# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5586 | 0 | 1.0000 | Antimicrobial Resistance Profile of Common Foodborne Pathogens Recovered from Livestock and Poultry in Bangladesh. Multidrug-resistant (MDR) foodborne pathogens have created a great challenge to the supply and consumption of safe & healthy animal-source foods. The study was conducted to identify the common foodborne pathogens from animal-source foods & by-products with their antimicrobial drug susceptibility and resistance gene profile. The common foodborne pathogens Escherichia coli (E. coli), Salmonella, Streptococcus, Staphylococcus, and Campylobacter species were identified in livestock and poultry food products. The prevalence of foodborne pathogens was found higher in poultry food & by-product compared with livestock (p < 0.05). The antimicrobial drug susceptibility results revealed decreased susceptibility to penicillin, ampicillin, amoxicillin, levofloxacin, ciprofloxacin, tetracycline, neomycin, streptomycin, and sulfamethoxazole-trimethoprim whilst gentamicin was found comparatively more sensitive. Regardless of sources, the overall MDR pattern of E. coli, Salmonella, Staphylococcus, and Streptococcus were found to be 88.33%, 75%, 95%, and 100%, respectively. The genotypic resistance showed a prevalence of blaTEM, blaSHV, blaCMY, tetA, tetB, sul1, aadA1, aac(3)-IV, and ereA resistance genes. The phenotype and genotype resistance patterns of isolated pathogens from livestock and poultry had harmony and good concordance, and sul1 & tetA resistance genes had a higher prevalence. Good agricultural practices along with proper biosecurity may reduce the rampant use of antimicrobial drugs. In addition, proper handling, processing, storage, and transportation of foods may decline the spread of MDR foodborne pathogens in the food chain. | 2022 | 36358208 |
| 2687 | 1 | 0.9999 | Antimicrobial resistance in E. coli isolated from dairy calves and bedding material. INTRODUCTION: E. coli is a ubiquitous bacterium commonly used as a sentinel in antimicrobial resistance studies. Here, E. coli was isolated from three groups (sick calves, healthy calves and bedding material), to assess the presence of antimicrobial resistance, describe resistance profiles, and compare these resistances among groups. MATERIAL AND METHODS: Samples were collected from calves and calving pens from 20 dairy farms. Using the disc diffusion method, E. coli isolates were screened for antimicrobial resistance against seven antimicrobials: Amoxicillin, Ceftiofur, Gentamicin, Enrofloxacin, Trimethoprim-sulfamethoxazole, Florfenicol and Oxytetracycline. Isolates resistant to all these seven antimicrobials were tested again against an extended 19 antimicrobial drug panel and for the presence of the most common E. coli pathogenicity genes through PCR. RESULTS & DISCUSSION: Three hundred forty-nine E. coli isolates were obtained; most isolates were resistant to a single antimicrobial, but 2.3% (8) were resistant to 16 to 19 of the antimicrobials tested. The group with the highest percentage of multiresistant isolates was the calves with diarrhea group. Younger calves provided samples with higher antimicrobial resistance levels. CONCLUSIONS: There is a high rate of antimicrobial resistance in dairy farms calving pens. These bacteria could not only be a resistance gene reservoir, but also could have the potential to spread these determinants through horizontal gene transfer to other susceptible bacteria. Measures should be taken to protect colonization of younger calves, based on hygienic measures and proper management. | 2019 | 31844709 |
| 2976 | 2 | 0.9999 | Phenotypic and Genotypic Antimicrobial Resistance in Non-O157 Shiga Toxin-Producing Escherichia coli Isolated From Cattle and Swine in Chile. Non-O157 Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes bloody diarrhea and hemolytic-uremic syndrome in humans, and a major cause of foodborne disease. Despite antibiotic treatment of STEC infections in humans is not recommended, the presence of antimicrobial-resistant bacteria in animals and food constitutes a risk to public health, as the pool of genes from which pathogenic bacteria can acquire antibiotic resistance has increased. Additionally, in Chile there is no information on the antimicrobial resistance of this pathogen in livestock. Thus, the aim of this study was to characterize the phenotypic and genotypic antimicrobial resistance of STEC strains isolated from cattle and swine in the Metropolitan region, Chile, to contribute relevant data to antimicrobial resistance surveillance programs at national and international level. We assessed the minimal inhibitory concentration of 18 antimicrobials, and the distribution of 12 antimicrobial resistance genes and class 1 and 2 integrons in 54 STEC strains. All strains were phenotypically resistant to at least one antimicrobial drug, with a 100% of resistance to cefalexin, followed by colistin (81.5%), chloramphenicol (14.8%), ampicillin and enrofloxacin (5.6% each), doxycycline (3.7%), and cefovecin (1.9%). Most detected antibiotic resistance genes were dfrA1 and tetA (100%), followed by tetB (94.4%), bla (TEM-1) (90.7%), aac(6)-Ib (88.9%), bla (AmpC) (81.5%), cat1 (61.1%), and aac(3)-IIa (11.1%). Integrons were detected only in strains of swine origin. Therefore, this study provides further evidence that non-O157 STEC strains present in livestock in the Metropolitan region of Chile exhibit phenotypic and genotypic resistance against antimicrobials that are critical for human and veterinary medicine, representing a major threat for public health. Additionally, these strains could have a competitive advantage in the presence of antimicrobial selective pressure, leading to an increase in food contamination. This study highlights the need for coordinated local and global actions regarding the use of antimicrobials in animal food production. | 2020 | 32754621 |
| 5585 | 3 | 0.9999 | Identification and antimicrobial susceptibility of milk pathogen isolated from dairy production systems. Livestock has been recognized as a reservoir of antibiotic-resistant bacteria. Prevalence of resistance has been associated with herd size and intensification of animal production systems. Brazil is one of the emergent hotspots of bacterial resistance, which is also associated with animal husbandry. This study aimed to evaluate the resistance profile of pathogens that cause subclinical mastitis and the relationship between resistance status at farm level and different production systems. Milk samples from cows diagnosed with subclinical mastitis were collected from farms that adopt different husbandry systems with different production intensities, i.e., agroecological, low input, high input, Free-Stall and Compost-bedded pack barn. Etiological agents were isolated and microbiologically identified, and antibiotic susceptibility testing was conducted, using the disk diffusion method. The main isolated agents were Streptococcus spp. (n = 54, 30.5 %) and coagulase-positive Staphylococcus (CPS) (n = 54; 30.5 %). The recovered isolates displayed high antibiotic resistance against Sulfamethazine (80.2 %), Gentamicin (29.37 %), Penicillin (29.37 %), Oxacillin (28.82 %) and Ampicillin (26 %). Multidrug resistance was found for all agents and in all farming systems (39.54 %). Neither production systems (p = 0.26) nor farming systems (p = 0.24) significantly affected the resistance rates of samples. Therefore, intensive production systems may not be a root cause of increased rates of antimicrobial resistance in the milk production chain, suggesting that other environmental factors should be investigated. It is noteworthy that high levels of multidrug resistance were even found in bacteria earlier considered as minor pathogens. This development can be taken as a warning that environmental bacteria are potential transmitters of resistance genes to the environment. | 2021 | 34364060 |
| 2849 | 4 | 0.9999 | Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. In the United States, farm-raised shrimp accounts for ~ 80% of the market share. Farmed shrimp are cultivated as monoculture and are susceptible to infections. The aquaculture industry is dependent on the application of antibiotics for disease prevention, resulting in the selection of antibiotic-resistant bacteria. We aimed to characterize the prevalence of antibiotic-resistant bacteria and gut microbiome communities in commercially available shrimp. Thirty-one raw and cooked shrimp samples were purchased from supermarkets in Florida and Georgia (U.S.) between March-September 2019. The samples were processed for the isolation of antibiotic-resistant bacteria, and isolates were characterized using an array of molecular and antibiotic susceptibility tests. Aerobic plate counts of the cooked samples (n = 13) varied from < 25 to 6.2 log CFU/g. Isolates obtained (n = 110) were spread across 18 genera, comprised of coliforms and opportunistic pathogens. Interestingly, isolates from cooked shrimp showed higher resistance towards chloramphenicol (18.6%) and tetracycline (20%), while those from raw shrimp exhibited low levels of resistance towards nalidixic acid (10%) and tetracycline (8.2%). Compared to wild-caught shrimp, the imported farm-raised shrimp harbored distinct gut microbiota communities and a higher prevalence of antibiotic-resistance genes in their gut. The presence of antibiotic-resistant strains in cooked shrimps calls for change in processing for their mitigation. | 2021 | 33558614 |
| 2702 | 5 | 0.9999 | Assessment of the presence of multidrug-resistant Escherichia coli, Salmonella and Staphylococcus in chicken meat, eggs and faeces in Mymensingh division of Bangladesh. The emergence of bacteria that is resistant to several drugs of clinical importance poses a threat to successful treatment, a phenomenon known as multidrug resistance that affects diverse classes of antibiotics. The purpose of this study was to evaluate the prevalence of multidrug-resistant Escherichia coli, Salmonella spp. and Staphylococcus aureus in chicken egg, meat and faeces from four districts of Bangladesh. A total of 120 chicken samples were collected from different poultry farms. Conventional culture and molecular detection methods were used for identification of bacterial isolates from the collected samples followed by antibiotic susceptibility test through the disc diffusion method, finally antibiotic resistant genes were detected by PCR. E. coli, Salmonella spp. and Staphylococcus aureus were detected in meat, egg and faecal samples. Antimicrobial susceptibility results revealed isolates from faeces were 100 % resistant to amoxicillin, while all S. aureus and Salmonella sp. from faeces were resistant to doxycycline, tetracycline and erythromycin. Salmonella spp. isolates from eggs indicated 100 % resistance to erythromycin, amoxycillin, while E. coli were 100 % resistant to erythromycin. E. coli and S. aureus from meat were 100 % resistant to amoxicillin and erythromycin. However, Salmonella spp. from eggs were 100 % susceptible to doxycycline, gentamicin, levofloxacin and tetracycline. The mecA and aac(3)-IV genes were only found in S. aureus and E. coli, respectively. The Sul1, tetB, and aadA1 were highest in Salmonella spp. and S. aureus, while the sul1, tetA and bla (SHV) were higher in E. coli. Isolates from all samples were multidrug resistant. These findings indicate a high risk of transmission of resistance genes from microbial contamination to food of animal origin. The study emphasizes the need for effective biosecurity measures, responsible antibiotic use, and strict regulations in poultry production to prevent the spread of antibiotic resistance. | 2024 | 39281621 |
| 5579 | 6 | 0.9999 | Survey of Shiga toxigenic Escherichia coli O157 and drug-resistant coliform bacteria from in-line milk filters on dairy farms in the Czech Republic. AIMS: To determine the occurrence of Shiga toxin-producing Escherichia coli (STEC) O157 and coliform bacteria isolates resistant to antimicrobial agents in dairy herds by examining milk filters and to analyse the influence of management factors and antibiotic use on antimicrobial resistance. METHODS AND RESULTS: A total of 192 in-line milk filters were sampled on 192 dairy farms in the Czech Republic. Information on feeding, husbandry, production, and antibiotic therapy were obtained by questionnaire. The milk filters were cultured for STEC O157 and coliform bacteria. All recovered isolates were examined for antimicrobial susceptibility and presence of antimicrobial-resistance genes. STEC O157 was detected in four (2%) of the filters. Resistant nonpathogenic E. coli and coliform bacteria isolates with specific genes were detected in 44 (23%) of the filters. CONCLUSIONS: The study demonstrated a high prevalence of resistant coliform bacteria in milk filters obtained on Czech dairy farms. SIGNIFICANCE AND IMPACT OF THE STUDY: The occurrence of resistant coliform bacteria in milk filters was significantly higher among isolates from farms where antibiotic therapy against mastitis was employed during the dry period (P < 0.05). | 2008 | 17953684 |
| 2688 | 7 | 0.9999 | Intestinal and Extraintestinal Pathotypes of Escherichia coli Are Prevalent in Food Prepared and Marketed on the Streets from the Central Zone of Mexico and Exhibit a Differential Phenotype of Resistance Against Antibiotics. Background/Objectives: Antibiotic resistance is a serious public health problem threatening the treatment of infectious diseases caused by Escherichia coli, the main source of food contamination and responsible for many infectious diseases with high indices of AR profiles. Our objective was to study the presence of Escherichia coli in foods that are distributed and prepared on the street, characterizing its sensitivity profile and resistance to antibiotic drugs commonly prescribed in this geographical area. Methods: Standard procedures were performed to identify and isolate E. coli colonies from food samples collected during a three-year study. Susceptibility assays were conducted to determine the antibiotic resistance profile, and Colony PCR assays were performed to determine the pathogenic and antibiotic resistance genes. Results: A total of 189 food samples were collected, and 100% of the samples were positive for E. coli, with higher percentages of contamination for vegetables and fruits. ETEC (lt) and UPEC (vat, cnf1, hylA) genes were identified in 100% of the samples and DAEC (afa) in 27%. E. coli exhibited high percentages of resistance against ampicillin and amoxicillin/clavulanic acid (100%) and cephalexin (45%). The most effective antibiotics were tetracycline, TMP-SMX, polymyxin, and quinolones. The AR genes tetA, sul1, catA1, strA, qnrS, and floR were identified among the samples. Conclusions: Food prepared and marketed on the streets seriously threatens human health. Ampicillin and amoxicillin/clavulanic acid should not be used to treat infections caused by the multidrug-resistant ETEC and UPEC identified in this area. To our knowledge, this is the first study that explores the status of AR in this geographical area. | 2025 | 40298585 |
| 2686 | 8 | 0.9999 | Antimicrobial resistance in Escherichia coli and Salmonella spp. isolates from fresh produce and the impact to food safety. Foodborne diseases associated with fresh produce consumption have escalated worldwide, causing microbial safety of produce of critical importance. Bacteria that have increasingly been detected in fresh produce are Escherichia coli and Salmonella spp., both of which have been shown to progressively display antimicrobial resistance. The study focused on the assessment of antimicrobial resistance of these enteric bacteria from different kinds of fresh produce from various open air markets and supermarkets in the Philippines. Using the disk diffusion assay on a total of 50 bacterial isolates obtained from 410 fresh produce surveyed, monoresistance to tetracycline was observed to be the most prevalent (38%), followed by multidrug resistance to tetracycline, chloramphenicol, ciprofloxacin, and nalidixic acid (4%), and lastly by dual resistance to tetracycline and chloramphenicol (2%). Using multiplex and simplex polymerase chain reaction (PCR) assays, tetA (75%) and tetB (9%) were found in tetracycline resistant isolates, whereas catI (67%) and catIII (33%) were detected in chloramphenicol resistant isolates. Sequence analysis of gyr and par genes from the ciprofloxacin and nalidixic acid resistant isolates revealed different mutations. Based on the results, fresh produce act as a reservoir of these antibiotic resistant bacteria which may pose health threat to consumers. | 2017 | 28679083 |
| 2715 | 9 | 0.9999 | From the Farms to the Dining Table: The Distribution and Molecular Characteristics of Antibiotic-Resistant Enterococcus spp. in Intensive Pig Farming in South Africa. Foodborne pathogens, including antibiotic-resistant species, constitute a severe menace to food safety globally, especially food animals. Identifying points of concern that need immediate mitigation measures to prevent these bacteria from reaching households requires a broad understanding of these pathogens' spread along the food production chain. We investigated the distribution, antibiotic susceptibility, molecular characterization and clonality of Enterococcus spp. in an intensive pig production continuum in South Africa, using the farm-to-fork approach. Enterococcus spp. were isolated from 452 samples obtained along the pig farm-to-fork continuum (farm, transport, abattoir, and retail meat) using the IDEXX Enterolert(®)/Quanti-Tray(®) 2000 system. Pure colonies were obtained on selective media and confirmed by real-time PCR, targeting genus- and species-specific genes. The susceptibility to antibiotics was determined by the Kirby-Bauer disk diffusion method against 16 antibiotics recommended by the WHO-AGISAR using EUCAST guidelines. Selected antibiotic resistance and virulence genes were detected by real-time PCR. Clonal relatedness between isolates across the continuum was evaluated by REP-PCR. A total of 284 isolates, consisting of 79.2% E. faecalis, 6.7% E. faecium, 2.5% E. casseliflavus, 0.4% E. gallinarum, and 11.2% other Enterococcus spp., were collected along the farm-to-fork continuum. The isolates were most resistant to sulfamethoxazole-trimethoprim (78.8%) and least resistant to levofloxacin (5.6%). No resistance was observed to vancomycin, teicoplanin, tigecycline and linezolid. E. faecium displayed 44.4% resistance to quinupristin-dalfopristin. Also, 78% of the isolates were multidrug-resistant. Phenotypic resistance to tetracycline, aminoglycosides, and macrolides was corroborated by the presence of the tetM, aph(3')-IIIa, and ermB genes in 99.1%, 96.1%, and 88.3% of the isolates, respectively. The most detected virulence gene was gelE. Clonality revealed that E. faecalis isolates belonged to diverse clones along the continuum with major REP-types, mainly isolates from the same sampling source but different sampling rounds (on the farm). E. faecium isolates revealed a less diverse profile. The results suggest that intensive pig farming could serve as a reservoir of antibiotic-resistant bacteria that could be transmitted to occupationally exposed workers via direct contact with animals or consumers through animal products/food. This highlights the need for more robust guidelines for antibiotic use in intensive farming practices and the necessity of including Enterococcus spp. as an indicator in antibiotic resistance surveillance systems in food animals. | 2021 | 33918989 |
| 2967 | 10 | 0.9999 | Antibiotic susceptibility and prevalence of foodborne pathogens in poultry meat in Romania. INTRODUCTION: The occurrence of pathogenic strains in poultry meat is of growing concern in Romania. Another problem found on a global level is the continuous increase of antimicrobial resistance in bacteria isolated from food. This study aimed to evaluate the prevalence of pathogenic bacteria in poultry carcasses obtained in Romania in 2012-2013 and to reveal the most prevalent patterns of antimicrobial resistance in the isolated strains. METHODOLOGY: A total of 144 broiler chicken carcasses were evaluated according to classical microbiological methods. The DNA was extracted from the bacterial colonies and the resistance genes were identified by PCR. RESULTS: In 2012, 47.2% of the samples revealed at least one of the following bacteria: Campylobacter jejuni (9.72%; n = 7), Salmonella enterica serotype Enteritidis (4.17%; n = 3), Listeria monocytogenes (15.28%; n = 11), and Escherichia coli (16.67%; n = 12). In 2013, the number of positive samples of pathogenic bacteria decreased, although Campylobacter jejuni was isolated in a higher percentage (20.8% vs. 9.72%). The percentage of multidrug-resistant (MDR) bacteria was high (23%); the most prevalent pattern included resistance to tetracycline, sulfonamides, and quinolones/fluoroquinolones. All the resistant Salmonella and E. coli strains were tested for the presence of characteristic resistance genes (Kn, bla(TEM), tetA, tetB, tetG, DfrIa, aadA1a, Sul) and revealed that these isolates represent an important reservoir in the spread of this phenomenon. CONCLUSIONS: Our findings suggest that Romania urgently needs an integrated surveillance system within the entire chain, for drug-resistant pathogens isolated from poultry meat. | 2015 | 25596569 |
| 5583 | 11 | 0.9999 | High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: a food safety risk. BACKGROUND: There has been concern about the increase of antimicrobial resistant bacteria and protection of animal and public health, along with food safety. In the present study, we evaluate the incidence of antimicrobial resistance among 192 strains of Escherichia coli isolated from faecal samples of healthy food-producing animals at slaughter in Portugal. RESULTS: Ninety-seven % of the pig isolates, 74% from sheep and 55% from cattle were resistant to one or more antimicrobial agents, with the resistances to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole the most common phenotype detected. Genes encoding resistance to antimicrobial agents were detected in most of the resistant isolates. Ninety-three % of the resistant isolates were included in the A or B1 phylogenetic groups, and the virulence gene fimA (alone or in association with papC or aer genes) was detected in 137 of the resistant isolates. Five isolates from pigs belonging to phylogroup B2 and D were resistant to five different antimicrobial agents. CONCLUSION: Our data shows a high percentage of antibiotic resistance in E. coli isolates from food animals, and raises important questions in the potential impact of antibiotic use in animals and the possible transmission of resistant bacteria to humans through the food chain. | 2013 | 22836880 |
| 5589 | 12 | 0.9999 | Antibiotic resistance spectrums of Escherichia coli and Enterococcus spp. strains against commonly used antimicrobials from commercial meat-rabbit farms in Chengdu City, Southwest China. Antimicrobial resistance (AMR) is commonly associated with the inappropriate use of antibiotics during meat-rabbit production, posing unpredictable risks to rabbit welfare and public health. However, there is limited research on the epidemiological dynamics of antibiotic resistance among bacteria indicators derived from local healthy meat-rabbits. To bridge the knowledge gap between antibiotic use and AMR distribution, a total of 75 Escherichia coli (E. coli) and 210 Enterococcus spp. strains were successfully recovered from fecal samples of healthy meat-rabbits. The results revealed that diverse AMR phenotypes against seven commonly used antimicrobials, including ampicillin (AMP), amoxicillin-clavulanic acid (A/C), doxycycline (DOX), enrofloxacin (ENR), florfenicol (FFC), gentamicin (GEN), and polymycin B (PMB), were observed among most strains of E. coli and Enterococcus spp. in two rabbit farms, although the distribution pattern of antibiotic resistance between young and adult rabbits was similar. Among them, 66 E. coli strains showed resistance against 6 antimicrobials except for PMB. However, 164 Enterococcus spp. strains only exhibited acquired resistance against DOX and GEN. Notably, the DOX-based AMR phenotypes for E. coli and Enterococcus spp. strains were predominant, indicating the existing environmental stress conferred by DOX exposure. The MICs tests suggested elevated level of antibiotic resistance for resistant bacteria. Unexpectedly, all GEN-resistant Enterococcus spp. strains resistant high-level gentamicin (HLGR). By comparison, the blaTEM, tetA, qnrS and floR were highly detected among 35 multi-resistant E. coli strains, and aac[6']-Ie-aph[2']-Ia genes widely spread among the 40 double-resistant Enterococcus spp. strains. Nevertheless, the presence of ARGs were not concordant with the resistant phenotypes for a portion of resistant bacteria. In conclusion, the distribution of AMR and ARGs are prevalent in healthy meat-rabbits, and the therapeutic antimicrobials use in farming practice may promote the antibiotic resistance transmission among indicator bacteria. Therefore, periodic surveillance of antibiotic resistance in geographic locations and supervisory measures for rational antibiotic use are imperative strategies for combating the rising threats posed by antibiotic resistance, as well as maintaining rabbit welfare and public health. | 2024 | 38756516 |
| 2700 | 13 | 0.9998 | Prevalence of Salmonella Typhimurium and Salmonella Enteritidis isolated from poultry meat: virulence and antimicrobial-resistant genes. Salmonellosis, a zoonotic disease, is one of the leading causes of foodborne illness worldwide. It is responsible for most infections caused by consumption of contaminated food. In recent years, a significant increase in the resistance of these bacteria to common antibiotics has been observed, posing a serious threat to global public health. The aim of this study was to investigate the prevalence of virulent antibiotic-resistant Salmonella spp. strains in Iranian poultry markets. A total of 440 chicken meat samples were randomly selected from meat supply and distribution facilities in Shahrekord and tested for bacteriological contamination. After culturing and isolating the strains, identification was performed using the classical bacteriological method and PCR. To determine antibiotic resistance, a disc diffusion test was performed according to the recommendations of the French Society of Microbiology. PCR was used to detect resistance and virulence genes. Only 9% of the samples were positive for Salmonella. These were Salmonella typhimurium isolates. All Salmonella typhimurium serotypes tested positive for the rfbJ, fljB, invA and fliC genes. Resistance to TET, cotrimoxazole, NA, NIT, piperacillin/tazobactam and other antibiotics was found in 26 (72.2%), 24 (66.7%), 22 (61.1%) and 21 (58.3%) isolates, respectively. The sul1, sul2 and sul3 genes were present in 20, 12 and 4 of 24 cotrimoxazole-resistant bacteria, respectively. Chloramphenicol resistance was found in six isolates, but more isolates tested positive for the floR and cat two genes. In contrast, 2 (33%) of the cat three genes, 3 (50%) of the cmlA genes and 2 (34%) of the cmlB genes were all positive. The results of this investigation showed that Salmonella typhimurium is the most common serotype of the bacterium. This means that most of the antibiotics commonly used in the livestock and poultry industries are ineffective against most Salmonella isolates, which is important for public health. | 2023 | 37322421 |
| 2689 | 14 | 0.9998 | Detection and drug resistance profile of Escherichia coli from subclinical mastitis cows and water supply in dairy farms in Saraburi Province, Thailand. Subclinical mastitis is a persistent problem in dairy farms worldwide. Environmental Escherichia coli is the bacterium predominantly responsible for this condition. In Thailand, subclinical mastitis in dairy cows is usually treated with various antibiotics, which could lead to antibiotic resistance in bacteria. E. coli is also a reservoir of many antibiotic resistance genes, which can be conveyed to other bacteria. In this study, the presence of E. coli in milk and water samples was reported, among which enteropathogenic E. coli was predominant, followed by enteroaggregative E. coli and enterohemorrhagic E. coli, which was found only in milk samples. Twenty-one patterns of antibiotic resistance were identified in this study. Ampicillin- and carbenicillin-resistant E. coli was the most common among the bacterial isolates from water samples. Meanwhile, resistance to ampicillin, carbenicillin, and sulfamethoxazole-trimethoprim was the pattern found most commonly in the E. coli from milk samples. Notably, only the E. coli from water samples possessed ESBL phenotype and carried antibiotic resistance genes, bla(TEM) and bla(CMY-2). This indicates that pathogenic E. coli in dairy farms is also exposed to antibiotics and could potentially transfer these genes to other pathogenic bacteria under certain conditions. | 2017 | 28626609 |
| 2848 | 15 | 0.9998 | Antimicrobial Resistant Bacteria Monitoring in Raw Seafood Retailed: a Pilot Study Focused on Vibrio and Aeromonas. In aquaculture, bacterial infections in sea animals are treated using antimicrobials. As seafood is frequently consumed in its raw form, seafood contaminated with water-borne antimicrobial-resistant bacteria presents a potential transmission route to humans and can influence food safety. In this study, we aimed to determine the abundance of water-borne bacteria in retail raw seafood and to characterize their antimicrobial resistance profiles. In total, 85 retail raw seafood samples (32 fish, 26 shellfish, 25 mollusks, and two crustaceans) were purchased from supermarkets in Japan, and water-borne bacteria were isolated. The isolated bacterial species predominantly included Vibrio spp. (54.1%) and Aeromonas spp. (34.1%). Vibrio or Aeromonas spp. were isolated from more than 70% of the seafood samples. Tetracycline-, sulfamethoxazole-, and/or trimethoprim/sulfamethoxazole-resistant Vibrio or Aeromonas spp. isolates were detected in seven (21.9%) fish samples (two wild-caught and five farm-raised) harboring tet, sul, and/or dfr genes. Sulfamethoxazole- and trimethoprim/sulfamethoxazole-resistant isolates were only detected in farm-raised fish. Tetracycline and sulfamethoxazole are commonly used in aquaculture. These results suggest that water-borne bacteria like Vibrio and Aeromonas spp. should be the primary focus of antimicrobial-resistant bacteria monitoring to effectively elucidate their spread of bacteria via seafood. | 2023 | 38144894 |
| 5587 | 16 | 0.9998 | Antimicrobial Resistant Pathogens Detected in Raw Pork and Poultry Meat in Retailing Outlets in Kenya. There is increasing proof of bacterial resistance to antibiotics all over the world, and this puts the effectiveness of antimicrobials that have been essential in decreasing disease mortality and morbidity at stake. The WHO has labeled some classes of antimicrobials as vitally important to human health. Bacteria from animals are thought to be reservoirs of resistance genes that can be transferred to humans through the food chain. This study aimed to identify the resistance patterns of bacteria from pork and poultry meat samples purchased from leading retail outlets in Kenya. Of the 393 samples collected, 98.4% of pork and 96.6% of poultry were contaminated with high levels of bacteria. Among the 611 bacterial isolates recovered, 38.5% were multi-drug resistant. This resistance was noted for critically essential antimicrobials (according to the WHO) such as rifampicin (96%), ampicillin (35%), cefotaxime (9%), cefepime (6%), and ciprofloxacin (6%). Moreover, there was high resistance to key antimicrobials for veterinary medicine such as tetracycline (39%), sulfamethoxazole (33%), and trimethoprim (30%). It is essential to spread awareness about the judicious use of antibiotics and take preventive measures to reduce disease burden. | 2023 | 36978480 |
| 5598 | 17 | 0.9998 | Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products. | 2025 | 40298519 |
| 5581 | 18 | 0.9998 | Prevalence of pathogens harbouring mobile antimicrobial resistance genes and virulence factors in retail beef and mutton. Food safety is always a global issue, due to the increased dissemination of antimicrobial resistance and food poisoning related to foodborne bacterial pathogens. The purpose of this study was to assess the risk of potential foodborne bacteria of beef and mutton in retail stores. A total of 134 samples were collected from 24 local markets in Beijing, including raw and cooked beef or mutton, as well as samples derived from the corresponding environment and human beings. We obtained 674 isolates, of which Klebsiella spp. and Staphylococcus spp. were the dominant bacterial species in the meat samples and the environmental samples, respectively. Additionally, environmental bacteria are common in samples from different sources. Based on the results of antimicrobial sensitivity testing, resistance to tetracycline (with a resistance rate of 47.40%), amoxicillin + clavulanate (47.13%) and erythromycin (28.03%) were the major resistant phenotypes. According to the whole genome analysis, the extended spectrum beta-lactamase genes harboured by two K. pneumoniae strains isolated from cooked and raw beef were located on mobile elements. The major toxin genes of Bacillus cereus and adhesion- or invasion-related virulence factors were also shared among isolates from different sources. These factors pose potential risks to public health and need attention. | 2020 | 32510554 |
| 2931 | 19 | 0.9998 | Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings. BACKGROUND: This study describes the phenotypic and genotypic characteristics of 78 genetically different Escherichia coli recovered from air and exudate samples of a dairy cattle farm and its surroundings in Spain, in order to gain insight into the flow of antimicrobial resistance through the environment and food supply. RESULTS: Antimicrobial resistance was detected in 21.8% of the 78 E. coli isolates analyzed (resistance for at least one of the 14 agents tested). The highest resistance rates were recorded for ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole and tetracycline. The resistance genes detected were as follows (antibiotic (number of resistant strains), gene (number of strains)): ampicillin (9), bla(TEM-1) (6); tetracycline (15), tet(A) (7), tet(B) (4), tet(A) + tet(B) (1); chloramphenicol (5), cmlA (2), floR (2); trimethoprim/sulfamethoxazole (10), sul2 (4), sul1 (3), sul3 (2), sul1 + sul2 (1); gentamicin-tobramycin (1), ant(2″) (1). About 14% of strains showed a multidrug-resistant phenotype and, of them, seven strains carried class 1 integrons containing predominantly the dfrA1-aadA1 array. One multidrug-resistant strain was found in both inside and outside air, suggesting that the airborne spread of multidrug-resistant bacteria from the animal housing facilities to the surroundings is feasible. CONCLUSIONS: This study gives a genetic background of the antimicrobial resistance problem in a dairy cattle farm and shows that air can act as a source for dissemination of antimicrobial-resistant bacteria. © 2016 Society of Chemical Industry. | 2017 | 26969806 |