Antimicrobial susceptibility profiles of Staphylococcus spp. contaminating raw goat milk. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
559901.0000Antimicrobial susceptibility profiles of Staphylococcus spp. contaminating raw goat milk. BACKGROUND AND AIM: Antimicrobial resistance poses a major threat to global public health. Foodstuff of animal origin can serve as potential vehicles for the dissemination of antimicrobial-resistant bacteria and resistance genes to consumers. In view of the lack of knowledge about antimicrobial resistance in bacteria associated with goat milk, the aim of this study was to report species-level identification and antimicrobial susceptibility profiles of a large collection of Staphylococcus spp. isolates recovered from raw goat milk in Brazil. MATERIALS AND METHODS: A total of 434 Staphylococcus spp. isolates originated from 510 goat milk samples in Northeast Brazil were investigated. The isolates were obtained by conventional microbiological methods. Species identification and antimicrobial susceptibility testing were performed by means of a semi-automated system using a panel for biochemical tests and broth microdilution method for 19 antimicrobial drugs. RESULTS: Although Staphylococcus aureus (22.6%) accounted for the majority of the isolates, a total of 13 different non-aureus staphylococci spp. were identified. High resistance rates against erythromycin (40.8%), and the beta-lactams ampicillin (45.9%) and penicillin (42.9%) were observed among S. aureus isolates. The most significant findings were related to the resistance against quinupristin-dalfopristin, a drug of last resort used in human medicine to treat infections caused by vancomycin-resistant S. aureus and enterococci. CONCLUSION: The high diversity of Staphylococcus spp. showing phenotypic resistance against different antimicrobial drugs encourages further investigations on the real impact of these bacteria as reservoirs of antimicrobial resistance genes to consumers. Furthermore, the potential impact of technological processes, such as pasteurization, fermentation, and maturation, on the maintenance and dissemination of antimicrobial resistance among the microbial populations in milk and dairy products must also be investigated.202134220106
560010.9999The Characterization and Beta-Lactam Resistance of Staphylococcal Community Recovered from Raw Bovine Milk. Staphylococci is an opportunistic bacterial population that is permanent in the normal flora of milk and poses a serious threat to animal and human health with some virulence factors and antibiotic-resistance genes. This study was aimed at identifying staphylococcal species isolated from raw milk and to determine hemolysis, biofilm, coagulase activities, and beta-lactam resistance. The raw milk samples were collected from the Düzce (Türkiye) region, and the study data represent a first for this region. The characterization of the bacteria was performed with MALDI-TOF MS and 16S rRNA sequence analysis. The presence of coa, icaB, blaZ, and mecA was investigated with PCR. A nitrocefin chromogenic assay was used for beta-lactamase screening. In this context, 84 staphylococci were isolated from 10 different species, and the dominant species was determined as S. aureus (32.14%). Although 32.14% of all staphylococci were positive for beta hemolysis, the icaB gene was found in 57.14%, coa in 46.42%, mecA in 15.47%, and blaZ in 8.33%. As a result, Staphylococcus spp. strains that were isolated from raw milk in this study contained some virulence factors at a high level, but also contained a relatively low level of beta-lactam resistance genes. However, considering the animal-environment-human interaction, it is considered that the current situation must be monitored constantly in terms of resistance concerns. It must not be forgotten that the development of resistance is in constant change among bacteria.202336978423
560120.9999Presence of Staphylococcus spp. carriers of the mecA gene in the nasal cavity of piglets in the nursery phase. The presence of Staphylococcus spp. resistant to methicillin in the nasal cavity of swine has been previously reported. Considering the possible occurrence of bacterial resistance and presence of resistance genes in intensive swine breeding and the known transmissibility and dispersion potential of such genes, this study aimed to investigate the prevalence of resistance to different antibiotics and the presence of the mecA resistance gene in Staphylococcus spp. from piglets recently housed in a nursery. For this, 60 nasal swabs were collected from piglets at the time of their housing in the nursery, and then Staphylococcus spp. were isolated and identified in coagulase-positive (CoPS) and coagulase-negative (CoNS) isolates. These isolates were subjected to the disk-diffusion test to evaluate the bacterial resistance profile and then subjected to molecular identification of Staphylococcus aureus and analyses of the mecA gene through polymerase chain reaction. Of the 60 samples collected, 60 Staphylococcus spp. were isolated, of which 38 (63.33%) were classified as CoNS and 22 (36.67%) as CoPS. Of these, ten (45.45%) were identified as Staphylococcus aureus. The resistance profile of these isolates showed high resistance to different antibiotics, with 100% of the isolates resistant to chloramphenicol, clindamycin, and erythromycin, 98.33% resistant to doxycycline, 95% resistant to oxacillin, and 85% resistant to cefoxitin. Regarding the mecA gene, 27 (45%) samples were positive for the presence of this gene, and three (11.11%) were phenotypically sensitive to oxacillin and cefoxitin. This finding highlights the importance of researching the phenotypic profile of resistance to different antimicrobials and resistance genes in the different phases of pig rearing to identify the real risk of these isolates from a One Health perspective. The present study revealed the presence of samples resistant to different antibiotics in recently weaned production animal that had not been markedly exposed to antimicrobials as growth promoters or even as prophylactics. This information highlights the need for more research on the possible sharing of bacteria between sows and piglets, the environmental pressure within production environments, and the exposure of handlers during their transport, especially considering the community, hospital, and political importance of the presence of circulating resistant strains.202336634542
553830.9999Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. Mastitis of dairy cattle is one of the most frequently diagnosed diseases worldwide. The main etiological agents of mastitis are bacteria of the genus Streptococcus spp., in which several antibiotic resistance mechanisms have been identified. However, detailed studies addressing this problem have not been conducted in northeastern Poland. Therefore, the aim of our study was to analyze, on phenotypic and genotypic levels, the antibiotic resistance pattern of Streptococcus spp. isolated from clinical cases of mastitis from dairy cattle in this region of Poland. The research was conducted using 135 strains of Streptococcus (Streptococcus uberis, n = 53; Streptococcus dysgalactiae, n = 41; Streptococcus agalactiae, n = 27; other streptococci, n = 14). The investigation of the antimicrobial susceptibility to 8 active substances applied in therapy in the analyzed region, as well as a selected bacteriocin (nisin), was performed using the minimum inhibitory concentration method. The presence of selected resistance genes (n = 14) was determined via PCR. We also investigated the correlation between the presence of resistance genes and the antimicrobial susceptibility of the examined strains in vitro. The highest observed resistance of Streptococcus spp. was toward gentamicin, kanamycin, and tetracycline, whereas the highest susceptibility occurred toward penicillin, enrofloxacin, and marbofloxacin. Additionally, the tested bacteriocin showed high efficacy. The presence of 13 analyzed resistance genes was observed in the examined strains [gene mef(A) was not detected]. In most strains, at least one resistance gene, mainly responsible for resistance to tetracyclines [tet(M), tet(K), tet(L)], was observed. However, a relationship between the presence of a given resistance gene and antimicrobial susceptibility on the phenotypic level was not always observed.201728601447
196140.9999Trends in Antimicrobial Resistance of Canine Otitis Pathogens in the Iberian Peninsula (2010-2021). Background: The close relationship between humans and petsraises health concerns due to the potential transmission of antimicrobial-resistant (AMR) bacteria and genes. Bacterial otitis is an emerging health problem in dogs, given its widespread prevalence and impact on animal welfare. Early detection of resistance is vital in veterinary medicine to anticipate future treatment challenges. Objective: This study aimed to determine the prevalence of AMR bacteria involved in 12,498 cases of otitis in dogs from the Iberian Peninsula and the evolution of AMR patterns over an 11-year period. Methods: Data was provided by the Veterinary Medicine Department of a large private diagnostic laboratory in Barcelona. Antimicrobial susceptibility testing was performed using the standard disk diffusion method and minimum inhibitory concentration (MIC) testing. Results: The frequency of the principal bacterial agents was 35% Staphylococcus spp. (principally S. pseudointermedius), 20% Pseudomonas spp. (P. aeruginosa), 13% Streptococcus spp. (S. canis), and 11% Enterobacterales (Escherichia coli and Proteus mirabilis). Antimicrobial susceptibility testing revealed P. aeruginosa (among Gram-negatives) and Enterococcus faecalis (among Gram-positives) as the species with the highest AMR to multiple antimicrobial classes throughout the years. According to the frequency and time evolution of multidrug resistance (MDR), Gram-negative bacteria like P. mirabilis (33%) and E. coli (25%) presented higher MDR rates compared to Gram-positive strains like Corynebacterium (7%) and Enterococcus (5%). The AMR evolution also showed an increase in resistance patterns in Proteus spp. to doxycycline and Streptococcus spp. to amikacin. Conclusions: This information can be useful for clinicians, particularly in this region, to make rational antimicrobial use decisions, especially when empirical treatment is common in companion animal veterinary medicine. In summary, improving treatment guidelines is a key strategy for safeguarding both animal and human health, reinforcing the One Health approach.202540298475
556450.9999Epidemiology of the colonization and acquisition of methicillin-resistant staphylococci and vancomycin-resistant enterococci in dogs hospitalized in a clinic veterinary hospital in Spain. Antibiotic resistance is one of the biggest threats to human and animal health. Methicillin-resistant Staphylococcus spp. (MRS) and vancomycin-resistant Enterococcus spp. (VRE) are of increasing importance in hospital and/or nosocomial infections and represent a potential risk of transmission to humans from infected or colonized companion animals. Studies on the risk factors associated with colonization by multiresistant bacteria in animals are scarce. The present study aimed to estimate the prevalence and incidence of MRS and VRE in canine patients hospitalized in a veterinary hospital and to identify the risk factors for its acquisition and persistence. Nasal and perianal swabs were obtained from 72 dogs. Antimicrobial susceptibility assays and molecular detection of mecA and van genes were performed. A prevalence of 13.9% and incidence of 26.5% was observed in dogs colonized by MRS at hospital admission and release, respectively, higher values than those described in most veterinary studies. Thirty-five Staphylococcus isolates had mecA gene and showed higher resistance levels to most of the antimicrobials evaluated. Previous and concomitant use of antibiotics and corticosteroids has been associated with an increase in MRS colonization. The use of antibiotics in other animals living with the canine patients has also been identified as an associated factor, suggesting cross transmission. The presence of van-resistant genes from Enterococcus spp. was not detected. Pets should be considered possible vehicles of transmission and reservoirs for MRS bacteria and veterinary hospitals should be considered high-risk environments for the occurrence and spread of nosocomial infections and resistant bacteria.202032535110
559860.9999Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products.202540298519
553470.9999Antibiotic resistance in faecal microbiota of Greek healthy infants. Increasing use of antibiotics for the treatment of infectious diseases and also for non-therapeutic reasons (agriculture, animal husbandry and aquaculture) has led to the increasing incidence of antibiotic resistance and the ineffectiveness of antimicrobial treatment. Commensal intestinal bacteria are very often exposed to the selective pressure of antimicrobial agents and may constitute a reservoir of antibiotic resistance determinants that can be transferred to pathogens. The present study aimed to investigate the antibiotic susceptibility profile and the presence of selected resistance genes in cocci isolated from the faecal microbiota of 35 healthy, full-term infants at 4, 30 and 90 days after delivery. A total of 148 gram-positive, catalase-negative cocci were isolated and tested for susceptibility to 12 different antibiotics by disk-diffusion technique. Multiplex PCR analysis was performed for the identification of Enterococcus spp. isolates and the simultaneous detection of vancomycin-resistance genes. PCR-based methodology was used also for identification of tetracycline and erythromycin resistance determinants. Identification results indicated E. faecalis as the predominant species (81 strains), followed by E. faecium, E. casseliflavus/E. flavescens and E. gallinarum. High prevalence of resistance to tetracycline (39.9%), erythromycin (35.1%), vancomycin (19.6%) and to nucleic acid synthesis inhibitors was detected. PCR data revealed 24 out of 52 erythromycin-resistant isolates carrying the ermB gene and 32 out of 59 tetracycline-resistant strains carrying tet genes, with tet(L) determinant being the most frequently detected. Only intrinsic vancomycin resistance (vanC1 and vanC2/C3) was reported among tested isolates. In conclusion, erythromycin and tetracycline acquired resistant traits are widespread among faecal cocci isolates from Greek, healthy infants under no apparent antimicrobial selective pressure.201021831766
553380.9999Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. INTRODUCTION: Probiotic lactobacilli are generally recognized as safe (GRAS) and are being used in several food and pharma formulations. However, growing concern of antibiotic resistance in bacterial strains of food origin and its possible transmission via functional foods is increasingly being emphasized. OBJECTIVES: This study screened potential probiotic lactic acid bacteria (LAB) strains for their phenotypic and genotypic antibiotic resistance profiles. METHODS: Susceptibility to different antibiotics was assayed by the Kirby Bauer standard disc diffusion protocol. Both conventional and SYBR-RTq-PCR were used for detection of resistance coding genes. RESULTS: A variable susceptibility pattern was documented against different antibiotic classes. LAB strains irrespective of origin displayed marked phenotypic resistance against cephalosporins, aminoglycosides, quinolones, glycopeptides; and methicillin among beta-lactams with few exceptions. In contrast, high sensitivity was recorded against macrolides, sulphonamides and carbapenems sub-group of beta-lactams with some variations. parC, associated with ciprofloxacin resistance was detected in 76.5% of the strains. Other prevalent resistant determinants observed were aac(6?)Ii (42.1%), ermB, ermC (29.4%), and tetM (20.5%). Six (?17.6%) of the isolates were free from genetic resistance determinants screened in this study. CONCLUSION: Study revealed presence of antibiotic resistance determinants among lactobacilli from both fermented foods and human sources.202337208603
196390.9999Antimicrobial resistance in bacteria isolated from diseased horses in France. BACKGROUND: Horses are one of the potential reservoirs of antimicrobial resistance (AMR) determinants that could be transferred to human subjects. OBJECTIVE: To describe the AMR patterns of major bacteria isolated from diseased horses in France. STUDY DESIGN: Retrospective observational study. METHODS: Data collected between 2012 and 2016 by RESAPATH, the French national surveillance network for AMR, were analysed. Only antimicrobials relevant in veterinary and human medicine for the isolated bacteria were considered. Mono- and multidrug resistance were calculated. The resistance proportions of major equine diseases were assessed and compared. Where data permitted, resistance trends were investigated using nonlinear analysis (generalised additive models). RESULTS: A total of 12,695 antibiograms were analysed. The five most frequently isolated bacteria were Streptococcus spp., Escherichia coli, Pseudomonas spp., Staphylococcus aureus, Pantoea spp. and Klebsiella spp. The highest proportions of resistance to gentamicin were found for S. aureus (22.1%) and Pseudomonas spp. (26.9%). Klebsiella spp. and E. coli had the highest proportions of resistance to trimethoprim-sulfamethoxazole (15.5 and 26.2%, respectively). Proportions of resistance to tetracycline were among the highest for all the bacteria considered. Resistance to third-generation cephalosporins was below 10% for all Enterobacteriaceae. The highest proportions of multidrug resistance (22.5%) were found among S. aureus isolates, which is worrying given their zoonotic potential. From 2012 to 2016, resistance proportions decreased in Pseudomonas spp. isolates, but remained the same for S. aureus. For Streptococcus spp. and E. coli, resistance proportions to trimethoprim-sulfamethoxazole increased. MAIN LIMITATIONS: Since antibiograms are not systematic analyses, any selection bias could impact the results. CONCLUSIONS: Such studies are essential to estimate the magnitude of the potential threat of AMR to public health, to design efficient control strategies and to measure their effectiveness. These findings may also guide the initial empirical treatment of horse diseases.202031033041
2656100.9999Occurrence and Antimicrobial Resistance of Enterococci Isolated from Goat's Milk. INTRODUCTION: Enterococci are widespread, being part of the bacterial flora of humans and animals. The food chain can be therefore considered as the main route of transmission of antibiotic resistant bacteria between the animal and human populations. Milk in particular represents a source from which resistant bacteria can enter the human food chain. The aim of the study was to determine the occurrence and resistance to antimicrobial agents of Enterococcus spp. strains isolated from raw goat's milk samples. MATERIAL AND METHODS: A total of 207 goat's milk samples were collected. Samples were cultivated on selective media and confirmed as E. faecium or E. faecalis and screened for selected resistance genes by PCR. Drug susceptibility determination was performed by microdilution on Sensititre EU Surveillance Enterococcus EUVENC Antimicrobial Susceptibility Testing (AST) Plates and Sensititre US National Antimicrobial Resistance Monitoring System Gram Positive CMV3AGPF AST Plates. RESULTS: Enterococcal strains totalling 196 were isolated, of which 40.8% were E. faecalis and 15.3% were E. faecium. All tested isolates were susceptible to linezolid, penicillin and tigecycline. For most other antimicrobials the prevalence of resistance was 0.5-6.6% while high prevalence of quinupristin/dalfopristin (51.5%), tetracycline (30%) and lincomycin (52%) resistance was observed. CONCLUSION: This study affords better knowledge concerning the safety of raw goat's milk in terms of the enterococci possible to isolate from this foodstuff. It seems that enterococci in milk are still mostly susceptible to antimicrobials of major concern as multiply resisted drugs, such as gentamycin and vancomycin. However, the presence of multi-resistant strains in goat milk is cause for apprehension.202135111998
5539110.9999Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile. Bovine mastitis is a common disease worldwide, and staphylococci are one of the most important etiological factors of this disease. Staphylococcus aureus show adaptability to new conditions, by which monitoring their virulence and antibiotic resistance mechanisms is extremely important, as it can lead to the development of new therapies and prevention programs. In this study, we analyzed Staphylococcus aureus (n = 28) obtained from dairy cattle with subclinical mastitis in Poland. The sensitivity of the isolated strains to antibiotics were confirmed by the disc diffusion method. Additionally, minimum inhibitory concentration values were determined for vancomycin, cefoxitin and oxacillin. Genotyping was performed by two methods: PCR melting profile and MLVF-PCR (multiple-locus variable-number tandem-repeat fingerprinting). Furthermore, the presence of antibiotic resistance and virulence genes were checked using PCR reactions. The analyzed strains showed the greatest resistance to penicillin (57%), oxytetracycline (25%) and tetracycline (18%). Among the analyzed staphylococci, the presence of 9 of 15 selected virulence-related genes was confirmed, of which the icaD, clfB and sea genes were confirmed in all staphylococci. Biofilm was observed in the great majority of the analyzed bacteria (at least 70%). In the case of genotyping among the analyzed staphylococci (combined analysis of results from two methods), 14 patterns were distinguished, of which type 2 was the dominant one (n = 10). This study provides new data that highlights the importance of the dominance of biofilm over antibiotic resistance among the analyzed strains.202236558738
5505120.9999Concordance between Antimicrobial Resistance Phenotype and Genotype of Staphylococcus pseudintermedius from Healthy Dogs. Staphylococcus pseudintermedius, a common commensal canine bacterium, is the main cause of skin infections in dogs and is a potential zoonotic pathogen. The emergence of methicillin-resistant S. pseudintermedius (MRSP) has compromised the treatment of infections caused by these bacteria. In this study, we compared the phenotypic results obtained by minimum inhibitory concentration (MICs) for 67 S. pseudintermedius isolates from the skin of nine healthy dogs versus the genotypic data obtained with Nanopore sequencing. A total of 17 antibiotic resistance genes (ARGs) were detected among the isolates. A good correlation between phenotype and genotype was observed for some antimicrobial classes, such as ciprofloxacin (fluoroquinolone), macrolides, or tetracycline. However, for oxacillin (beta-lactam) or aminoglycosides the correlation was low. Two antibiotic resistance genes were located on plasmids integrated in the chromosome, and a third one was in a circular plasmid. To our knowledge, this is the first study assessing the correlation between phenotype and genotype regarding antimicrobial resistance of S. pseudintermedius from healthy dogs using Nanopore sequencing technology.202236421269
1965130.9999Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Florfenicol is a promising antibiotic for use in companion animals, especially as an alternative agent for infections caused by MDR bacteria. However, the emergence of resistant strains could hinder this potential. In this study, florfenicol resistance was investigated in a total of 246 MDR Enterobacterales obtained from canine and feline clinical samples in Greece over a two-year period (October 2020 to December 2022); a total of 44 (17,9%) florfenicol-resistant strains were recognized and further investigated. Most of these isolates originated from urine (41.9%) and soft tissue (37.2%) samples; E. coli (n = 14) and Enterobacter cloacae (n = 12) were the predominant species. The strains were examined for the presence of specific florfenicol-related resistance genes floR and cfr. In the majority of the isolates (31/44, 70.5%), the floR gene was detected, whereas none carried cfr. This finding creates concerns of co-acquisition of plasmid-mediated florfenicol-specific ARGs through horizontal transfer, along with several other resistance genes. The florfenicol resistance rates in MDR isolates seem relatively low but considerable for a second-line antibiotic; thus, in order to evaluate the potential of florfenicol to constitute an alternative antibiotic in companion animals, continuous monitoring of antibiotic resistance profiles is needed in order to investigate the distribution of florfenicol resistance under pressure of administration of commonly used agents.202438393089
5585140.9999Identification and antimicrobial susceptibility of milk pathogen isolated from dairy production systems. Livestock has been recognized as a reservoir of antibiotic-resistant bacteria. Prevalence of resistance has been associated with herd size and intensification of animal production systems. Brazil is one of the emergent hotspots of bacterial resistance, which is also associated with animal husbandry. This study aimed to evaluate the resistance profile of pathogens that cause subclinical mastitis and the relationship between resistance status at farm level and different production systems. Milk samples from cows diagnosed with subclinical mastitis were collected from farms that adopt different husbandry systems with different production intensities, i.e., agroecological, low input, high input, Free-Stall and Compost-bedded pack barn. Etiological agents were isolated and microbiologically identified, and antibiotic susceptibility testing was conducted, using the disk diffusion method. The main isolated agents were Streptococcus spp. (n = 54, 30.5 %) and coagulase-positive Staphylococcus (CPS) (n = 54; 30.5 %). The recovered isolates displayed high antibiotic resistance against Sulfamethazine (80.2 %), Gentamicin (29.37 %), Penicillin (29.37 %), Oxacillin (28.82 %) and Ampicillin (26 %). Multidrug resistance was found for all agents and in all farming systems (39.54 %). Neither production systems (p = 0.26) nor farming systems (p = 0.24) significantly affected the resistance rates of samples. Therefore, intensive production systems may not be a root cause of increased rates of antimicrobial resistance in the milk production chain, suggesting that other environmental factors should be investigated. It is noteworthy that high levels of multidrug resistance were even found in bacteria earlier considered as minor pathogens. This development can be taken as a warning that environmental bacteria are potential transmitters of resistance genes to the environment.202134364060
1960150.9999Phenotypic Investigation and Detection of Biofilm-Associated Genes in Acinetobacter baumannii Isolates, Obtained from Companion Animals. Bacteria of the genus Acinetobacter, especially Acinetobacter baumannii (Ab), have emerged as pathogens of companion animals during the last two decades and are commonly associated with hospitalization and multidrug resistance. A critical factor for the distribution of relevant strains in healthcare facilities, including veterinary facilities, is their adherence to both biotic and abiotic surfaces and the production of biofilms. A group of 41 A. baumannii isolates obtained from canine and feline clinical samples in Greece was subjected to phenotypic investigation of their ability to produce biofilms using the tissue culture plate (TCP) method. All of them (100%) produced biofilms, while 23 isolates (56.1%) were classified as strong producers, 11 (26.8%) as moderate producers, and 7 (17.1%) as weak producers. A correlation between the MDR and XDR phenotypes and weak or moderate biofilm production was identified. Moreover, the presence of four biofilm-associated genes bap, bla(PER), ompA, and csuE was examined by PCR, and they were detected in 100%, 65.9%, 97.6%, and 95.1% of the strains respectively. All isolates carried at least two of the investigated genes, whereas most of the strong biofilm producers carried all four genes. In conclusion, the spread and persistence of biofilm-producing Ab strains in veterinary facilities is a matter of concern, since they are regularly obtained from infected animals, indicating their potential as challenging pathogens for veterinarians due to multidrug resistance and tolerance in conventional eradication measures. Furthermore, considering that companion animals can act as reservoirs of relevant strains, public health concerns emerge.202438787042
5581160.9999Prevalence of pathogens harbouring mobile antimicrobial resistance genes and virulence factors in retail beef and mutton. Food safety is always a global issue, due to the increased dissemination of antimicrobial resistance and food poisoning related to foodborne bacterial pathogens. The purpose of this study was to assess the risk of potential foodborne bacteria of beef and mutton in retail stores. A total of 134 samples were collected from 24 local markets in Beijing, including raw and cooked beef or mutton, as well as samples derived from the corresponding environment and human beings. We obtained 674 isolates, of which Klebsiella spp. and Staphylococcus spp. were the dominant bacterial species in the meat samples and the environmental samples, respectively. Additionally, environmental bacteria are common in samples from different sources. Based on the results of antimicrobial sensitivity testing, resistance to tetracycline (with a resistance rate of 47.40%), amoxicillin + clavulanate (47.13%) and erythromycin (28.03%) were the major resistant phenotypes. According to the whole genome analysis, the extended spectrum beta-lactamase genes harboured by two K. pneumoniae strains isolated from cooked and raw beef were located on mobile elements. The major toxin genes of Bacillus cereus and adhesion- or invasion-related virulence factors were also shared among isolates from different sources. These factors pose potential risks to public health and need attention.202032510554
5597170.9999Prevalence of macrolide-lincosamide-streptogramin resistant lactic acid bacteria isolated from food samples. Lactic acid bacteria (LAB) being a reservoir of antibiotic resistance genes, tend to disseminate antibiotic resistance that possibly pose a threat to human and animal health. Therefore, the study focuses on the prevalence of macrolide-lincosamide-streptogramin- (MLS) resistance among LAB isolated from various food samples. Diverse phenotypic and genotypic MLS resistance were determined among the LAB species (n = 146) isolated from fermented food products (n = 6) and intestine of food-producing animals (n = 4). Double disc, triple disc diffusion and standard minimum inhibitory concentration (MIC) tests were evaluated for phenotypic MLS resistance. Specific primers for MLS resistance genes were used for the evaluation of genotypic MLS resistance and gene expressions using total RNA of each isolate at different antibiotic concentrations. The isolates identified are Levilactobacillus brevis (n = 1), Enterococcus hirae (n = 1), Limosilactobacillus fermentum (n = 2), Pediococcus acidilactici (n = 3), Enterococcus faecalis (n = 1). The MIC tests along with induction studies displayed cMLS(b), L phenotype, M phenotype, KH phenotype, I phenotype resistance among MLS antibiotics. Genotypic evaluation tests revealed the presence of ermB, mefA/E, msrA/B and msrC genes. Also, gene expression studies displayed increased level of gene expression to the twofold increased antibiotic concentrations. In the view of global health concern, this study identified that food samples and food-producing animals represent source of antibiotic resistant LAB that can disseminate resistance through food chain. This suggests the implementation of awareness in the use of antibiotics as growth promoters and judicious use of antibiotics in veterinary sectors in order to prevent the spread of antibiotic resistance.202336712199
1968180.9999Multidrug-resistant pattern of food borne illness associated bacteria isolated from cockroaches in meal serving facilities, Jimma, Ethiopia. INTRODUCTION: An increase in the emergence and spread of multidrug-resistant (MDR) bacteria in recent years is becoming worrisome. Domestic cockroaches can play a significant role in the dissemination of such bacteria between the environment and human beings. This study aimed at determining anti-microbial resistance pattern of food borne illness associated bacteria identified from cockroaches trapped in restaurants and cafeterias. METHODS: Trapped cockroaches were picked with surgical gloves, sealed in sterile plastic bags and transported to the Microbiology laboratory. Standard microbiological techniques were used to isolate and identify bacteria. Anti-microbial susceptibility testing was done using Kirby Bauer diffusion technique. RESULT: A total of five species of food borne illness associated bacteria were detected. Majority (57.1%) of the bacteria were isolated from the gut of cockroaches. More than 89% of the isolates were multi drug resistance (MDR). MDR was higher on gram positive bacteria. S. aureus showed 53.3% resistance against oxacillin(MRSA) and 33.3% against vancomycin. CONCLUSION: A very high percentage of MDR bacteria was seen in this study. Most of the bacteria tested were isolated from the gut of cockroaches. Potential factors associated with cockroaches that contributed to this high MDR rate of the isolates should be investigated in future.201829977255
1956190.9999Wounds of Companion Animals as a Habitat of Antibiotic-Resistant Bacteria That Are Potentially Harmful to Humans-Phenotypic, Proteomic and Molecular Detection. Skin wounds and their infections by antibiotic-resistant bacteria (ARB) are very common in small animals, posing the risk of acquiring ARB by pet owners or antibiotic resistance gene (ARG) transfer to the owners' microbiota. The aim of this study was to identify the most common pathogens infecting wounds of companion animals, assess their antibiotic resistance, and determine the ARGs using culture-based, molecular, and proteomic methods. A total of 136 bacterial strains were isolated from wound swabs. Their species was identified using chromogenic media, followed by MALDI-TOF spectrometry. Antibiotic resistance was tested using disc diffusion, and twelve ARGs were detected using PCRs. The dominant species included Staphylococcus pseudintermedius (9.56%), E. coli, and E. faecalis (both n = 11, 8.09%). Enterobacterales were mostly resistant to amoxicillin/clavulanic acid (68.3% strains), all Pseudomonas were resistant to ceftazidime, piperacillin/tazobactam, imipenem, and tylosin, Acinetobacter were mostly resistant to tylosin (55.5%), all Enterococcus were resistant to imipenem, and 39.2% of Staphylococci were resistant to clindamycin. Among ARGs, strA (streptomycin resistance), sul3 (sulfonamide resistance), and blaTEM, an extended-spectrum beta-lactamase determinant, were the most frequent. The risk of ARB and ARG transfer between animals and humans causes the need to search for new antimicrobial therapies in future veterinary medicine.202438542095