Hazard Characterization of Antibiotic-resistant Aeromonas spp. Isolated from Mussel and Oyster Shellstock Available for Retail Purchase in Canada. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
561701.0000Hazard Characterization of Antibiotic-resistant Aeromonas spp. Isolated from Mussel and Oyster Shellstock Available for Retail Purchase in Canada. Surveillance and monitoring of foods for the presence of antimicrobial-resistant (AMR) bacteria are required to assess the risks these bacteria pose to human health. Frequently consumed raw or lightly cooked, live bivalve shellfish such as mussels and oysters can be a source of exposure to AMR bacteria. This study sought to determine the prevalence of third-generation cephalosporin (3GC) and carbapenem-resistant bacteria in live mussel and oyster shellstock available for retail purchase through the course of one calendar year. Just over half of the 180 samples (52%) tested positive for the presence of 3GC-resistant bacteria belonging to thirty distinct bacterial species. Speciation of the isolates was carried out using the Bruker MALDI Biotyper. Serratia spp., Aeromonas spp., and Rahnella spp. were the most frequently isolated groups of bacteria. Antibiotic resistance testing confirmed reduced susceptibility for 3GCs and/or carbapenems in 15 of the 29 Aeromonas isolates. Based on AMR patterns, and species identity, a subset of ten Aeromonas strains was chosen for further characterization by whole genome sequence analysis. Genomic analysis revealed the presence of multiple antibiotic resistance and virulence genes. A number of mobile genetic elements were also identified indicating the potential for horizontal gene transfer. Differences in gene detection by the bioinformatic tools and databases used (ResFinder. CARD RGI, PlasmidFinder, and MobSuite) are discussed. This study highlights the strengths and limitations of using genomics tools to perform hazard characterization of diverse foodborne bacterial species.202439383948
561310.9998Characterizing Antimicrobial Resistance in Clinically Relevant Bacteria Isolated at the Human/Animal/Environment Interface Using Whole-Genome Sequencing in Austria. Antimicrobial resistance (AMR) is a public health issue attributed to the misuse of antibiotics in human and veterinary medicine. Since AMR surveillance requires a One Health approach, we sampled nine interconnected compartments at a hydrological open-air lab (HOAL) in Austria to obtain six bacterial species included in the WHO priority list of antibiotic-resistant bacteria (ARB). Whole genome sequencing-based typing included core genome multilocus sequence typing (cgMLST). Genetic and phenotypic characterization of AMR was performed for all isolates. Eighty-nine clinically-relevant bacteria were obtained from eight compartments including 49 E. coli, 27 E. faecalis, 7 K. pneumoniae and 6 E. faecium. Clusters of isolates from the same species obtained in different sample collection dates were detected. Of the isolates, 29.2% were resistant to at least one antimicrobial. E. coli and E. faecalis isolates from different compartments had acquired antimicrobial resistance genes (ARGs) associated with veterinary drugs such as aminoglycosides and tetracyclines, some of which were carried in conjugative and mobilizable plasmids. Three multidrug resistant (MDR) E. coli isolates were found in samples from field drainage and wastewater. Early detection of ARGs and ARB in natural and farm-related environments can identify hotspots of AMR and help prevent its emergence and dissemination along the food/feed chain.202236232576
556020.9997Linezolid- and Multidrug-Resistant Enterococci in Raw Commercial Dog Food, Europe, 2019-2020. We describe enterococci in raw-frozen dog food commercialized in Europe as a source of genes encoding resistance to the antibiotic drug linezolid and of strains and plasmids enriched in antibiotic-resistance and virulence genes in hospitalized patients. Whole-genome sequencing was fundamental to linking isolates from dog food to human cases across Europe.202134287135
556230.9997Multidrug-Resistant Escherichia coli Strains to Last Resort Human Antibiotics Isolated from Healthy Companion Animals in Valencia Region. Failure in antibiotic therapies due to the increase in antimicrobial-resistant (AMR) bacteria is one of the main threats to public and animal health. In recent decades, the perception of companion animals has changed, from being considered as a work tool to a household member, creating a family bond and sharing spaces in their daily routine. Hence, the aim of this study is to assess the current epidemiological situation regarding the presence of AMR and multidrug resistance (MDR) in companion animals in the Valencia Region, using the indicator bacteria Escherichia coli as a sentinel. For this purpose, 244 samples of dogs and cats were collected from veterinary centres to assess antimicrobial susceptibility against a panel of 22 antibiotics with public health relevance. A total of 197 E. coli strains were isolated from asymptomatic dogs and cats. The results showed AMR against all the 22 antibiotics studied, including those critically important to human medicine. Moreover, almost 50% of the strains presented MDR. The present study revealed the importance of monitoring AMR and MDR trends in companion animals, as they could pose a risk due to the spread of AMR and its resistance genes to humans, other animals and the environment they cohabit.202337998840
561440.9997A metagenomic approach to One Health surveillance of antimicrobial resistance in a UK veterinary centre. There are currently no standardized guidelines for genomic surveillance of One Health antimicrobial resistance (AMR). This project aimed to utilize metagenomics to identify AMR genes present in a companion animal hospital and compare these with phenotypic results from bacterial isolates from clinical specimens from the same veterinary hospital. Samples were collected from sites within a primary care companion animal veterinary hospital in London, UK. Metagenomic DNA was sequenced using Oxford Nanopore Technologies MinION. The sequencing data were analysed for AMR genes, plasmids and clinically relevant pathogen species. These data were compared to phenotypic speciation and antibiotic susceptibility tests of bacterial isolates from patients. The most common resistance genes identified were aph (n=101 times genes were detected across 48 metagenomic samples), sul (84), bla (CARB) (63), tet (58) and bla (TEM) (46). In clinical isolates, a high proportion of isolates were phenotypically resistant to β-lactams. Rooms with the greatest mean number of resistance genes identified per swab site were the medical preparation room, dog ward and surgical preparation room. Twenty-four and four plasmids typically associated with Gram-positive and Enterobacteriaceae, respectively, were identified. Sequencing reads matched with 14 out of 22 (64%) of the phenotypically isolated bacterial species. Metagenomics identified AMR genes, plasmids and species of relevance to human and animal medicine. Communal animal-handling areas harboured more AMR genes than areas animals did not frequent. When considering infection prevention and control measures, adherence to, and frequency of, cleaning schedules, alongside potentially more comprehensive disinfection of animal-handling areas, may reduce the number of potentially harmful bacteria present.202540889140
571650.9997Genomic analysis of Salmonella isolated from canal water in Bangkok, Thailand. Antimicrobial resistance (AMR) poses an escalating global public health threat. Canals are essential in Thailand, including the capital city, Bangkok, as agricultural and daily water sources. However, the characteristic and antimicrobial-resistance properties of the bacteria in the urban canals have never been elucidated. This study employed whole genome sequencing to characterize 30 genomes of a causal pathogenic bacteria, Salmonella enterica, isolated from Bangkok canal water between 2016 and 2020. The dominant serotype was Salmonella Agona. In total, 35 AMR genes and 30 chromosomal-mediated gene mutations were identified, in which 21 strains carried both acquired genes and mutations associated with fluoroquinolone resistance. Virulence factors associated with invasion, adhesion, and survival during infection were detected in all study strains. 75.9% of the study stains were multidrug-resistant and all the strains harbored the necessary virulence factors associated with salmonellosis. One strain carried 20 resistance genes, including mcr-3.1, mutations in GyrA, ParC, and ParE, and typhoid toxin-associated genes. Fifteen plasmid replicon types were detected, with Col(pHAD28) being the most common type. Comparative analysis of nine S. Agona from Bangkok and 167 from public databases revealed that specific clonal lineages of S. Agona might have been circulating between canal water and food sources in Thailand and globally. These findings provide insight into potential pathogens in the aquatic ecosystem and support the inclusion of environmental samples into comprehensive AMR surveillance initiatives as part of a One Health approach. This approach aids in comprehending the rise and dissemination of AMR and devising sustainable intervention strategies.IMPORTANCEBangkok is the capital city of Thailand and home to a large canal network that serves the city in various ways. The presence of pathogenic and antimicrobial-resistant Salmonella is alarming and poses a significant public health risk. The present study is the first characterization of the genomic of Salmonella strains from Bangkok canal water. Twenty-two of 29 strains (75.9%) were multidrug-resistant Salmonella and all the strains carried essential virulence factors for pathogenesis. Various plasmid types were identified in these strains, potentially facilitating the horizontal transfer of AMR genes. Additional investigations indicated a potential circulation of S. Agona between canal water and food sources in Thailand. The current study underscores the role of environmental water in an urban city as a reservoir of pathogens and these data obtained can serve as a basis for public health risk assessment and help shape intervention strategies to combat AMR challenges in Thailand.202438563788
253460.9997Prevalence, antibiotic resistance, and virulence gene profile of Escherichia coli strains shared between food and other sources in Africa: A systematic review. BACKGROUND AND AIM: Foodborne diseases caused by Escherichia coli are prevalent globally. Treatment is challenging due to antibiotic resistance in bacteria, except for foodborne infections due to Shiga toxin-producing E. coli, for which treatment is symptomatic. Several studies have been conducted in Africa on antibiotic resistance of E. coli isolated from several sources. The prevalence and distribution of resistant pathogenic E. coli isolated from food, human, and animal sources and environmental samples and their virulence gene profiles were systematically reviewed. MATERIALS AND METHODS: Bibliographic searches were performed using four databases. Research articles published between 2000 and 2022 on antibiotic susceptibility and virulence gene profile of E. coli isolated from food and other sources were selected. RESULTS: In total, 64 articles were selected from 14 African countries: 45% of the studies were conducted on food, 34% on animal samples, 21% on human disease surveillance, and 13% on environmental samples. According to these studies, E. coli is resistant to ~50 antimicrobial agents, multidrug-resistant, and can transmit at least 37 types of virulence genes. Polymerase chain reaction was used to characterize E. coli and determine virulence genes. CONCLUSION: A significant variation in epidemiological data was noticed within countries, authors, and sources (settings). These results can be used as an updated database for monitoring E. coli resistance in Africa. More studies using state-of-the-art equipment are needed to determine all resistance and virulence genes in pathogenic E. coli isolated in Africa.202338023276
556370.9997Exploring the Prevalence of Antimicrobial Resistance in Salmonella and commensal Escherichia coli from Non-Traditional Companion Animals: A Pilot Study. Companion animal ownership has evolved to new exotic animals, including small mammals, posing a new public health challenge, especially due to the ability of some of these new species to harbour zoonotic bacteria, such as Salmonella, and spread their antimicrobial resistances (AMR) to other bacteria through the environment they share. Therefore, the objective of the present pilot study was to evaluate the current epidemiological AMR situation in commensal Escherichia coli and Salmonella spp., in non-traditional companion animal small mammals in the Valencia region. For this purpose, 72 rectal swabs of nine different species of small mammals were taken to assess the antimicrobial susceptibility against 28 antibiotics. A total of one Salmonella enterica serovar Telelkebir 13,23:d:e,n,z(15) and twenty commensal E. coli strains were isolated. For E. coli strains, a high prevalence of AMR (85%) and MDR (82.6%) was observed, although neither of them had access outside the household. The highest AMR were observed in quinolones, one of the highest priority critically important antimicrobials (HPCIAs) in human medicine. However, no AMR were found for Salmonella. In conclusion, the results showed that small mammals' commensal E. coli poses a public health risk due to the high AMR found, and the ability of this bacterium to transmit its resistance genes to other bacteria. For this reason, this pilot study highlighted the need to establish programmes to control AMR trends in the growing population of new companion animals, as they could disseminate AMR to humans and animals through their shared environment.202438398679
556180.9997Antimicrobial Resistance of Escherichia coli and Pseudomonas aeruginosa from Companion Birds. Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated.202033171927
557090.9997Monitoring the Spread of Multidrug-Resistant Escherichia coli Throughout the Broiler Production Cycle. The extensive use of antimicrobials in broiler production is changing the bird microbiota, fostering drug-resistant bacteria, and complicating therapeutic interventions, making the problem of multidrug resistance global. The monitoring of antimicrobial virulence and resistance genes are tools that have come to assist the breeding of these animals, directing possible treatments as already used in human medicine and collecting data to demonstrate possible dissemination of multidrug-resistant strains that may cause damage to industry and public health. This work aimed to monitor broiler farms in southern Brazil, isolating samples of E. coli and classifying them according to the profile of resistance to antimicrobials of interest to human and animal health. We also monitored the profile of virulence genes and conducted an epidemiological survey of possible risk factors that contribute to this selection of multidrug-resistant isolates. Monitoring was carried out on farms in the three southern states of the country, collecting samples of poultry litter, cloacal swabs, and beetles of the species Alphitobius diaperinus, isolating E. coli from each of these samples. These were evaluated by testing their susceptibility to antimicrobials of animal and human interest; detecting whether the samples were extended-spectrum β-lactamase enzyme (ESBL) producers; and when positive, selected for genotypic tests to identify resistant genes (CTX-M, TEM, and SHV) and virulence. Among the antimicrobials tested, enrofloxacin and ciprofloxacin demonstrated some of the highest frequencies of resistance in the isolated strains, with significant statistical results. The use of these antimicrobials increased the likelihood of resistance by over three times and was associated with a 1.5-fold higher probability of multidrug resistance. Of all isolates, 95% were multidrug-resistant, raising concerns for production and public health. Among 231 ESBL-positive samples, the CTX-M1 group predominated.202539858355
5723100.9997A high-risk carbapenem-resistant Pseudomonas aeruginosa clone detected in red deer (Cervus elaphus) from Portugal. Pseudomonas aeruginosa is a ubiquitous bacterium, successfully exploiting a variety of environmental niches due to its remarkable metabolic versatility. The World Health Organization classifies P. aeruginosa as a "priority pathogen" due to its a great ability to overcome the action of antimicrobials, including carbapenems. Hitherto, most studies have focused on clinical settings from humans, but much less on animal and environmental settings, particularly on wildlife. In this work, we report the isolation of a carbapenem-resistant Pseudomonas aeruginosa strain recovered from the faeces of a red deer adult female sampled in a humanized area. This isolate was obtained during a nationwide survey on antimicrobial resistance in wildlife aimed to determine the occurrence of carbapenem-resistant bacteria among 181 widely distributed wild ungulates. This P. aeruginosa isolate was found to be a high-risk clone, belonging to the sequence type (ST) 274. The genomic analysis of P. aeruginosa isolate UP4, classified this isolate as belonging to serogroup O3, which was also found to harbour the genes bla(PAO), bla(PDC-24), bla(OXA-486) (encoding resistance to beta-lactams), aph(3')-IIb (aminoglycosides resistance), fosA (fosfomycin resistance) and catB7 (chloramphenicol resistance). Antimicrobial susceptibility screening, according to EUCAST, showed resistance to imipenem and intermediate resistance to meropenem and doripenem. To our knowledge, this is the first description of carbapenem-resistant P. aeruginosa in deer in Europe. Our results highlight the importance of wild ungulates either as victims of human activity or amplifiers of AMR, either way with potential impacts on animal, human and ecosystem health, since excretion of AMR bacteria might directly or indirectly contaminate other animals and the surrounding environment, perpetuating the spill-over and chain dissemination of AMR determinants.202235318052
2601110.9997Enhancing the one health initiative by using whole genome sequencing to monitor antimicrobial resistance of animal pathogens: Vet-LIRN collaborative project with veterinary diagnostic laboratories in United States and Canada. BACKGROUND: Antimicrobial resistance (AMR) of bacterial pathogens is an emerging public health threat. This threat extends to pets as it also compromises our ability to treat their infections. Surveillance programs in the United States have traditionally focused on collecting data from food animals, foods, and people. The Veterinary Laboratory Investigation and Response Network (Vet-LIRN), a national network of 45 veterinary diagnostic laboratories, tested the antimicrobial susceptibility of clinically relevant bacterial isolates from animals, with companion animal species represented for the first time in a monitoring program. During 2017, we systematically collected and tested 1968 isolates. To identify genetic determinants associated with AMR and the potential genetic relatedness of animal and human strains, whole genome sequencing (WGS) was performed on 192 isolates: 69 Salmonella enterica (all animal sources), 63 Escherichia coli (dogs), and 60 Staphylococcus pseudintermedius (dogs). RESULTS: We found that most Salmonella isolates (46/69, 67%) had no known resistance genes. Several isolates from both food and companion animals, however, showed genetic relatedness to isolates from humans. For pathogenic E. coli, no resistance genes were identified in 60% (38/63) of the isolates. Diverse resistance patterns were observed, and one of the isolates had predicted resistance to fluoroquinolones and cephalosporins, important antibiotics in human and veterinary medicine. For S. pseudintermedius, we observed a bimodal distribution of resistance genes, with some isolates having a diverse array of resistance mechanisms, including the mecA gene (19/60, 32%). CONCLUSION: The findings from this study highlight the critical importance of veterinary diagnostic laboratory data as part of any national antimicrobial resistance surveillance program. The finding of some highly resistant bacteria from companion animals, and the observation of isolates related to those isolated from humans demonstrates the public health significance of incorporating companion animal data into surveillance systems. Vet-LIRN will continue to build the infrastructure to collect the data necessary to perform surveillance of resistant bacteria as part of fulfilling its mission to advance human and animal health. A One Health approach to AMR surveillance programs is crucial and must include data from humans, animals, and environmental sources to be effective.201931060608
5619120.9997Whole Genome Sequencing of Escherichia coli and Enterococcus spp. in wildlife-livestock interface: a pilot study. OBJECTIVES: This pilot study provides a multidisciplinary investigation to monitor livestock-wildlife interface. Ecological data, microbiological investigations, and whole genome sequencing were used to characterize eight bacterial isolates obtained from sympatric domestic and wild ruminants in Maiella National Park (Italy) in terms of genetic patterns of antimicrobial resistance. METHODS: Using selective culturing of fresh fecal samples of monitored and georeferenced populations of Apennine chamois, goats, red deer, and sheep, Escherichia coli, Enterococcus faecium, and Enterococcus faecalis isolates were isolated and subjected to minimum inhibitory concentration determination and whole genome sequencing. RESULTS: The analyzed isolates showed phenotypic and genotypic resistance to tetracycline and critically important antibiotics such as linezolid and carbapenems. Virulence genes related to biofilm regulation and Shiga toxins were also detected. Furthermore, serotypes related to nosocomial infections, harbouring plasmids recognized as important mobile resistance gene transmitters, were identified. CONCLUSIONS: This multidisciplinary pilot study represents a promising initial step to identify the environmental drivers and the transmission routes of antimicrobial resistance and virulence factors, providing new data on bacteria from rare and endangered species such as Apennine chamois.202336764655
5724130.9997Convergence of virulence and resistance in international clones of WHO critical priority enterobacterales isolated from Marine Bivalves. The global spread of critical-priority antimicrobial-resistant Enterobacterales by food is a public health problem. Wild-caught seafood are broadly consumed worldwide, but exposure to land-based pollution can favor their contamination by clinically relevant antimicrobial-resistant bacteria. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we performed genomic surveillance and cell culture-based virulence investigation of WHO critical priority Enterobacterales isolated from marine bivalves collected in the Atlantic Coast of South America. Broad-spectrum cephalosporin-resistant Klebsiella pneumoniae and Escherichia coli isolates were recovered from eight distinct geographical locations. These strains harbored bla(CTX-M)-type or bla(CMY)-type genes. Most of the surveyed genomes confirmed the convergence of wide virulome and resistome (i.e., antimicrobials, heavy metals, biocides, and pesticides resistance). We identified strains belonging to the international high-risk clones K. pneumoniae ST307 and E. coli ST131 carrying important virulence genes, whereas in vitro experiments confirmed the high virulence potential of these strains. Thermolabile and thermostable toxins were identified in some strains, and all of them were biofilm producers. These data point to an alarming presence of resistance and virulence genes in marine environments, which may favor horizontal gene transfer and the spread of these traits to other bacterial species.202235383231
5721140.9997One Health Genomic Surveillance of Escherichia coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock. Livestock have been proposed as a reservoir for drug-resistant Escherichia coli that infect humans. We isolated and sequenced 431 E. coli isolates (including 155 extended-spectrum β-lactamase [ESBL]-producing isolates) from cross-sectional surveys of livestock farms and retail meat in the East of England. These were compared with the genomes of 1,517 E. coli bacteria associated with bloodstream infection in the United Kingdom. Phylogenetic core genome comparisons demonstrated that livestock and patient isolates were genetically distinct, suggesting that E. coli causing serious human infection had not directly originated from livestock. In contrast, we observed highly related isolates from the same animal species on different farms. Screening all 1,948 isolates for accessory genes encoding antibiotic resistance revealed 41 different genes present in variable proportions in human and livestock isolates. Overall, we identified a low prevalence of shared antimicrobial resistance genes between livestock and humans based on analysis of mobile genetic elements and long-read sequencing. We conclude that within the confines of our sampling framework, there was limited evidence that antimicrobial-resistant pathogens associated with serious human infection had originated from livestock in our region.IMPORTANCE The increasing prevalence of E. coli bloodstream infections is a serious public health problem. We used genomic epidemiology in a One Health study conducted in the East of England to examine putative sources of E. coli associated with serious human disease. E. coli from 1,517 patients with bloodstream infections were compared with 431 isolates from livestock farms and meat. Livestock-associated and bloodstream isolates were genetically distinct populations based on core genome and accessory genome analyses. Identical antimicrobial resistance genes were found in livestock and human isolates, but there was limited overlap in the mobile elements carrying these genes. Within the limitations of sampling, our findings do not support the idea that E. coli causing invasive disease or their resistance genes are commonly acquired from livestock in our region.201930670621
5525150.9997A comprehensive survey of Aeromonas sp. and Vibrio sp. in seabirds from southeastern Brazil: outcomes for public health. AIMS: To perform a microbiological survey regarding the presence, prevalence and characterization of Aeromonas sp. and Vibrio sp. in debilitated wrecked marine birds recovered from the centre-north coast of the state of Rio de Janeiro, Brazil. METHODS AND RESULTS: Swabs obtained from 116 alive and debilitated wrecked marine birds, comprising 19 species, from the study area were evaluated by biochemical methods. Antimicrobial susceptibility tests and pathogenicity gene screening were performed for bacterial strains of public health importance. Vibrio sp. and Aeromonas sp. were identified, as well as certain pathogenic genes and resistance to selected antimicrobials. CONCLUSIONS: This study demonstrates that the identified bacteria, mainly Vibrio sp., are fairly prevalent and widespread among several species of seabirds and highlights the importance of migratory birds in bacterial dispersion. In addition, it demonstrates the importance of the bacterial strains regarding their pathogenic potential. Therefore, seabirds can act as bacterial reservoirs, and their monitoring is of the utmost importance in a public health context. SIGNIFICANCE AND IMPACT OF THE STUDY: The study comprehensively evaluates the importance of seabirds as bacteria of public health importance reservoirs, since birds comprising several pathogenic bacterial species were evaluated.201829356247
1879160.9997Multidrug resistance in Salmonella isolates of swine origin: mobile genetic elements and plasmids associated with cephalosporin resistance with potential transmission to humans. The emergence of foodborne Salmonella strains carrying antimicrobial resistance (AMR) in mobile genetic elements (MGE) is a significant public health threat in a One Health context requiring continuous surveillance. Resistance to ciprofloxacin and cephalosporins is of particular concern. Since pigs are a relevant source of foodborne Salmonella for human beings, we studied transmissible AMR genes and MGE in a collection of 83 strains showing 9 different serovars and 15 patterns of multidrug resistant (MDR) previously isolated from pigs raised in the conventional breeding system of Northern Spain. All isolates were susceptible to ciprofloxacin and three isolates carried bla(CMY-2) or bla(CTX-M-9) genes responsible for cefotaxime resistance. Filter mating experiments showed that the two plasmids carrying bla(CTX-M-9) were conjugative while that carrying bla(CMY-2) was self-transmissible by transformation. Whole-genome sequencing and comparative analyses were performed on the isolates and plasmids. The IncC plasmid pSB109, carrying bla(CMY-2), was similar to one found in S. Reading from cattle, indicating potential horizontal transfer between serovars and animal sources. The IncHI2 plasmids pSH102 in S. Heidelberg and pSTM45 in S. Typhimurium ST34, carrying bla(CTX-M-9), shared similar backbones and two novel "complex class 1 integrons" containing different AMR and heavy metal genes. Our findings emphasize the importance of sequencing techniques to identify emerging AMR regions in conjugative and stable plasmids from livestock production. The presence of MGE carrying clinically relevant AMR genes raises public health concerns, requiring monitoring to mitigate the emergence of bacteria carrying AMR genes and subsequent spread through animals and food.IMPORTANCEThe emergence of foodborne Salmonella strains carrying antimicrobial resistance (AMR) in mobile genetic elements (MGE) is a significant public health threat in a One Health context. Since pigs are a relevant source of foodborne Salmonella for humans, in this study, we investigate different aspects of AMR in a collection of 83 Salmonella showing nine different serovars and 15 patterns of multidrug resistant (MDR) isolated from pigs raised in the conventional breeding system. Our findings emphasize the importance of sequencing techniques to identify emerging AMR regions in conjugative and stable plasmids from livestock production. The presence of MGE carrying clinically relevant AMR genes raises public health concerns, requiring monitoring to mitigate the emergence of bacteria carrying AMR genes and subsequent spread through animals and food.202438695519
5517170.9997Analysis of the antimicrobial resistance gene frequency in whole-genome sequenced Vibrio from Latin American countries. Vibrio species are important environmental-related bacteria responsible for diverse infections in humans due to consumption of contaminated water and seafood in underdeveloped areas of the world. This study aimed to investigate the frequency of antimicrobial resistance genes in 577 sequenced Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus strains isolated in Latin American countries available at the NCBI Pathogen Detection database and to determine the sequence type (ST) of the strains. Almost all strains studied (99.8%) carried at least one antimicrobial resistance gene, while 54.2 % presented a multidrug-resistance profile. The Vibrio strains exhibited genotypic resistance to 11 antimicrobial classes and almG, varG, and catB9, which confer resistance to antibiotic peptides, β-lactams and amphenicols, respectively, were the most detected genes. Vibrio parahaemolyticus and V. vulnificus showed a broad diversity of STs. Vibrio cholerae strains isolated in Haiti after 2010's earthquake presented the highest diversity and amount of resistance genes in the set of strains analysed and mostly belonged to ST69. In conclusion, the detection of resistance genes from 11 antimicrobial classes and the high number of multidrug-resistant Vibrio species strains emphasize that Latin American public health authorities should employ more efficient control measures and that special attention should be given for the rational use of antimicrobials in human therapy and aquaculture, since the consumption of contaminated water and seafood with resistant Vibrio may result in human infections difficult to be treated.202134586052
2533180.9997Colistin Resistant mcr Genes Prevalence in Livestock Animals (Swine, Bovine, Poultry) from a Multinational Perspective. A Systematic Review. The objective of this review is to collect and present the results of relevant studies on an international level, on the subject of colistin resistance due to mcr genes prevalence in livestock animals. After a literature search, and using PRISMA guidelines principles, a total of 40 swine, 16 bovine and 31 poultry studies were collected concerning mcr-1 gene; five swine, three bovine and three poultry studies referred to mcr-2 gene; eight swine, one bovine, two poultry studies were about mcr-3 gene; six swine, one bovine and one poultry manuscript studied mcr-4 gene; five swine manuscripts studied mcr-5 gene; one swine manuscript was about mcr-6, mcr-7, mcr-8, mcr-9 genes and one poultry study about mcr-10 gene was found. Information about colistin resistance in bacteria derived from animals and animal product foods is still considered limited and that should be continually enhanced; most of the information about clinical isolates are relative to enteropathogens Escherichia coli and Salmonella spp. This review demonstrates the widespread dispersion of mcr genes to livestock animals, indicating the need to further increase measures to control this important threat for public health issue.202134822638
5565190.9997Vancomycin resistance and virulence genes evaluation in Enterococci isolated from pork and wild boar meat. Enterococci are considered valuable sentinel Gram-positive bacteria for monitoring vancomycin antibiotic resistance due to their widespread presence and characteristics. The use of antimicrobials in farming animals has a role in the increasing of Antimicrobial Resistance (AMR) and the anthropogenic transformation of the landscape has forced wildlife into greater contact with humans and their livestock. The transmission of resistant bacteria by their meat products is a significant contributor to AMR development. The present study aimed to assess the prevalence of vancomycin resistant Enterococci spp. In antimicrobial-treated farmed pigs meat and in antimicrobial-free wild boars meat. A total of 341 Enterococci were isolated from 598 pork meat samples (57 %) and 173 Enterococci were isolated from 404 wild boar meat samples (42.8 %). Data found showed that low-resistance was detected more in wild boars meat Enterococci (52.6 %) than in pork meat once (48.4 %). However, the prevalence of resistance genes was at low level (33.9 % in pork meat Enterococci and 4.4 % in wild boar meat ones) and the only gene found was vanC1/C2, related to intrinsic AMR. Normally, Enterococci persist in the normal intestinal flora of animals including humans. However, the presence of resistance genes was frequently linked to the detection of pathogenic genes, mostly gelE in pork meat isolates and asa1 in wild boars meat isolates. Pathogenic bacteria can cause severe infections in human that can become more risky if associated to the presence of AMR. Pathogenic bacteria were characterized and a high presence of E. gallinarum and E. casseliflavus was found. Given the growing interest in wild game meat consumption the monitoring of AMR in these matrices is essential. Further surveillance studies are needed to fully evaluate the emergence and spread of vancomycin-resistant Enterococci (VRE) and pathogenic Enterococci from animal-derived food to humans, including the role of wildlife in this phenomenon. Giving the higher interest in wild animals meat consumption, it is important to better evaluate the spread of AMR phenomenon in the future and intensify hygienic control of wild animals derived food.202439104496