistance genes for six groups of antibiotics (aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, macrolides and lincosamides, and fusidic acid) was performed. The method was tested for 81 strains of bacteria of different genera isolated from patients (K. pneumoniae, Staphylococcus spp., S. agalactiae, E. faecalis, E. coli, and G. vaginalis). The results obtained by us are comparable to those in the selection of individual genes; this allows reducing the number of primers necessary for maximum coverage of the known antibiotic resistance genes during PCR analysis.201729063318
600170.9998Assessment of horizontal gene transfer in Lactic acid bacteria--a comparison of mating techniques with a view to optimising conjugation conditions. Plate, filter and broth mating techniques were assessed over a range of pHs using three Lactococcus lactis donor strains (one with an erythromycin resistance marker and two with tetracycline resistance markers, all located on transferable genetic elements) and one L. lactis recipient strain. Transconjugants were confirmed using antibiotic selection, E-tests to determine MICs, PCR assays to detect the corresponding marker genes, DNA fingerprinting by pulsed-field gel electrophoresis (PFGE), and Southern blotting. Horizontal gene transfer (HGT) rates varied (ranging from 1.6 x 10(-1) to 2.3 x 10(-8)). The general trend observed was plate > filter > broth, independent of pH. Our data suggests that standardisation of methodologies to be used to assess HGT, is warranted and would provide a meaningful assessment of the ability of commensal and other bacteria in different environments to transfer relevant markers.200919135099
597380.9998DNA microarray detection of antimicrobial resistance genes in diverse bacteria. High throughput genotyping is essential for studying the spread of multiple antimicrobial resistance. A test oligonucleotide microarray designed to detect 94 antimicrobial resistance genes was constructed and successfully used to identify antimicrobial resistance genes in control strains. The microarray was then used to assay 51 distantly related bacteria, including Gram-negative and Gram-positive isolates, resulting in the identification of 61 different antimicrobial resistance genes in these bacteria. These results were consistent with their known gene content and resistance phenotypes. Microarray results were confirmed by polymerase chain reaction and Southern blot analysis. These results demonstrate that this approach could be used to construct a microarray to detect all sequenced antimicrobial resistance genes in nearly all bacteria.200616427254
338990.9998Isolation and characterization of integron-containing bacteria without antibiotic selection. The emergence of antibiotic resistance among pathogenic and commensal bacteria has become a serious problem worldwide. The use and overuse of antibiotics in a number of settings are contributing to the development of antibiotic-resistant microorganisms. The class 1 and 2 integrase genes (intI1 and intI2, respectively) were identified in mixed bacterial cultures enriched from bovine feces by growth in buffered peptone water (BPW) followed by integrase-specific PCR. Integrase-positive bacterial colonies from the enrichment cultures were then isolated by using hydrophobic grid membrane filters and integrase-specific gene probes. Bacterial clones isolated by this technique were then confirmed to carry integrons by further testing by PCR and DNA sequencing. Integron-associated antibiotic resistance genes were detected in bacteria such as Escherichia coli, Aeromonas spp., Proteus spp., Morganella morganii, Shewanella spp., and urea-positive Providencia stuartii isolates from bovine fecal samples without the use of selective enrichment media containing antibiotics. Streptomycin and trimethoprim resistance were commonly associated with integrons. The advantages conferred by this methodology are that a wide variety of integron-containing bacteria may be simultaneously cultured in BPW enrichments and culture biases due to antibiotic selection can be avoided. Rapid and efficient identification, isolation, and characterization of antibiotic resistance-associated integrons are possible by this protocol. These methods will facilitate greater understanding of the factors that contribute to the presence and transfer of integron-associated antibiotic resistance genes in bacterial isolates from red meat production animals.200414982773
5633100.9998Effect of the growth promoter avilamycin on emergence and persistence of antimicrobial resistance in enteric bacteria in the pig. AIM: To assess the effect of the growth promoter avilamycin on emergence and persistence of resistance in enteric bacteria in the pig. METHODS AND RESULTS: Pigs (treated with avilamycin for 3 months and controls) were challenged with multi-resistant Salmonella Typhimurium DT104 and faecal counts were performed for enterococci, Escherichia coli, S. Typhimurium and Campylobacter (before, during and 5 weeks post-treatment). Representative isolates were tested for antibiotic resistance and for the presence of resistance genes. Avilamycin-resistant Enterococci faecalis (speciated by PCR) were isolated from the treated pigs and continued to be detected for the first week after treatment had ceased. The avilamycin-resistance gene was characterized by PCR as the emtA gene and speciation by PCR. MIC profiling confirmed that more than one strain of Ent. faecalis carried this gene. There was no evidence of increased antimicrobial resistance in the E. coli, Salmonella and Campylobacter populations, although there was a higher incidence of tetB positive E. coli in the treated pigs than the controls. CONCLUSION: Although avilamycin selects for resistance in the native enterococci population of the pig, no resistant isolates were detected beyond 1 week post-treatment. This suggests that resistant isolates were unable to persist once selective pressure was removed and were out-competed by the sensitive microflora. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data suggest the risk of resistant isolates becoming carcass contaminants and infecting humans could be minimized by introducing a withdrawal period after using avilamycin and prior to slaughter.200515715858
3391110.9998Phenotypic and genotypic analysis of bacteria isolated from three municipal wastewater treatment plants on tetracycline-amended and ciprofloxacin-amended growth media. AIMS: The goal of this study was to determine the antimicrobial susceptibility of bacteria isolated from three municipal wastewater treatment plants. METHODS AND RESULTS: Numerous bacterial strains were isolated from three municipal wastewater treatment facilities on tetracycline- (n=164) and ciprofloxacin-amended (n=65) growth media. These bacteria were then characterized with respect to their resistance to as many as 10 different antimicrobials, the presence of 14 common genes that encode resistance to tetracycline, the presence of integrons and/or the ability to transfer resistance via conjugation. All of the characterized strains exhibited some degree of multiple antimicrobial resistance, with nearly 50% demonstrating resistance to every antimicrobial that was tested. Genes encoding resistance to tetracycline were commonly detected among these strains, although intriguingly the frequency of detection was slightly higher for the bacteria isolated on ciprofloxacin-amended growth media (62%) compared to the bacteria isolated on tetracycline-amended growth media (53%). Class 1 integrons were also detected in 100% of the queried tetracycline-resistant bacteria and almost half of the ciprofloxacin-resistant strains. Conjugation experiments demonstrated that at least one of the tetracycline-resistant bacteria was capable of lateral gene transfer. CONCLUSIONS: Our results demonstrate that multiple antimicrobial resistance is a common trait among tetracycline-resistant and ciprofloxacin-resistant bacteria in municipal wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY: These organisms are potentially important in the proliferation of antimicrobial resistance because they appear to have acquired multiple genetic determinants that confer resistance and because they have the potential to laterally transfer these genetic determinants to strains of clinical importance.201020629799
5647120.9998Resistance of bacterial isolates from poultry products to therapeutic veterinary antibiotics. Bacterial isolates from poultry products were tested for their susceptibility to 10 antibiotics commonly used in the therapeutic treatment of poultry. Bacteria were isolated from fresh whole broiler carcasses or from cut-up meat samples (breast with or without skin, wings, and thighs) that were either fresh or stored at 4 or 13 degrees C (temperatures relevant to poultry-processing facilities). The Biolog system was used to identify isolates, and a broth dilution method was used to determine the antibiotic resistance properties of both these isolates and complementary cultures from the American Type Culture Collection. The antibiotics to which the most resistance was noted were penicillin G, sulfadimethoxine, and erythromycin; the antibiotic to which the least resistance was noted was enrofloxacin. Individual isolates exhibited resistances to as many as six antibiotics, with the most common resistance pattern involving the resistance of gram-negative bacteria to penicillin G, sulfadimethoxine, and erythromycin. Differences in resistance patterns were noted among 18 gram-positive and 7 gram-negative bacteria, and comparisons were made between species within the same genus. The data obtained in this study provide a useful reference for the species and resistance properties of bacteria found on various raw poultry products, either fresh or stored at temperatures and for times relevant to commercial processing, storage, and distribution. The results of this study show that resistance to antibiotics used for the therapeutic treatment of poultry occurs in bacteria in the processing environment.200312540187
5650130.9998High-level trimethoprim resistance in urinary bacteria. The results of a three year evaluation of the incidence and type of trimethoprim resistance in pathogens responsible for significant bacteriuria in a general hospital in Edinburgh UK, are presented and compared to results of a previous study. In the present study, trimethoprim resistance was 50% more frequent in bacteria isolated from men and nearly twice as frequent in bacteria from elderly patients. However, the proportion of trimethoprim resistant strains fell annually when resistance was measured at trimethoprim concentrations of both 10 mg/l and 1000 mg/l. The proportion of strains able to transfer trimethoprim resistance also fell by half, and there was some movement of trimethoprim resistance transposons into the bacterial chromosome. These results suggest that migration of high-level trimethoprim resistance genes into the permanent location of the bacterial chromosome is occurring.19863527699
5088140.9998A Multiplex SYBR Green Real-Time PCR Assay for the Detection of Three Colistin Resistance Genes from Cultured Bacteria, Feces, and Environment Samples. The aim of the study was to develop a multiplex assay for rapid detection of mcr-1, mcr-2, and mcr-3, a group of genes of conferring resistance to colistin mediated by plasmid in Enterobacteriaceae. A SYBR Green based real-time PCR assay has been designed to detect the mcr genes, and applied to cultured bacteria, feces and soil samples. All three mcr genes could be detected with a lower limit of 10(2) cultured bacteria. This test was highly specific and sensitive, and generated no false-positive results. The assay was also conclusive when applied to feces and soil samples containing mcr-1-positive Escherichia coli, which could facilitate the screening of mcr genes not only in the bacteria, but also directly from the environment. This simple, rapid, sensitive, and specific multiplex assay will be useful for rapid screening of the colistin resistance in both clinical medicine and animal husbandry.201729163387
5636150.9998Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor. The aim of this study was to assess the impact of ciprofloxacin, clindamycin, and placebo administration on culturable Gram-negative isolates and the antibiotic resistance genes they harbor. Saliva and fecal samples were collected from healthy human volunteers before and at intervals, up to 1 year after antibiotic administration. Samples were plated on selective and nonselective media to monitor changes in different colony types or bacterial species. Following ciprofloxacin administration, there was a decrease of Escherichia coli in feces and after clindamycin administration a decrease of Bacteroides in feces and Leptotrichia in saliva, which all returned to pretreatment levels within 1 to 4 months. Ciprofloxacin administration also resulted in an increase in ciprofloxacin-resistant Veillonella in saliva, which persisted for 12 months. Additionally, 949 aerobic and anaerobic isolates purified from ciprofloxacin- and clindamycin-containing plates were screened for the presence of resistance genes. Resistance gene carriage was widespread in isolates from all three treatment groups, and no association was observed between genes and antibiotic administration. Although the anaerobic component of the microbiota was not a major reservoir of aerobe-associated antimicrobial resistance (AMR) genes, we detected the sulfonamide resistance gene sul2 in anaerobic isolates. The longitudinal nature of the study allowed identification of distinct Escherichia coli clones harboring multiple resistance genes, including one carrying an extended-spectrum β-lactamase blaCTX-M group 9 gene, which persisted in the gut for up to 4 months. This study provided insight into the effects of antibiotic administration on healthy microbiota and the diversity of resistance genes harbored therein.201525987611
2796160.9998Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection. A macroarray system was developed to screen environmental samples for the presence of specific tetracycline (Tc(R)) and erythromycin (erm(R)) resistance genes. The macroarray was loaded with polymerase chain reaction (PCR) amplicons of 23 Tc(R) genes and 10 erm(R) genes. Total bacterial genomic DNA was extracted from soil and animal faecal samples collected from different European countries. Macroarray hybridization was performed under stringent conditions and the results were analysed by fluorescence scanning. Pig herds in Norway, reared without antibiotic use, had a significantly lower incidence of antibiotic resistant bacteria than those reared in other European countries, and organic herds contained lower numbers of resistant bacteria than intensively farmed animals. The relative proportions of the different genes were constant across the different countries. Ribosome protection type Tc(R) genes were the most common resistance genes in animal faecal samples, with the tet(W) gene the most abundant, followed by tet(O) and tet(Q). Different resistance genes were present in soil samples, where erm(V) and erm(E) were the most prevalent followed by the efflux type Tc(R) genes. The macroarray proved a powerful tool to screen DNA extracted from environmental samples to identify the most abundant Tc(R) and erm(R) genes within those tested, avoiding the need for culturing and biased PCR amplification steps.200717298370
3390170.9998Bacteriological water quality in school's drinking fountains and detection antibiotic resistance genes. The fecal coliform can contaminate water of human consumption causing problems to public health. Many of these microorganisms may contain plasmid and transfer them to other bacteria. This genetic material may confer selective advantages, among them resistance to antibiotics. The objectives of this study were to analyze the presence of fecal coliforms in water and at drinker surface, to identify the existence of plasmid, conducting studies of resistance to antibiotics, plasmid stability and capacity of bacterial conjugation. Were collected microorganisms in water of drinker surface and were used specific culture media and biochemical tests for identification of organisms, tests were performed by checking the resistance to antibiotics (ampicillin 10 μg, tetracycline 30 μg, and ciprofloxacin 5 μg), was performed extraction of plasmid DNA, plasmid stability and bacterial conjugation. Was obtained results of 31% of Salmonella spp. and 51% for other coliforms. Among the samples positive for coliforms, 27 had plasmid stable and with the ability to perform conjugation. The plasmids had similar forms, suggesting that the resistance in some bacteria may be linked to those genes extra chromosomal.201728178984
5665180.9998Complementarity of Selective Culture and qPCR for Colistin Resistance Screening in Fresh and Frozen Pig Cecum Samples. Retrospective studies involving the screening of frozen stored collections of samples are commonplace when a new threat emerges, but it has been demonstrated that the freeze-thaw process can affect bacterial viability. The study of colistin-resistant bacteria in human and animal samples is an example of this issue. In this study, we compared culture-based and PCR-based methods for analyzing relative occurrence and diversity of colistin-resistant bacteria in caecal samples to determine the most appropriate method for frozen samples. Thus, 272 samples from the caecal contents of healthy pigs were tested before and after a 6-month freezing period. A selective medium was used when traditional isolation of colistin-resistant bacteria was tested, while a real-time SYBR(®) Green I PCR assay was applied for mcr-1 quantification. The number of samples with colistin-resistant isolates was higher in fresh samples (247/272) than in frozen ones (67/272) and showed a higher diversity of colistin-resistant genera. PCR identification of mcr colistin resistance genes evidenced that mcr-1 was the most prevalent mcr gene and mcr-2 was detected for the first time in pigs from Spanish animal production. The number of samples with mcr-1-carrying bacteria after a freezing period decreased, while real-time quantitation of the mcr-1 gene showed similar values in frozen and fresh samples. Therefore, when frozen cecal samples need to be analyzed, molecular detection of DNA could be the best option to provide a highly representative frame of the initial population present in the sample, and culture-based methods might be a useful complement to study colistin resistance levels.202033240230
5645190.9998Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province. Bacillus cereus is a common pathogen causing foodborne diseases, secreting and producing a large number of toxins that can cause a variety of diseases and pose many threats to human health. In this study, 73 strains of Bacillus cereus were isolated and identified from six types of foods from seven different cities in a province, and the antibiotic-resistant phenotype was detected by using the Bauer-Kirby method. Results showed that the 73 isolates were completely sensitive to gentamicin and 100% resistant to chloramphenicol, in addition to which all strains showed varying degrees of resistance to 13 other common antibiotics, and a large number of strains resistant to multiple antibiotics were found. A bioinformatic analysis of the expression of resistance genes in Bacillus cereus showed three classes of antibiotic-resistant genes, which were three of the six classes of antibiotics identified according to the resistance phenotype. The presence of other classes of antibiotic-resistant genes was identified from genome-wide information. Antibiotic-resistant phenotypes were analyzed for correlations with genotype, and remarkable differences were found among the phenotypes. The spread of antibiotic-resistant strains is a serious public health problem that requires the long-term monitoring of antimicrobial resistance in Bacillus cereus, and the present study provides important information for monitoring antibiotic resistance in bacteria from different types of food.202338138092