Antibiotic Resistance Profile of Rarely Isolated Salmonella Serotypes from Poultry in Turkey. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
559201.0000Antibiotic Resistance Profile of Rarely Isolated Salmonella Serotypes from Poultry in Turkey. This study investigated five strains of each serotype of Salmonella Agona, Salmonella Heidelberg, Salmonella Hindmarsh, Salmonella Kouka, Salmonella Muenchen, Salmonella Ottmarchen, Salmonella Saintpaul and Salmonella II, isolated during the 2014-2017 period. Disc diffusion was used to identify the phenotypic profiles of antibiotic resistance to 12 antimicrobials while the presence of antibiotic resistance genes (ARGs) was detected by PCR. The most sensitive serotype was S. Kouka while the most resistant serotypes were S. Agona and S. Heidelberg. MDR was detected most frequently in S. Agona strains, followed by S. Saintpaul, S. Hindmarsch, and S. Ottmarchen. The samples were most susceptible to chloramphenicol and ceftazidime and most resistant to sulfonamide. The resistance genes were detected in phenotypically resistant strains. Among the tetracycline-resistant strains, tet (A) was the most prevalent gene. The results of this study highlight the importance of monitoring antibiotic resistance profiles and related genes, which can spread to form MDR bacteria. Salmonella spp., which significantly contribute to ARG dissemination, should be monitored constantly to protect the closely related health of humans, animals, and the environment. The level of antibiotic resistance observed in this study, even in rarely isolated Salmonella serotypes, also indicates the need for careful and selective use of antibiotics.202338756027
563010.9997Preliminary Results on the Prevalence of Salmonella spp. in Marine Animals Stranded in Sicilian Coasts: Antibiotic Susceptibility Profile and ARGs Detection in the Isolated Strains. The presence of Salmonella spp. in marine animals is a consequence of contamination from terrestrial sources (human activities and animals). Bacteria present in marine environments, including Salmonella spp., can be antibiotic resistant or harbor resistance genes. In this study, Salmonella spp. detection was performed on 176 marine animals stranded in the Sicilian coasts (south Italy). Antibiotic susceptibility, by disk diffusion method and MIC determination, and antibiotic resistance genes, by molecular methods (PCR) of the Salmonella spp. strains, were evaluated. We isolated Salmonella spp. in three animals, though no pathological signs were detected. Our results showed a low prevalence of Salmonella spp. (1.7%) and a low incidence of phenotypic resistance in three Salmonella spp. strains isolated. Indeed, of the three strains, only Salmonella subsp. enterica serovar Typhimurium from S. coeruleoalba and M. mobular showed phenotypic resistance: the first to ampicillin, tetracycline, and sulphamethoxazole, while the latter only to sulphamethoxazole. However, all strains harbored resistance genes (bla(TEM), bla(OXA), tet(A), tet(D), tet(E), sulI, and sulII). Although the low prevalence of Salmonella spp. found in this study does not represent a relevant health issue, our data contribute to the collection of information on the spread of ARGs, elements involved in antibiotic resistance, now considered a zoonosis in a One Health approach.202134451393
554720.9997Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages. This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas) and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77%) and ampicillin (69.2%). More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%), ceftiofur (53.8%), and erythromycin (53.3%). All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.201729147114
268930.9997Detection and drug resistance profile of Escherichia coli from subclinical mastitis cows and water supply in dairy farms in Saraburi Province, Thailand. Subclinical mastitis is a persistent problem in dairy farms worldwide. Environmental Escherichia coli is the bacterium predominantly responsible for this condition. In Thailand, subclinical mastitis in dairy cows is usually treated with various antibiotics, which could lead to antibiotic resistance in bacteria. E. coli is also a reservoir of many antibiotic resistance genes, which can be conveyed to other bacteria. In this study, the presence of E. coli in milk and water samples was reported, among which enteropathogenic E. coli was predominant, followed by enteroaggregative E. coli and enterohemorrhagic E. coli, which was found only in milk samples. Twenty-one patterns of antibiotic resistance were identified in this study. Ampicillin- and carbenicillin-resistant E. coli was the most common among the bacterial isolates from water samples. Meanwhile, resistance to ampicillin, carbenicillin, and sulfamethoxazole-trimethoprim was the pattern found most commonly in the E. coli from milk samples. Notably, only the E. coli from water samples possessed ESBL phenotype and carried antibiotic resistance genes, bla(TEM) and bla(CMY-2). This indicates that pathogenic E. coli in dairy farms is also exposed to antibiotics and could potentially transfer these genes to other pathogenic bacteria under certain conditions.201728626609
559340.9997Acquired antimicrobial resistance in the intestinal microbiota of diverse cat populations. The aim of this study was to investigate the prevalence of acquired antimicrobial resistance in the resident intestinal microbiota of cats and to identify significant differences between various cat populations. Escherichia coli, Enterococcus faecalis, E. faecium and Streptococcus canis were isolated as faecal indicator bacteria from rectal swabs of 47 individually owned cats, 47 cattery cats and 18 hospitalised cats, and submitted through antimicrobial sensitivity tests. The results revealed that bacteria isolated from hospitalised and/or cattery cats were more frequently resistant than those from individually owned cats. E. coli isolates from hospitalised cats were particularly resistant to ampicillin, tetracycline and sulfonamide. Both enterococci and streptococci showed high resistance to tetracycline and in somewhat lesser extent to erythromycin and tylosin. Most E. faecium isolates were resistant to lincomycin and penicillin. One E. faecalis as well as one E. faecium isolate from hospitalised cats showed 'high-level resistance' (MIC > 500 microg/ml) against gentamicin, a commonly used antimicrobial agent in case of human enterococcal infections. The results of this research demonstrate that the extent of acquired antimicrobial resistance in the intestinal microbiota of cats depends on the social environment of the investigated population. It is obvious that the flora of healthy cats may act as a reservoir of resistance genes.200616330058
558350.9997High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: a food safety risk. BACKGROUND: There has been concern about the increase of antimicrobial resistant bacteria and protection of animal and public health, along with food safety. In the present study, we evaluate the incidence of antimicrobial resistance among 192 strains of Escherichia coli isolated from faecal samples of healthy food-producing animals at slaughter in Portugal. RESULTS: Ninety-seven % of the pig isolates, 74% from sheep and 55% from cattle were resistant to one or more antimicrobial agents, with the resistances to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole the most common phenotype detected. Genes encoding resistance to antimicrobial agents were detected in most of the resistant isolates. Ninety-three % of the resistant isolates were included in the A or B1 phylogenetic groups, and the virulence gene fimA (alone or in association with papC or aer genes) was detected in 137 of the resistant isolates. Five isolates from pigs belonging to phylogroup B2 and D were resistant to five different antimicrobial agents. CONCLUSION: Our data shows a high percentage of antibiotic resistance in E. coli isolates from food animals, and raises important questions in the potential impact of antibiotic use in animals and the possible transmission of resistant bacteria to humans through the food chain.201322836880
551560.9996Wildlife Waterfowl as a Source of Pathogenic Campylobacter Strains. BACKGROUND: The aim of the study was to determine whether free-living birds belonging to game species whose meat is used for human consumption can constitute a reservoir of pathogenic Campylobacter strains, spreading these bacteria to other hosts or directly contributing to human infection. METHODS: A total of 91 cloacal swabs were taken from different species of wildlife waterfowl to estimate the Campylobacter prevalence, the genetic diversity of the isolates, and the presence of virulence genes and to evaluate the antimicrobial resistance. RESULTS: The presence of Campylobacter spp. was confirmed in 32.9% of samples. Based on flaA-SVR sequencing, a total of 19 different alleles among the tested Campylobacter isolates were revealed. The virulence genes involved in adhesion were detected at high frequencies among Campylobacter isolates regardless of the host species. The highest resistance was observed for ciprofloxacin. The resistance rates to erythromycin and tetracycline were observed at the same level. CONCLUSIONS: These results suggest that wildlife waterfowl belonging to game species may constitute a reservoir of Campylobacter, spreading these bacteria to other hosts or directly contributing to human disease. The high distribution of virulence-associated genes among wildlife waterfowl Campylobacter isolates make them potentially able to induce infection in humans.202235215056
268670.9996Antimicrobial resistance in Escherichia coli and Salmonella spp. isolates from fresh produce and the impact to food safety. Foodborne diseases associated with fresh produce consumption have escalated worldwide, causing microbial safety of produce of critical importance. Bacteria that have increasingly been detected in fresh produce are Escherichia coli and Salmonella spp., both of which have been shown to progressively display antimicrobial resistance. The study focused on the assessment of antimicrobial resistance of these enteric bacteria from different kinds of fresh produce from various open air markets and supermarkets in the Philippines. Using the disk diffusion assay on a total of 50 bacterial isolates obtained from 410 fresh produce surveyed, monoresistance to tetracycline was observed to be the most prevalent (38%), followed by multidrug resistance to tetracycline, chloramphenicol, ciprofloxacin, and nalidixic acid (4%), and lastly by dual resistance to tetracycline and chloramphenicol (2%). Using multiplex and simplex polymerase chain reaction (PCR) assays, tetA (75%) and tetB (9%) were found in tetracycline resistant isolates, whereas catI (67%) and catIII (33%) were detected in chloramphenicol resistant isolates. Sequence analysis of gyr and par genes from the ciprofloxacin and nalidixic acid resistant isolates revealed different mutations. Based on the results, fresh produce act as a reservoir of these antibiotic resistant bacteria which may pose health threat to consumers.201728679083
193580.9996Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related.202134356729
288590.9996Antimicrobial susceptibility of Streptococcus gallolyticus isolated from humans and animals. Susceptibilities to some antimicrobial agents and distribution of genes associated with resistance were examined in a total of 66 Streptococcus gallolyticus isolates and reference strains from various sources. All the tested bacteria were susceptible to vancomycin, penicillin G, and ampicillin. Most of the erythromycin-resistant isolates were observed in human clinical samples. Tetracycline and doxycycline resistance was prevalent in the isolates from human patients, diseased animals, and healthy broiler chickens, while the prevalence was significantly lower in the isolates from healthy mammals. All the isolates resistant to tetracycline possessed tet(M) and/or tet(L) and/or tet(O) genes. However, most isolates from healthy animals, which were susceptible to tetracycline, possessed the above-cited resistance genes, implying the potential ability for resistance under exposure to the corresponding antimicrobial agents.201323883848
1968100.9996Multidrug-resistant pattern of food borne illness associated bacteria isolated from cockroaches in meal serving facilities, Jimma, Ethiopia. INTRODUCTION: An increase in the emergence and spread of multidrug-resistant (MDR) bacteria in recent years is becoming worrisome. Domestic cockroaches can play a significant role in the dissemination of such bacteria between the environment and human beings. This study aimed at determining anti-microbial resistance pattern of food borne illness associated bacteria identified from cockroaches trapped in restaurants and cafeterias. METHODS: Trapped cockroaches were picked with surgical gloves, sealed in sterile plastic bags and transported to the Microbiology laboratory. Standard microbiological techniques were used to isolate and identify bacteria. Anti-microbial susceptibility testing was done using Kirby Bauer diffusion technique. RESULT: A total of five species of food borne illness associated bacteria were detected. Majority (57.1%) of the bacteria were isolated from the gut of cockroaches. More than 89% of the isolates were multi drug resistance (MDR). MDR was higher on gram positive bacteria. S. aureus showed 53.3% resistance against oxacillin(MRSA) and 33.3% against vancomycin. CONCLUSION: A very high percentage of MDR bacteria was seen in this study. Most of the bacteria tested were isolated from the gut of cockroaches. Potential factors associated with cockroaches that contributed to this high MDR rate of the isolates should be investigated in future.201829977255
2031110.9996Antimicrobial Resistance of E. coli and Salmonella Isolated from Wild Birds in a Rehabilitation Center in Turkey. Wildlife plays a critical role as a reservoir for zoonosis especially pathogenic enteric bacteria. In this study we evaluated the presence of E. coli and Salmonella isolates from wild birds and determined their antimicrobial resistance. Intestine and fecal samples from 82 dead wild birds obtained from rehabilitation centre, were examined by microbiological analysis, antibiotic susceptibilities against of 18 antimicrobials and presence of tetracycline resistance genes by multiplex and singleplex PCR were investigated. A total of 51 E. coli were identified as well as Salmonella Kentucky and Salmonella Bisberg. A majority of the E. coli isolates were resistant to lincomysin (100%), penicilline (96.1%), kanamycin (80.4%), tetracycline (68.6%), and oxytetracycline (64.7%). All Salmonella serotypes were resistant to lincomycin, nalidixic acid and penicilline.In addition, 58.82% of E. coli isolates had phenotypic resistance to at least three or more antimicrobials. Our results indicated that the high frequency of tetracycline resistance (68.62%) due to the tet (A), tet (B), and tet (D) genes. This is the first report isolating S. Bisberg and determining antibiotic susceptibility of E.coli and Salmonella isolates from wild birds in Turkey. These results will help providing better understand of the dissemination of antibiotic resistancy in the environment, which can be used to potentially decrease spread through bird migration. Moreover, these results help assess the risk of spread of resistance from wild birds to humans.202235891751
5548120.9996Prevalence of Antimicrobial Resistance Among the Hydrogen Sulfide Producing Bacteria Isolated on XLD Agar from the Poultry Fecal Samples. Poultry products remain as one of the most popular and extensively consumed foods in the world and the introduction of hydrogen sulfide (H(2)S) producing antibiotic resistant bacterial species into it is an emerging challenge. The current study has been designed to analyze the distribution of antibiotic resistance among the H(2)S producing bacteria isolated from the fecal samples of chickens from different poultry farms. Here, twenty bacterial isolates were selected based on their ability to produce H(2)S on XLD agar, and the16S rDNA sequencing was carried out for their molecular identification. The results showed the isolates as belong to Salmonella spp. and Citrobacter spp. and in the antibiotic susceptibility test (AST), three of the Salmonella strains were found to be resistant to antibiotics such as tetracycline, doxycycline, nalidixic acid, and amikacin. Also, fourteen Citrobacter strains showed resistance towards azithromycin, and furthermore, eleven of them were also resistant to streptomycin. Resistance towards tetracycline was observed among five of the Citrobacter strains, and seven were resistant to doxycycline. Further molecular screening by the PCR has showed three of the Salmonella strains along with eight Citrobacter isolates to have tetA gene along with four of the Citrobacter strains to have co-harbored bla(TEM) gene. The results on biofilm formation have also demonstrated three Salmonella strains along with nine Citrobacter strains to have the ability to form moderate biofilm. The study thus describes the occurrence of H(2)S producing multidrug-resistant bacteria in poultry feces, which might contribute towards the dissemination of antibiotic resistance genes to other microorganisms including human pathogens with likely risk to treat disease conditions.202437540287
5582130.9996Detection and prevalence of antimicrobial resistance genes in Campylobacter spp. isolated from chickens and humans. Campylobacter spp. are common pathogenic bacteria in both veterinary and human medicine. Infections caused by Campylobacter spp. are usually treated using antibiotics. However, the injudicious use of antibiotics has been proven to spearhead the emergence of antibiotic resistance. The purpose of this study was to detect the prevalence of antibiotic resistance genes in Campylobacter spp. isolated from chickens and human clinical cases in South Africa. One hundred and sixty one isolates of Campylobacter jejuni and Campylobacter coli were collected from chickens and human clinical cases and then screened for the presence of antimicrobial resistance genes. We observed a wide distribution of the tetO gene, which confers resistance to tetracycline. The gyrA genes that are responsible quinolone resistance were also detected. Finally, our study also detected the presence of the blaOXA-61, which is associated with ampicillin resistance. There was a higher (p < 0.05) prevalence of the studied antimicrobial resistance genes in chicken faeces compared with human clinical isolates. The tetO gene was the most prevalent gene detected, which was isolated at 64% and 68% from human and chicken isolates, respectively. The presence of gyrA genes was significantly (p < 0.05) associated with quinolone resistance. In conclusion, this study demonstrated the presence of gyrA (235 bp), gyrA (270 bp), blaOXA-61 and tetO antimicrobial resistance genes in C. jejuni and C. coli isolated from chickens and human clinical cases. This indicates that Campylobacter spp. have the potential of resistance to a number of antibiotic classes.201728582978
2879140.9996Antibiotic resistance of motile aeromonads in indoor catfish and eel farms in the southern part of The Netherlands. The prevalence and degree of antibiotic resistance in catfish and eel farms in the southern part of The Netherlands was examined using motile aeromonads as indicator bacteria. A total of 29 water samples were collected, originating from six catfish farms, one catfish hatchery and three eel farms, and were plated on an Aeromonas-selective agar with and without antibiotics. From each plate, one colony was screened for presumptive motile aeromonads and tested for antibiotic susceptibility. The prevalence of resistance was as follows: ampicillin and oxytetracycline 100%; sulfamethoxazole 24%; trimethoprim 3%; and ciprofloxacin and chloramphenicol 0%. The majority of samples showed a high degree of oxytetracycline resistance, implicating fish farms as a major reservoir of oxytetracycline resistance genes. This reservoir might form a risk for human health and has major consequences for the effectiveness of this antibiotic in the treatment of infectious diseases in fish.200818160266
2700150.9996Prevalence of Salmonella Typhimurium and Salmonella Enteritidis isolated from poultry meat: virulence and antimicrobial-resistant genes. Salmonellosis, a zoonotic disease, is one of the leading causes of foodborne illness worldwide. It is responsible for most infections caused by consumption of contaminated food. In recent years, a significant increase in the resistance of these bacteria to common antibiotics has been observed, posing a serious threat to global public health. The aim of this study was to investigate the prevalence of virulent antibiotic-resistant Salmonella spp. strains in Iranian poultry markets. A total of 440 chicken meat samples were randomly selected from meat supply and distribution facilities in Shahrekord and tested for bacteriological contamination. After culturing and isolating the strains, identification was performed using the classical bacteriological method and PCR. To determine antibiotic resistance, a disc diffusion test was performed according to the recommendations of the French Society of Microbiology. PCR was used to detect resistance and virulence genes. Only 9% of the samples were positive for Salmonella. These were Salmonella typhimurium isolates. All Salmonella typhimurium serotypes tested positive for the rfbJ, fljB, invA and fliC genes. Resistance to TET, cotrimoxazole, NA, NIT, piperacillin/tazobactam and other antibiotics was found in 26 (72.2%), 24 (66.7%), 22 (61.1%) and 21 (58.3%) isolates, respectively. The sul1, sul2 and sul3 genes were present in 20, 12 and 4 of 24 cotrimoxazole-resistant bacteria, respectively. Chloramphenicol resistance was found in six isolates, but more isolates tested positive for the floR and cat two genes. In contrast, 2 (33%) of the cat three genes, 3 (50%) of the cmlA genes and 2 (34%) of the cmlB genes were all positive. The results of this investigation showed that Salmonella typhimurium is the most common serotype of the bacterium. This means that most of the antibiotics commonly used in the livestock and poultry industries are ineffective against most Salmonella isolates, which is important for public health.202337322421
5576160.9996First insights into antimicrobial resistance among faecal Escherichia coli isolates from small wild mammals in rural areas. Wild rodents can be carriers of antimicrobial resistant Escherichia coli. As rodents are known to be involved in the transmission of bacteria of human and animal health concern, they could likewise contribute to the dissemination of antimicrobial resistant bacteria in the environment. The aim of this study was therefore to get first insights into the antimicrobial resistance status among E. coli isolated from wild small mammals in rural areas. We tested 188 faecal isolates from eight rodent and one shrew species originating from Germany. Preselected resistant isolates were screened by minimal inhibitory concentration (MIC) testing or agar diffusion test and subsequent PCR analysis of resistance genes. The prevalence of antimicrobial resistant isolates was low with only 5.5% of the isolates exhibiting resistant phenotypes against at least one antimicrobial compound including beta-lactams, tetracyclines, aminoglycosides and sulfonamides. These results suggest a minor role of wild rodents from rural areas in the cycle of transmission and spread of antimicrobial resistant E. coli into the environment. Nevertheless E. coli with multiple antimicrobial resistances were significantly more often detected in wildlife rodents originating from areas with high livestock density suggesting a possible transmission from livestock to wild rodents.201020569968
2881170.9996Comparative analysis of virulence genes, antibiotic resistance and gyrB-based phylogeny of motile Aeromonas species isolates from Nile tilapia and domestic fowl. The nucleotide sequence analysis of the gyrB gene indicated that the fish Aeromonas spp. isolates could be identified as Aeromonas hydrophila and Aeromonas veronii biovar sobria, whereas chicken Aeromonas spp. isolates identified as Aeromonas caviae. PCR data revealed the presence of Lip, Ser, Aer, ACT and CAI genes in fish Aer. hydrophila isolates, ACT, CAI and Aer genes in fish Aer. veronii bv sobria isolates and Ser and CAI genes in chicken Aer. caviae isolates. All chicken isolates showed variable resistance against all 12 tested antibiotic discs except for cefotaxime, nitrofurantoin, chloramphenicol and ciprofloxacin, only one isolate showed resistance to chloramphenicol and ciprofloxacin. Fish Aeromonads were sensitive to all tested antibiotic discs except amoxicillin, ampicillin-sulbactam and streptomycin. SIGNIFICANCE AND IMPACT OF THE STUDY: Many integrated fish farms depend on the application of poultry droppings/litter which served as a direct feed for the fish and also acted as pond fertilizers. The application of untreated poultry manure exerts an additional pressure on the microbial world of the fish's environment. Aeromonas species are one of the common bacteria that infect both fish and chicken. The aim of this study was to compare the phenotypic traits and genetic relatedness of aeromonads isolated from two diverse hosts (terrestrial and aquatic), and to investigate if untreated manure possibly enhances Aeromonas dissemination among cohabitant fish with special reference to virulence genes and antibiotic resistant traits.201526280543
5629180.9996Detection of Vancomycin Resistant Genes in Intrinsically Antibiotic Resistant Bacteria from the Gut Microbiota of Indonesian Individuals. BACKGROUND: Antibiotic resistance is a global public health concern that has been exacerbated by the overuse and misuse of antibiotics, leading to the emergence of resistant bacteria. The gut microbiota, often influenced by antibiotic usage, plays a crucial role in overall health. Therefore, this study aimed to investigate the prevalence of antibiotic resistant genes in the gut microbiota of Indonesian coastal and highland populations, as well as to identify vancomycin-resistant bacteria and their resistant genes. METHODS: Stool samples were collected from 22 individuals residing in Pacet, Mojokerto, and Kenjeran, Surabaya Indonesia in 2022. The read count of antibiotic resistant genes was analyzed in the collected samples, and the bacterium concentration was counted by plating on the antibiotic-containing agar plate. Vancomycin-resistant strains were further isolated, and the presence of vancomycin-resistant genes was detected using a multiplex polymerase chain reaction (PCR). RESULTS: The antibiotic resistant genes for tetracycline, aminoglycosides, macrolides, beta-lactams, and vancomycin were found in high frequency in all stool samples (100%) of the gut microbiota. Meanwhile, those meant for chloramphenicol and sulfonamides were found in 86% and 16% of the samples, respectively. Notably, vancomycin-resistant genes were found in 16 intrinsically resistant Gram-negative bacterial strains. Among the detected vancomycin-resistant genes, vanG was the most prevalent (27.3%), while vanA was the least prevalent (4.5%). CONCLUSION: The presence of multiple vancomycin resistance genes in intrinsically resistant Gram-negative bacterial strains demonstrated the importance of the gut microbiota as a reservoir and hub for the horizontal transfer of antibiotic resistant genes.202438751872
2849190.9996Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. In the United States, farm-raised shrimp accounts for ~ 80% of the market share. Farmed shrimp are cultivated as monoculture and are susceptible to infections. The aquaculture industry is dependent on the application of antibiotics for disease prevention, resulting in the selection of antibiotic-resistant bacteria. We aimed to characterize the prevalence of antibiotic-resistant bacteria and gut microbiome communities in commercially available shrimp. Thirty-one raw and cooked shrimp samples were purchased from supermarkets in Florida and Georgia (U.S.) between March-September 2019. The samples were processed for the isolation of antibiotic-resistant bacteria, and isolates were characterized using an array of molecular and antibiotic susceptibility tests. Aerobic plate counts of the cooked samples (n = 13) varied from < 25 to 6.2 log CFU/g. Isolates obtained (n = 110) were spread across 18 genera, comprised of coliforms and opportunistic pathogens. Interestingly, isolates from cooked shrimp showed higher resistance towards chloramphenicol (18.6%) and tetracycline (20%), while those from raw shrimp exhibited low levels of resistance towards nalidixic acid (10%) and tetracycline (8.2%). Compared to wild-caught shrimp, the imported farm-raised shrimp harbored distinct gut microbiota communities and a higher prevalence of antibiotic-resistance genes in their gut. The presence of antibiotic-resistant strains in cooked shrimps calls for change in processing for their mitigation.202133558614