# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5611 | 0 | 1.0000 | Antibiotic-Resistant Bacteria Dissemination in the Wildlife, Livestock, and Water of Maiella National Park, Italy. Antimicrobial resistance (AMR) is a global health concern that has been linked to humans, animals, and the environment. The One Health approach highlights the connection between humans, animals, and the environment and suggests that a multidisciplinary approached be used in studies investigating AMR. The present study was carried out to identify and characterize the antimicrobial resistance profiles of bacteria isolated from wildlife and livestock feces as well as from surface water samples in Maiella National Park, Italy. Ecological and georeferenced data were used to select two sampling locations, one where wildlife was caught within livestock grazing areas (sympatric group) and one where wildlife was caught outside of livestock grazing areas (non-sympatric group). Ninety-nine bacterial isolates from 132 feces samples and seven isolates from five water samples were collected between October and December 2019. The specimens were examined for species identification, antibiotic susceptibility and molecular detection of antibiotic resistance. Forty isolates were identified as Escherichia coli, forty-eight as Enterococcus spp., eight as Streptococcus spp. and ten as other gram-negative bacteria. Phenotypic antibiotic resistance to at least one antimicrobial agent, including some antibiotics that play a critical role in human medicine, was detected in 36/106 (33.9%, 95% CI: 25-43) isolates and multidrug resistance was detected in 9/106 isolates (8.49%, 95% CI: 3.9-15.5). In addition, genes associated with antibiotic resistance were identified in 61/106 (57.55%, 95% CI: 47.5-67) isolates. The samples from sympatric areas were 2.11 (95% CI: 1.2-3.5) times more likely to contain resistant bacterial isolates than the samples from non-sympatric areas. These data suggest that drug resistant bacteria may be transmitted in areas where wildlife and livestock cohabitate. This emphasizes the need for further investigations focusing on the interactions between humans, wildlife, and the environment, the results of which can aid in the early detection of emerging AMR profiles and possible transmission routes. | 2023 | 36766321 |
| 5610 | 1 | 0.9999 | Characterization of antimicrobial resistance profiles in Escherichia coli isolated from captive mammals in Ecuador. BACKGROUND: This study focuses on the AMR profiles in E. coli isolated from captive mammals at EcoZoo San Martín, Baños de Agua Santa, Ecuador, highlighting the role of wildlife as reservoirs of resistant bacteria. AIMS: The aim of this research is to investigate the antimicrobial resistance profiles of E. coli strains isolated from various species of captive mammals, emphasizing the potential zoonotic risks and the necessity for integrated AMR management strategies. MATERIALS & METHODS: A total of 189 fecal samples were collected from 70 mammals across 27 species. These samples were screened for E. coli, resulting in 90 identified strains. The resistance profiles of these strains to 16 antibiotics, including 10 β-lactams and 6 non-β-lactams, were determined using the disk diffusion method. Additionally, the presence of Extended-Spectrum Beta-Lactamase (ESBL) genes and other resistance genes was analyzed using PCR. RESULTS: Significant resistance was observed, with 52.22% of isolates resistant to ampicillin, 42.22% to ceftriaxone and cefuroxime, and 27.78% identified as ESBL-producing E. coli. Multiresistance (resistance to more than three antibiotic groups) was found in 35.56% of isolates. Carnivorous and omnivorous animals, particularly those with prior antibiotic treatments, were more likely to harbor resistant strains. DISCUSSION: These findings underscore the role of captive mammals as indicators of environmental AMR. The high prevalence of resistant E. coli in these animals suggests that zoos could be significant reservoirs for the spread of antibiotic-resistant bacteria. The results align with other studies showing that diet and antibiotic treatment history influence resistance profiles. CONCLUSION: The study highlights the need for an integrated approach involving veterinary care, habitat management, and public awareness to prevent captive wildlife from becoming reservoirs of antibiotic-resistant bacteria. Improved waste management practices and responsible antibiotic use are crucial to mitigate the risks of AMR in zoo environments and reduce zoonotic threats. | 2024 | 39016692 |
| 2976 | 2 | 0.9999 | Phenotypic and Genotypic Antimicrobial Resistance in Non-O157 Shiga Toxin-Producing Escherichia coli Isolated From Cattle and Swine in Chile. Non-O157 Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes bloody diarrhea and hemolytic-uremic syndrome in humans, and a major cause of foodborne disease. Despite antibiotic treatment of STEC infections in humans is not recommended, the presence of antimicrobial-resistant bacteria in animals and food constitutes a risk to public health, as the pool of genes from which pathogenic bacteria can acquire antibiotic resistance has increased. Additionally, in Chile there is no information on the antimicrobial resistance of this pathogen in livestock. Thus, the aim of this study was to characterize the phenotypic and genotypic antimicrobial resistance of STEC strains isolated from cattle and swine in the Metropolitan region, Chile, to contribute relevant data to antimicrobial resistance surveillance programs at national and international level. We assessed the minimal inhibitory concentration of 18 antimicrobials, and the distribution of 12 antimicrobial resistance genes and class 1 and 2 integrons in 54 STEC strains. All strains were phenotypically resistant to at least one antimicrobial drug, with a 100% of resistance to cefalexin, followed by colistin (81.5%), chloramphenicol (14.8%), ampicillin and enrofloxacin (5.6% each), doxycycline (3.7%), and cefovecin (1.9%). Most detected antibiotic resistance genes were dfrA1 and tetA (100%), followed by tetB (94.4%), bla (TEM-1) (90.7%), aac(6)-Ib (88.9%), bla (AmpC) (81.5%), cat1 (61.1%), and aac(3)-IIa (11.1%). Integrons were detected only in strains of swine origin. Therefore, this study provides further evidence that non-O157 STEC strains present in livestock in the Metropolitan region of Chile exhibit phenotypic and genotypic resistance against antimicrobials that are critical for human and veterinary medicine, representing a major threat for public health. Additionally, these strains could have a competitive advantage in the presence of antimicrobial selective pressure, leading to an increase in food contamination. This study highlights the need for coordinated local and global actions regarding the use of antimicrobials in animal food production. | 2020 | 32754621 |
| 5583 | 3 | 0.9999 | High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: a food safety risk. BACKGROUND: There has been concern about the increase of antimicrobial resistant bacteria and protection of animal and public health, along with food safety. In the present study, we evaluate the incidence of antimicrobial resistance among 192 strains of Escherichia coli isolated from faecal samples of healthy food-producing animals at slaughter in Portugal. RESULTS: Ninety-seven % of the pig isolates, 74% from sheep and 55% from cattle were resistant to one or more antimicrobial agents, with the resistances to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole the most common phenotype detected. Genes encoding resistance to antimicrobial agents were detected in most of the resistant isolates. Ninety-three % of the resistant isolates were included in the A or B1 phylogenetic groups, and the virulence gene fimA (alone or in association with papC or aer genes) was detected in 137 of the resistant isolates. Five isolates from pigs belonging to phylogroup B2 and D were resistant to five different antimicrobial agents. CONCLUSION: Our data shows a high percentage of antibiotic resistance in E. coli isolates from food animals, and raises important questions in the potential impact of antibiotic use in animals and the possible transmission of resistant bacteria to humans through the food chain. | 2013 | 22836880 |
| 1964 | 4 | 0.9998 | Antimicrobial resistance of pet-derived bacteria in China, 2000-2020. With the rapid growth of the pet industry in China, bacterial infectious diseases in pets have increased, highlighting the need to monitor antimicrobial resistance (AMR) in pet-derived bacteria to improve the diagnosis and treatment. Before the establishment of the China Antimicrobial Resistance Surveillance Network for Pets (CARPet) in 2021, a comprehensive analysis of such data in China was lacking. Our review of 38 point-prevalence surveys conducted between 2000 and 2020 revealed increasing trends in AMR among pet-derived Escherichia coli, Klebsiella pneumoniae, Staphylococcus spp., Enterococcus spp., and other bacterial pathogens in China. Notable resistance to β-lactams and fluoroquinolones, which are largely used in both pets and livestock animals, was observed. For example, resistance rates for ampicillin and ciprofloxacin in E. coli frequently exceeded 50.0%, with up to 41.3% of the isolates producing extended-spectrum β-lactamases. The emergence of carbapenem-resistant K. pneumoniae and E. coli, carrying bla(NDM) and bla(OXA) genes, highlighted the need for vigilant monitoring. The detection rate of SCCmec (Staphylococcal Cassette Chromosome mec), a genetic element associated with methicillin resistance, in Staphylococcus pseudintermedius isolated from pets in China was found to be over 40.0%. The resistance rate of E. faecalis to vancomycin was 2.1% (5/223) in East China, which was higher than the detection rate of human-derived vancomycin-resistant Enterococcus (0.1%, 12/11,215). Establishing the national AMR surveillance network CARPet was crucial, focusing on representative cities, diverse clinical samples, and including both commonly used antimicrobial agents in veterinary practice and critically important antimicrobial agents for human medicine, such as carbapenems, tigecycline, and vancomycin. | 2025 | 40135877 |
| 1965 | 5 | 0.9998 | Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Florfenicol is a promising antibiotic for use in companion animals, especially as an alternative agent for infections caused by MDR bacteria. However, the emergence of resistant strains could hinder this potential. In this study, florfenicol resistance was investigated in a total of 246 MDR Enterobacterales obtained from canine and feline clinical samples in Greece over a two-year period (October 2020 to December 2022); a total of 44 (17,9%) florfenicol-resistant strains were recognized and further investigated. Most of these isolates originated from urine (41.9%) and soft tissue (37.2%) samples; E. coli (n = 14) and Enterobacter cloacae (n = 12) were the predominant species. The strains were examined for the presence of specific florfenicol-related resistance genes floR and cfr. In the majority of the isolates (31/44, 70.5%), the floR gene was detected, whereas none carried cfr. This finding creates concerns of co-acquisition of plasmid-mediated florfenicol-specific ARGs through horizontal transfer, along with several other resistance genes. The florfenicol resistance rates in MDR isolates seem relatively low but considerable for a second-line antibiotic; thus, in order to evaluate the potential of florfenicol to constitute an alternative antibiotic in companion animals, continuous monitoring of antibiotic resistance profiles is needed in order to investigate the distribution of florfenicol resistance under pressure of administration of commonly used agents. | 2024 | 38393089 |
| 5581 | 6 | 0.9998 | Prevalence of pathogens harbouring mobile antimicrobial resistance genes and virulence factors in retail beef and mutton. Food safety is always a global issue, due to the increased dissemination of antimicrobial resistance and food poisoning related to foodborne bacterial pathogens. The purpose of this study was to assess the risk of potential foodborne bacteria of beef and mutton in retail stores. A total of 134 samples were collected from 24 local markets in Beijing, including raw and cooked beef or mutton, as well as samples derived from the corresponding environment and human beings. We obtained 674 isolates, of which Klebsiella spp. and Staphylococcus spp. were the dominant bacterial species in the meat samples and the environmental samples, respectively. Additionally, environmental bacteria are common in samples from different sources. Based on the results of antimicrobial sensitivity testing, resistance to tetracycline (with a resistance rate of 47.40%), amoxicillin + clavulanate (47.13%) and erythromycin (28.03%) were the major resistant phenotypes. According to the whole genome analysis, the extended spectrum beta-lactamase genes harboured by two K. pneumoniae strains isolated from cooked and raw beef were located on mobile elements. The major toxin genes of Bacillus cereus and adhesion- or invasion-related virulence factors were also shared among isolates from different sources. These factors pose potential risks to public health and need attention. | 2020 | 32510554 |
| 2610 | 7 | 0.9998 | Antimicrobial Resistant Salmonella in Canal Water in Bangkok, Thailand: Survey Results Between 2016 and 2019. Antimicrobial resistance (AMR) in environmental reservoirs is an emerging global health concern, particularly in urban settings with inadequate wastewater management. This study aimed to investigate the prevalence and resistance profiles of Salmonella spp. in canal water in Bangkok and assess the distribution of key antibiotic resistance genes (ARGs). Between 2016 and 2019, a total of 1381 water samples were collected from 29 canals. Salmonella spp. were isolated using standard microbiological methods and tested for susceptibility to 13 antibiotics. Polymerase chain reaction (PCR) was used to detect extended-spectrum β-lactamase (ESBL) genes and class 1 integron. Salmonella was found in 89.7% of samples. Among these, 62.1% showed resistance to at least one antimicrobial, and 54.8% were multidrug-resistant (MDR). The highest resistance was observed against streptomycin (41.4%). ESBL genes, predominantly blaCTX-M, were detected in 72.2% of tested isolates, while class 1 integrons were found in 67.8%, indicating a strong potential for gene dissemination. The results highlight urban canals as critical environment reservoirs of AMR Salmonella serovars, posing significant public health risks, particularly where canal water is used for agriculture, household, or recreational purposes. Strengthened environmental surveillance and effective wastewater regulation are urgently needed to mitigate AMR bacteria transmission at the human-environment-animal interface. | 2025 | 41007477 |
| 1619 | 8 | 0.9998 | Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt. BACKGROUND: Antimicrobial resistance has become one of the most severe global threats to human and veterinary Medicine. colistin is an effective therapeutic agent against multi-drug-resistant pathogens. However, the discovery of transferable plasmids that confer resistance to colistin (mcr-1) has led to challenges in medical science. This study describes the role of wild birds in the harbouring and environmental spread of colistin-resistant bacteria, which could pose a potential hazard to human and animal health. METHODS: In total, 140 faecal samples from wild birds (migratory and resident birds) were tested. Twenty surface water samples were collected from the area in which wild bird trapping was conducted, and 50 human stool samples were collected from individuals residing near the surface water sources and farm buildings. Isolation and identification of Enterobacteriaceae and Pseudomonas aeruginosa from the different samples were performed using conventional culture techniques and biochemical identification. PCR amplification of the mcr genes was performed in all positive isolates. Sequencing of mcr-1 genes from three randomly selected E. coli carrying mcr-1 isolates; wild birds, water and humans was performed. RESULT: The bacteriological examination of the samples showing isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and P. aeruginosa. The results of multiplex PCR of the mcr genes revealed that E. coli was the most prevalent gram-negative bacterium harbouring the mcr genes, whereas a low prevalence was observed for K. pneumoniae. The prevalence of mcr-1 in resident birds, migratory birds, water sources and humans were 10.4, 20,16.6 and 9.6% while the prevalence of mcr-2 were 1.4, 3.6, 11.1 and 9.6%, respectively. Sequencing of the mcr-1 gene from the three E. coli carrying mcr-1 isolates indicated a possible correlation between the wild bird and surface water isolates. CONCLUSION: The detection of mcr-1-positive bacteria in wild birds in Egypt indicates the possible environmental dissemination of this gene through bird activity. The impact of the interaction between domestic and wild animals on public health cannot be overlooked. | 2019 | 31827778 |
| 2837 | 9 | 0.9998 | Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli. Escherichia coli with reduced susceptibility to quinolones isolated from different environmental sources (urban wastewater treatment plants, n=61; hospital effluent, n=10; urban streams, n=9; gulls, n=18; birds of prey, n=17) and from hospitalised patients (n=28) were compared based on multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The habitats with the most diversified genotypes of quinolone-resistant E. coli, corresponding to the highest genetic diversity (H'), were wastewater and gulls. In addition, genetically distinct populations were observed in clinical samples and birds of prey, suggesting the influence of the habitat or selective pressures on quinolone-resistant E. coli. The close genetic relatedness between isolates of clinical origin and from gulls and wastewater suggests the existence of potential routes of propagation between these sources. The most common sequence types were ST131 and ST10, with ST131 being highly specific to patients, although distributed in all of the other habitats except birds of prey. The prevalence of antimicrobial resistance was significantly higher in isolates from patients and gulls than from other sources (P<0.01), suggesting that the effect of selective pressures met by isolates subjected to strong human impacts. The evidence presented suggests the potential circulation of bacteria between the environmental and clinical compartments, with gulls being a relevant vector of bacteria and resistance genes. | 2015 | 27842875 |
| 1929 | 10 | 0.9998 | Research Note: Detection of antibiotic-resistance genes in commercial poultry and turkey flocks from Italy. Antibiotics are routinely used in commercial poultry farms for the treatment of economically important bacterial diseases. Repeated use of antibiotics, usually administered in the feed or drinking water, may also result in the selection of resistant bacteria in animal feces, able to transfer their antimicrobial-resistance genes (ARG), residing on mobile elements, to other microorganisms, including human pathogens. In this study, single and multiplex PCR protocols were performed to detect tetracycline-, lincomycin-, chloramphenicol-, aminoglycoside-, colistin-, vancomycin-, and carbapenem-resistance genes, starting from 38 litter samples collected from 6 poultry and 2 turkey Italian flocks. The ARG were confirmed for all investigated classes of antimicrobials, except for colistin (mcr-1, mcr-2, mcr-3,mcr-4 mcr-5) and carbapenem (IMP, OXA-48, NDM, KPC), while the vanB gene was only detected for vancomycin. The highest positivity was obtained for tetracycline (tet[L], tet[M], tet[K], tetA[P]] and aminoglycoside (aadA2) ARG, confirming the predominant use of these antimicrobials in the veterinary practice and their potential to enhance the resistance patterns also in humans as a consequence of environmental contamination. On the contrary, the dissemination by poultry of ARG for critically important antimicrobials seems to be of minor concern, suggesting a negligible environmental dissemination by these genes in the Italian poultry industry. Finally, the molecular screening performed in this study using a noninvasive sampling method represents a simple and rapid tool for monitoring the ARG patterns at the farm level. | 2021 | 33799114 |
| 5614 | 11 | 0.9998 | A metagenomic approach to One Health surveillance of antimicrobial resistance in a UK veterinary centre. There are currently no standardized guidelines for genomic surveillance of One Health antimicrobial resistance (AMR). This project aimed to utilize metagenomics to identify AMR genes present in a companion animal hospital and compare these with phenotypic results from bacterial isolates from clinical specimens from the same veterinary hospital. Samples were collected from sites within a primary care companion animal veterinary hospital in London, UK. Metagenomic DNA was sequenced using Oxford Nanopore Technologies MinION. The sequencing data were analysed for AMR genes, plasmids and clinically relevant pathogen species. These data were compared to phenotypic speciation and antibiotic susceptibility tests of bacterial isolates from patients. The most common resistance genes identified were aph (n=101 times genes were detected across 48 metagenomic samples), sul (84), bla (CARB) (63), tet (58) and bla (TEM) (46). In clinical isolates, a high proportion of isolates were phenotypically resistant to β-lactams. Rooms with the greatest mean number of resistance genes identified per swab site were the medical preparation room, dog ward and surgical preparation room. Twenty-four and four plasmids typically associated with Gram-positive and Enterobacteriaceae, respectively, were identified. Sequencing reads matched with 14 out of 22 (64%) of the phenotypically isolated bacterial species. Metagenomics identified AMR genes, plasmids and species of relevance to human and animal medicine. Communal animal-handling areas harboured more AMR genes than areas animals did not frequent. When considering infection prevention and control measures, adherence to, and frequency of, cleaning schedules, alongside potentially more comprehensive disinfection of animal-handling areas, may reduce the number of potentially harmful bacteria present. | 2025 | 40889140 |
| 2534 | 12 | 0.9998 | Prevalence, antibiotic resistance, and virulence gene profile of Escherichia coli strains shared between food and other sources in Africa: A systematic review. BACKGROUND AND AIM: Foodborne diseases caused by Escherichia coli are prevalent globally. Treatment is challenging due to antibiotic resistance in bacteria, except for foodborne infections due to Shiga toxin-producing E. coli, for which treatment is symptomatic. Several studies have been conducted in Africa on antibiotic resistance of E. coli isolated from several sources. The prevalence and distribution of resistant pathogenic E. coli isolated from food, human, and animal sources and environmental samples and their virulence gene profiles were systematically reviewed. MATERIALS AND METHODS: Bibliographic searches were performed using four databases. Research articles published between 2000 and 2022 on antibiotic susceptibility and virulence gene profile of E. coli isolated from food and other sources were selected. RESULTS: In total, 64 articles were selected from 14 African countries: 45% of the studies were conducted on food, 34% on animal samples, 21% on human disease surveillance, and 13% on environmental samples. According to these studies, E. coli is resistant to ~50 antimicrobial agents, multidrug-resistant, and can transmit at least 37 types of virulence genes. Polymerase chain reaction was used to characterize E. coli and determine virulence genes. CONCLUSION: A significant variation in epidemiological data was noticed within countries, authors, and sources (settings). These results can be used as an updated database for monitoring E. coli resistance in Africa. More studies using state-of-the-art equipment are needed to determine all resistance and virulence genes in pathogenic E. coli isolated in Africa. | 2023 | 38023276 |
| 1617 | 13 | 0.9998 | Multidrug-resistant Escherichia coli from free-living pigeons (Columba livia): Insights into antibiotic environmental contamination and detection of resistance genes. Bacterial resistance is a public and one health problem. Free-living birds can be reservoirs of multidrug-resistant bacteria and resistance genes. This study aimed to characterize the antimicrobial resistance of Escherichia coli isolated from free-living urban pigeons (Columba livia) in South Brazil. Ninety-two animals were sampled, and one isolate was obtained from each one. The isolates were characterized, and the antimicrobial resistance profile and beta-lactam and colistin resistance genes were investigated. The isolates were classified as phylogroups B1 (35%), B2 (33%), A (16%) and D (16%), and 14% of the strains had the eae virulence gene. All isolates were resistant to at least one antimicrobial, and 63% of them were multidrug-resistant. Geographical location where the pigeons were captured and presence of the eae gene were associated with multidrug resistance. bla(VIM) and mcr-1 genes were detected in one and two isolates, respectively. This is the first report of these genes in E. coli of pigeons. The bla(VIM) -positive isolate was classified as Shiga toxin-producing E. coli, and the isolates with mcr-1 were classified as Enterohaemorrhagic E. coli and Enteropathogenic E. coli, which raise additional concerns related to public health since these are zoonotic pathotypes. The results reveal that pigeons carry multidrug-resistant pathogenic E. coli, which may interest public health. Nonetheless, further studies on whether these animals are sources of contamination for humans must be performed to understand their role in spreading antimicrobial resistance. | 2022 | 35569138 |
| 1618 | 14 | 0.9998 | Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (bla(CTX-M-65), bla(CTX-M-55), and bla(EC-1982)). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use. | 2024 | 39453061 |
| 2966 | 15 | 0.9998 | Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. BACKGROUND: Curbing the potential negative impact of antibiotic resistance, one of our era's growing global public health crises, requires regular monitoring of the resistance situations, including the reservoir of resistance genes. Wild birds, a possible bioindicator of antibiotic resistance, have been suggested to play a role in the dissemination of antibiotic-resistant bacteria. Therefore, this study was conducted with the objective of determining the phenotypic and genotypic antibiotic resistance profiles of 100 Escherichia coli isolates of gull and pigeon origin by using the Kirby-Bauer disk diffusion method and PCR. Furthermore, the genetic relationships of the isolates were determined by RAPD-PCR. RESULTS: Phenotypic antibiotic susceptibility testing revealed that 63% (63/100) and 29% (29/100) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. With the exception of cephalothin, to which the E. coli isolates were 100% susceptible, tetracycline (52%), kanamycin (38%), streptomycin (37%), ampicillin (28%), chloramphenicol (21%), trimethoprim/sulfamethoxazole (19%), gentamicin (13%), enrofloxacin (12%) and ciprofloxacin (12%) resistances were detected at varying degrees. Among the investigated resistance genes, tet(B) (66%), tet(A) (63%), aphA1 (48%), sul3 (34%), sul2 (26%), strA/strB (24%) and sul1 (16%) were detected. Regarding the genetic diversity of the isolates, the RAPD-PCR-based dendrograms divided both pigeon and gull isolates into five different clusters based on a 70% similarity threshold. Dendrogram analysis revealed 47-100% similarities among pigeon-origin strains and 40-100% similarities among gull-origin E.coli strains. CONCLUSIONS: This study revealed that gulls and pigeons carry MDR E. coli isolates, which may pose a risk to animal and human health by contaminating the environment with their feces. However, a large-scale epidemiological study investigating the genetic relationship of the strains from a "one health" point of view is warranted to determine the possible transmission patterns of antibiotic-resistant bacteria between wild birds, the environment, humans, and other hosts. Video Abstract. | 2024 | 38191447 |
| 1962 | 16 | 0.9998 | European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections. BACKGROUND: There is a growing concern regarding the increase of antimicrobial resistant bacteria in companion animals. Yet, there are no studies comparing the resistance levels of these organisms in European countries. The aim of this study was to investigate geographical and temporal trends of antimicrobial resistant bacteria causing urinary tract infection (UTI) in companion animals in Europe. The antimicrobial susceptibility of 22 256 bacteria isolated from dogs and cats with UTI was determined. Samples were collected between 2008 and 2013 from 16 laboratories of 14 European countries. The prevalence of antimicrobial resistance of the most common bacteria was determined for each country individually in the years 2012-2013 and temporal trends of bacteria resistance were established by logistic regression. RESULTS: The aetiology of uropathogenic bacteria differed between dogs and cats. For all bacterial species, Southern countries generally presented higher levels of antimicrobial resistance compared to Northern countries. Multidrug-resistant Escherichia coli were found to be more prevalent in Southern countries. During the study period, the level of fluoroquinolone-resistant E. coli isolated in Belgium, Denmark, France and the Netherlands decreased significantly. A temporal increase in resistance to amoxicillin-clavulanate and gentamicin was observed among E. coli isolates from the Netherlands and Switzerland, respectively. Other country-specific temporal increases were observed for fluoroquinolone-resistant Proteus spp. isolated from companion animals from Belgium. CONCLUSIONS: This work brings new insights into the current status of antimicrobial resistance in bacteria isolated from companion animals with UTI in Europe and reinforces the need for strategies aiming to reduce resistance. | 2016 | 27658466 |
| 1963 | 17 | 0.9998 | Antimicrobial resistance in bacteria isolated from diseased horses in France. BACKGROUND: Horses are one of the potential reservoirs of antimicrobial resistance (AMR) determinants that could be transferred to human subjects. OBJECTIVE: To describe the AMR patterns of major bacteria isolated from diseased horses in France. STUDY DESIGN: Retrospective observational study. METHODS: Data collected between 2012 and 2016 by RESAPATH, the French national surveillance network for AMR, were analysed. Only antimicrobials relevant in veterinary and human medicine for the isolated bacteria were considered. Mono- and multidrug resistance were calculated. The resistance proportions of major equine diseases were assessed and compared. Where data permitted, resistance trends were investigated using nonlinear analysis (generalised additive models). RESULTS: A total of 12,695 antibiograms were analysed. The five most frequently isolated bacteria were Streptococcus spp., Escherichia coli, Pseudomonas spp., Staphylococcus aureus, Pantoea spp. and Klebsiella spp. The highest proportions of resistance to gentamicin were found for S. aureus (22.1%) and Pseudomonas spp. (26.9%). Klebsiella spp. and E. coli had the highest proportions of resistance to trimethoprim-sulfamethoxazole (15.5 and 26.2%, respectively). Proportions of resistance to tetracycline were among the highest for all the bacteria considered. Resistance to third-generation cephalosporins was below 10% for all Enterobacteriaceae. The highest proportions of multidrug resistance (22.5%) were found among S. aureus isolates, which is worrying given their zoonotic potential. From 2012 to 2016, resistance proportions decreased in Pseudomonas spp. isolates, but remained the same for S. aureus. For Streptococcus spp. and E. coli, resistance proportions to trimethoprim-sulfamethoxazole increased. MAIN LIMITATIONS: Since antibiograms are not systematic analyses, any selection bias could impact the results. CONCLUSIONS: Such studies are essential to estimate the magnitude of the potential threat of AMR to public health, to design efficient control strategies and to measure their effectiveness. These findings may also guide the initial empirical treatment of horse diseases. | 2020 | 31033041 |
| 5588 | 18 | 0.9998 | Phenotypic and genotypic analyses of antimicrobial resistant bacteria in livestock in Uganda. Antimicrobial resistant bacteria (ARB) in livestock are a global public health concern, not only because they prolong infectious diseases but also they can be transferred from animals to humans via the food chain. Here, we studied ARB in livestock at commercial and subsistence farms (n = 13) in Wakiso and Mpigi districts, Uganda. We enquired from the farmers about the type and the purpose of antimicrobial agents they have used to treat their livestock. After collecting faeces, we isolated antimicrobial resistant Escherichia coli from livestock faeces (n = 134) as an indicator bacterium. These strains showed resistance to ampicillin (44.8%), tetracycline (97.0%), and sulfamethoxazole-trimethoprim (56.7%). The frequency of ampicillin-resistance was significantly correlated with the usage of penicillins to livestock in the farms (p = 0.04). The metagenomics data detected 911 antimicrobial resistant genes that were classified into 16 categories. Genes for multidrug efflux pumps were the most prevalent category in all except in one sample. Interestingly, the genes encoding third-generation cephalosporins (bla(CTX-M) ), carbapenems (bla(ACT) ), and colistin (arnA) were detected by metagenomics analysis although these phenotypes were not detected in our E. coli strains. Our results suggest that the emergence and transmission of cephalosporin, carbapenem, and/or colistin-resistant bacteria among livestock can occur in future if these antimicrobial agents are used. | 2019 | 30260584 |
| 1591 | 19 | 0.9998 | Influence of agricultural practice on mobile bla genes: IncI1-bearing CTX-M, SHV, CMY and TEM in Escherichia coli from intensive farming soils. Many calls have been made to address antibiotic resistance in an environmental perspective. With this study, we showed the widespread presence of high-level antibiotic resistant isolates on a collection of non-susceptible Gram-negative bacteria (n = 232) recovered from soils. Bacteria were selected using amoxicillin, cefotaxime and imipenem, from sites representing different agricultural practices (extensive, intensive and organic). Striking levels of non-susceptibility were noticed in intensive soils for norfloxacin (74%), streptomycin (50.7%) and tetracycline (46.6%); indeed, the exposure to intensive agricultural practices constituted a risk factor for non-susceptibility to many antibiotics, multidrug resistance and production of extended-spectrum β-lactamases (ESBL). Analyses of non-susceptibility highlighted that environmental and clinical bacteria from the same species might not share the same intrinsic resistance patterns, raising concerns for therapy choices in environment-borne infections. The multiple sequence-type IncI1-driven spread of penicillinases (blaTEM-1, blaTEM-135), ESBL (blaSHV-12 and blaCTX-M-1) and plasmid-mediated AmpC β-lactamases (blaCMY-2), produced by isolates that share their molecular features with isolates from humans and animals, suggests contamination of agricultural soils. This is also the first appearance of IncI1/ST28-harbouring blaCTX-M-1, which should be monitored to prevent their establishment as successfully dispersed plasmids. This research may help disclose paths of contamination by mobile antibiotic resistance determinants and the risks for their dissemination. | 2016 | 26279315 |