Detection and prevalence of antimicrobial resistance genes in Campylobacter spp. isolated from chickens and humans. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
558201.0000Detection and prevalence of antimicrobial resistance genes in Campylobacter spp. isolated from chickens and humans. Campylobacter spp. are common pathogenic bacteria in both veterinary and human medicine. Infections caused by Campylobacter spp. are usually treated using antibiotics. However, the injudicious use of antibiotics has been proven to spearhead the emergence of antibiotic resistance. The purpose of this study was to detect the prevalence of antibiotic resistance genes in Campylobacter spp. isolated from chickens and human clinical cases in South Africa. One hundred and sixty one isolates of Campylobacter jejuni and Campylobacter coli were collected from chickens and human clinical cases and then screened for the presence of antimicrobial resistance genes. We observed a wide distribution of the tetO gene, which confers resistance to tetracycline. The gyrA genes that are responsible quinolone resistance were also detected. Finally, our study also detected the presence of the blaOXA-61, which is associated with ampicillin resistance. There was a higher (p < 0.05) prevalence of the studied antimicrobial resistance genes in chicken faeces compared with human clinical isolates. The tetO gene was the most prevalent gene detected, which was isolated at 64% and 68% from human and chicken isolates, respectively. The presence of gyrA genes was significantly (p < 0.05) associated with quinolone resistance. In conclusion, this study demonstrated the presence of gyrA (235 bp), gyrA (270 bp), blaOXA-61 and tetO antimicrobial resistance genes in C. jejuni and C. coli isolated from chickens and human clinical cases. This indicates that Campylobacter spp. have the potential of resistance to a number of antibiotic classes.201728582978
558310.9999High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: a food safety risk. BACKGROUND: There has been concern about the increase of antimicrobial resistant bacteria and protection of animal and public health, along with food safety. In the present study, we evaluate the incidence of antimicrobial resistance among 192 strains of Escherichia coli isolated from faecal samples of healthy food-producing animals at slaughter in Portugal. RESULTS: Ninety-seven % of the pig isolates, 74% from sheep and 55% from cattle were resistant to one or more antimicrobial agents, with the resistances to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole the most common phenotype detected. Genes encoding resistance to antimicrobial agents were detected in most of the resistant isolates. Ninety-three % of the resistant isolates were included in the A or B1 phylogenetic groups, and the virulence gene fimA (alone or in association with papC or aer genes) was detected in 137 of the resistant isolates. Five isolates from pigs belonging to phylogroup B2 and D were resistant to five different antimicrobial agents. CONCLUSION: Our data shows a high percentage of antibiotic resistance in E. coli isolates from food animals, and raises important questions in the potential impact of antibiotic use in animals and the possible transmission of resistant bacteria to humans through the food chain.201322836880
193520.9999Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related.202134356729
194830.9999Identification and Characterization of Cefotaxime Resistant Bacteria in Beef Cattle. Third-generation cephalosporins are an important class of antibiotics that are widely used in treatment of serious Gram-negative bacterial infections. In this study, we report the isolation of bacteria resistant to the third-generation cephalosporin cefotaxime from cattle with no previous cefotaxime antibiotic exposure. The prevalence of cefotaxime-resistant bacteria was examined by a combination of culture based and molecular typing methods in beef cattle (n = 1341) from 8 herds located in North Central Florida. The overall prevalence of cefotaxime-resistant bacteria was 15.8% (95% CI: 13.9, 17.8), varied between farms, and ranged from 5.2% to 100%. A subset of isolates (n = 23) was further characterized for the cefotaxime minimum inhibitory concentration (MIC) and antibiotic susceptibility against 10 different antibiotics, sequencing of nine β- lactamase genes, and species identification by 16S rRNA sequencing. Most of the bacterial isolates were resistant to cefotaxime (concentrations, > 64 μg/mL) and showed high levels of multi-drug resistance. Full length 16S rRNA sequences (~1300 bp) revealed that most of the isolates were not primary human or animal pathogens; rather were more typical of commensal, soil, or other environmental origin. Six extended spectrum β-lactamase (ESBL) genes identical to those in clinical human isolates were identified. Our study highlights the potential for carriage of cefotaxime resistance (including "human" ESBL genes) by the bacterial flora of food animals with no history of cefotaxime antibiotic exposure. A better understanding of the origin and transmission of resistance genes in these pre-harvest settings will be critical to development of strategies to prevent the spread of antimicrobial resistant microorganisms to hospitals and communities.201627642751
196540.9999Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Florfenicol is a promising antibiotic for use in companion animals, especially as an alternative agent for infections caused by MDR bacteria. However, the emergence of resistant strains could hinder this potential. In this study, florfenicol resistance was investigated in a total of 246 MDR Enterobacterales obtained from canine and feline clinical samples in Greece over a two-year period (October 2020 to December 2022); a total of 44 (17,9%) florfenicol-resistant strains were recognized and further investigated. Most of these isolates originated from urine (41.9%) and soft tissue (37.2%) samples; E. coli (n = 14) and Enterobacter cloacae (n = 12) were the predominant species. The strains were examined for the presence of specific florfenicol-related resistance genes floR and cfr. In the majority of the isolates (31/44, 70.5%), the floR gene was detected, whereas none carried cfr. This finding creates concerns of co-acquisition of plasmid-mediated florfenicol-specific ARGs through horizontal transfer, along with several other resistance genes. The florfenicol resistance rates in MDR isolates seem relatively low but considerable for a second-line antibiotic; thus, in order to evaluate the potential of florfenicol to constitute an alternative antibiotic in companion animals, continuous monitoring of antibiotic resistance profiles is needed in order to investigate the distribution of florfenicol resistance under pressure of administration of commonly used agents.202438393089
554550.9999Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Wide varieties of antibiotics are used in poultry farms to improve the growth and also to control the infection in broiler chicken. To identify the seriousness of the same in the poultry sector, current study has been designed to analyze the presence of tetracycline in poultry feed and also the tetracycline resistance among the bacteria released through the excreta of poultry. In the study, 27 bacteria belonging to the Escherichiacoli and Klebsiellapneumoniae. were isolated from the faecal samples collected from five different farms. Antibiotic susceptibility analysis showed 77% of E. coli and 100% of the K. pneumoniae. to be resistant to tetracycline. Further, molecular screening for tetA and tetB genes showed 85.18% of isolates to have tetA and 22.22% with tetB. The presence of tetracycline in collected feed samples was also analysed quantitatively by Liquid chromatography-mass spectrometry (LC-MS). Here, three out of five feed samples were found to be positive for tetracycline. The study showed a direct correlation between the antibiotic supplemented feed and the emergence of antimicrobial resistance among the intestinal microflora. The results of the study indicate the need for strict control over antibiotic use in animal feed to limit the rapid evolution and spread of antimicrobial resistance.202033039593
269160.9999Antibiotic Resistant and Biofilm-Associated Escherichia coli Isolates from Diarrheic and Healthy Dogs. Bacteria isolated from companion animals are attracting concerns in a view of public health including antimicrobial resistance and biofilm development, both contributing to difficult-to-treat infections. The purpose of this study was to evaluate the minimum inhibitory concentrations (MIC) of 18 antibiotics in Escherichia coli isolated from two groups of dogs (healthy and diarrheic). Isolates were classified into phylogroups, examined for the presence of resistance genes and biofilm-formation capacity. In healthy dogs, phylogenetic analysis showed that 47.37% and 34.22% of E. coli isolates belonged to commensal groups (A; B1) in contrast to diarrheic dogs; 42.2% of isolates were identified as the B2 phylogroup, and these E. coli bacteria formed a stronger biofilm. The results of healthy dogs showed higher MIC levels for tetracycline (32 mg/L), ampicillin (64 mg/L), ciprofloxacin (8 mg/L) and trimethoprim-sulphonamide (8 mg/L) compared to clinical breakpoints. The most detected gene encoding plasmid-mediated resistance to quinolones in the healthy group was qnrB, and in dogs with diarrhea, qnrS. The resistance genes were more frequently detected in healthy dogs. The presence of the integron int1 and the transposon tn3 increases the possibility of transfer of many different cassette-associated antibiotic-resistance genes. These results suggest that dogs could be a potential reservoir of resistance genes.202134205399
269270.9999Tetracycline Resistance Genes in Campylobacter jejuni and C. coli Isolated From Poultry Carcasses. BACKGROUND: Campylobacter is one of the leading bacterial species causing foodborne illnesses in humans. Antimicrobial agents have been extensively used for treatment of Campylobacter infections; but in the recent years, both animal and human isolates of this bacterium have shown resistance to several antibiotics such as tetracycline. OBJECTIVES: The aim of this study was to investigate the presence of genetic determinants of tetracycline resistance in Campylobacter spp. recovered from poultry carcasses in Shiraz, Iran. MATERIALS AND METHODS: Eighty-three thermophilic Campylobacter spp. Isolates were first identified based on multiplex polymerase chain reaction (PCR) and then screened for presence of tetracycline resistance genes (tet (A), tet (B), tet (O) and te (S)) by PCR. RESULTS: The overall prevalence of Campylobacter jejuni and C. coli among the examined isolates was 51.8% and 48.2%, respectively. Tetracycline resistance genes of tet (B) and tet (S) were not seen among these Campylobacter spp. Isolates, whereas the most common tet gene identified was tet (O), found in 83.1% (69/83) of all the isolates. The tet (O) gene sequence comparison between C. jejuni and C. coli showed 100% similarity and these sequences (JX853721and JX853722) were also identical to the homologous sequences of other strains of Campylobacter spp. existing in the GenBank databases. In addition, tet (A) was found in 18% (15/83) of Campylobacter spp. isolates. To our knowledge, this represents the first report of tet (A) in Campylobacter spp. There was 100% homology between the sequences of tet (A) from this study (JX891463 and JX891464) and the tet (A) sequences mentioned for other bacteria in the GenBank databases. CONCLUSIONS: The high prevalence of tet (O) resistance gene along with new detection of tet (A) resistance gene in Campylobacter spp. isolated from poultry carcasses revealed an extensive tetracycline resistance among Campylobacter isolates from poultry in Iran. It emphasized the need for cautious use of tetracycline in poultry production to decrease the extension of tetracycline-resistant Campylobacter spp.201425485062
555080.9999Prevalence, plasmids and antibiotic resistance correlation of enteric bacteria in different drinking water resources in sohag, egypt. BACKGROUND: One of the major health causing problems is contamination of drinking water sources with human pathogenic bacteria. Enteric bacteria such as Shigella, Salmonella and Escherichia coli are most enteric bacteria causing serious health problems. Occurrence of such bacteria infection, which may resist antibiotics, increases the seriousness of problem. OBJECTIVES: The aim of this study was to examine the prevalence of some enteric bacteria (Shigella, Salmonella and E. coli) in addition to Pseudomonas. The antibiotic susceptibility of these bacteria was also tested, in addition to assessing plasmid(s) roles in supposed resistance. MRSA genes in non-staphylococci were clarified. MATERIALS AND METHODS: Water samples were collected from different drinking sources (Nile, ground water) and treated tap water. Selective media were used to isolate enteric bacteria and Pseudomonas. These bacteria were identified, counted and examined for its susceptibility against 10 antibiotics. The plasmids were screened in these strains. MRSA genes were also examined using PCR. RESULTS: Thirty-two bacterial strains were isolated from Nile and ground water and identified as S. flexneri, S. sonnei, S. serovar Newport, Pseudomonas aeruginosa and E. coli strains according to standard methods. According to antibiotic susceptibility test, 81% of strains were resistant to Cefepime, whereas 93.75% were sensitive to Ciprofloxacin. Correlation analysis between plasmids profiles and antibiotics sensitivities showed that 50% of the total strains had plasmids. These strains showed resistance to 50% of the used antibiotics (as average value); whereas, the plasmids free strains (50%) were resistant to 48.7% of the antibiotics. No distinct correlation between plasmids and antibiotic resistance in some strains could be concluded in this study. No MRSA gene was detected among these non-staphylococci strains. No bacteria were isolated from treated tap water. CONCLUSIONS: Thirty-three bacterial strains; 10 strains of E. coli, 10 strains of S. flexneri, 3 strains S. sonnei, 2 strains of S. serovar Newport, and 7 strains of P. aeruginosa, were isolated and identified from Nile water and ground water in Sohag governorate. The prevalence of enteric bacteria in water sources in studying area was considerable. No clear or distinct correlation could be concluded between plasmids and antibiotic resistance. No MRSA gene was detected in these non-staphylococci strains, and no pathogenic bacteria were isolated from treated tap water. The hygiene procedures in the studying area seem to be adequate, despite the failure to maintain water sources form sewage pollution.201525763135
592190.9999Prevalence of tetracycline resistance genes in oral bacteria. Tetracycline is a broad-spectrum antibiotic used in humans, animals, and aquaculture; therefore, many bacteria from different ecosystems are exposed to this antibiotic. In order to determine the genetic basis for resistance to tetracycline in bacteria from the oral cavity, saliva and dental plaque samples were obtained from 20 healthy adults who had not taken antibiotics during the previous 3 months. The samples were screened for the presence of bacteria resistant to tetracycline, and the tetracycline resistance genes in these isolates were identified by multiplex PCR and DNA sequencing. Tetracycline-resistant bacteria constituted an average of 11% of the total cultivable oral microflora. A representative 105 tetracycline-resistant isolates from the 20 samples were investigated; most of the isolates carried tetracycline resistance genes encoding a ribosomal protection protein. The most common tet gene identified was tet(M), which was found in 79% of all the isolates. The second most common gene identified was tet(W), which was found in 21% of all the isolates, followed by tet(O) and tet(Q) (10.5 and 9.5% of the isolates, respectively) and then tet(S) (2.8% of the isolates). Tetracycline resistance genes encoding an efflux protein were detected in 4.8% of all the tetracycline-resistant isolates; 2.8% of the isolates had tet(L) and 1% carried tet(A) and tet(K) each. The results have shown that a variety of tetracycline resistance genes are present in the oral microflora of healthy adults. This is the first report of tet(W) in oral bacteria and the first report to show that tet(O), tet(Q), tet(A), and tet(S) can be found in some oral species.200312604515
2696100.9999Carriage of antimicrobial resistant Escherichia coli in adult intestinal flora. Knowledge of antibiotic resistance in bacteria strains colonizing healthy people is important for several reasons, one of which is that; these organisms form one of the largest reservoirs of resistant genes. Frequency of resistance to eleven different antimicrobial agents was examined in faecal flora of adults with no history of recent antimicrobial treatment. Using the disc diffusion sensitivity test, 106 strains of Escherichia coli were examined, 68% of these were resistant to tetracycline, and 57% were resistant to ampicillin and cotrimoxazole respectively. There was no resistance to cefuroxime but resistance to ceftazidime was 13%. Fifty six out of the eighty eight (64%) isolates, which showed any resistance, were resistant to three or more antimicrobials. The most common resistant pattern was to three drugs tetracycline, ampicillin and cotrimoxazole. Six strains were susceptible to all antibiotics. One strain of Escherichia coli was resistant to eight antimicrobials. Thirty per cent of the Escherichia coli were resistant to gentamicin. This study reveals a high prevalence of resistant bacteria in faecal flora of healthy adults.200212081343
5538110.9999Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. Mastitis of dairy cattle is one of the most frequently diagnosed diseases worldwide. The main etiological agents of mastitis are bacteria of the genus Streptococcus spp., in which several antibiotic resistance mechanisms have been identified. However, detailed studies addressing this problem have not been conducted in northeastern Poland. Therefore, the aim of our study was to analyze, on phenotypic and genotypic levels, the antibiotic resistance pattern of Streptococcus spp. isolated from clinical cases of mastitis from dairy cattle in this region of Poland. The research was conducted using 135 strains of Streptococcus (Streptococcus uberis, n = 53; Streptococcus dysgalactiae, n = 41; Streptococcus agalactiae, n = 27; other streptococci, n = 14). The investigation of the antimicrobial susceptibility to 8 active substances applied in therapy in the analyzed region, as well as a selected bacteriocin (nisin), was performed using the minimum inhibitory concentration method. The presence of selected resistance genes (n = 14) was determined via PCR. We also investigated the correlation between the presence of resistance genes and the antimicrobial susceptibility of the examined strains in vitro. The highest observed resistance of Streptococcus spp. was toward gentamicin, kanamycin, and tetracycline, whereas the highest susceptibility occurred toward penicillin, enrofloxacin, and marbofloxacin. Additionally, the tested bacteriocin showed high efficacy. The presence of 13 analyzed resistance genes was observed in the examined strains [gene mef(A) was not detected]. In most strains, at least one resistance gene, mainly responsible for resistance to tetracyclines [tet(M), tet(K), tet(L)], was observed. However, a relationship between the presence of a given resistance gene and antimicrobial susceptibility on the phenotypic level was not always observed.201728601447
2694120.9999Antimicrobial resistance and prevalence of tetracycline resistance genes in Escherichia coli isolated from lesions of colibacillosis in broiler chickens in Sistan, Iran. BACKGROUND: Antibiotics have long been the first line of defense to prevent Escherichia coli infections, but they have lost their potency since bacteria have grown increasingly resistant to treatment. The present research aimed to study the drug resistance and the prevalence of tetracycline resistance genes in E. coli isolated from broilers with colibacillosis. RESULTS: The results showed that the most prevalent type of drug resistance was to tetracycline at 95.0%, and the least was to gentamicin at 21.7%. The prevalences of antimicrobial resistance among the tested antibiotics were significantly different (p < 0.001). A statistically significant difference was observed between the prevalence of the tet genes (p < 0.001). The tetD positive isolates and antibiotic sensitivity to tetracycline showed statistical significant differences (p = 0.017). CONCLUSIONS: Considering the results, tetA is the most common tetracycline resistance gene, and the presence of tetD and antibiotic sensitivity to tetracycline had a significant relationship in E. coli isolated from colibacillosis infections.202032746815
5555130.9999New sequence types and multidrug resistance among pathogenic Escherichia coli isolates from coastal marine sediments. The spread of antibiotic-resistant microorganisms is widely recognized, but data about their sources, presence, and significance in marine environments are still limited. We examined 109 Escherichia coli strains from coastal marine sediments carrying virulence genes for antibiotic susceptibility, specific resistance genes, prevalence of class 1 and 2 integrons, and sequence type. Antibiotic resistance was found in 35% of strains, and multiple resistances were found in 14%; the resistances detected most frequently were against tetracycline (28%), ampicillin (16.5%), trimethoprim-sulfamethoxazole (13%), and streptomycin (7%). The highest prevalence of resistant strains was in phylogenetic group A, whereas phylogroup B2 exhibited a significantly lower frequency than all the other groups. Sixty percent of multiresistant strains harbored class 1 or 2 integrase genes, and about 50% carried resistance genes (particularly dfrA and aadA) linked to a class 1 integron. Multilocus sequence typing of 14 selected strains identified eight different types characteristic of extraintestinal pathogens and three new allelic combinations. Our data suggest that coastal marine sediment may be a suitable environment for the survival of pathogenic and antimicrobial-resistant E. coli strains capable of contributing to resistance spread via integrons among benthic bacteria, and they highlight a role for these strains in the emergence of new virulent genotypes.201222447595
2910140.9999Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in strains from humans (35 isolates), chickens (15 isolates), food (21 isolates), soil (16 isolates) and veterinary sources (6 isolates) was determined, and tetracycline-resistance genes were detected. Resistance was most common in strains isolated from chickens, followed by those from soils, clinical samples and foods. The most highly resistant strains were found among clinical and food isolates. tetA(P) was the most common resistance gene, and along with tetB(P) was found in all resistant strains and some sensitive strains. One tetracycline-resistant food isolate had an intact tet(M) gene. However, PCR fragments of 0.4 or 0.8 kb with high degrees of identity to parts of the tet(M) sequences of other bacteria were found, mainly in clinical isolates, and often in isolates with tetB(P). No correlation between level of sensitivity to tetracycline or minocycline and the presence of tetA(P), tetB(P) or part of tet(M) was found. The presence of part of tet(M) in some strains of C. perfringens containing tetB(P) may have occurred by recent gene transfer.201020661548
2885150.9999Antimicrobial susceptibility of Streptococcus gallolyticus isolated from humans and animals. Susceptibilities to some antimicrobial agents and distribution of genes associated with resistance were examined in a total of 66 Streptococcus gallolyticus isolates and reference strains from various sources. All the tested bacteria were susceptible to vancomycin, penicillin G, and ampicillin. Most of the erythromycin-resistant isolates were observed in human clinical samples. Tetracycline and doxycycline resistance was prevalent in the isolates from human patients, diseased animals, and healthy broiler chickens, while the prevalence was significantly lower in the isolates from healthy mammals. All the isolates resistant to tetracycline possessed tet(M) and/or tet(L) and/or tet(O) genes. However, most isolates from healthy animals, which were susceptible to tetracycline, possessed the above-cited resistance genes, implying the potential ability for resistance under exposure to the corresponding antimicrobial agents.201323883848
5549160.9999Analysis of Antibiotic Resistance and Biofilm-Forming Capacity in Tetracycline-Resistant Bacteria from a Coastal Lagoon. Concerns have been raised regarding co-selection for antibiotic resistance among bacteria exposed to antibiotics used as growth promoters for some livestock and poultry species. Tetracycline had been commonly used for this purpose worldwide, and its residue has been associated with selection of resistant bacteria in aquatic biofilms. This study aimed to determine the resistance profile, the existence of some beta-lactamases genes and the capacity to form biofilm of bacteria isolated from water samples previously exposed to tetracycline (20 mg/L). Thirty-seven tetracycline-resistant bacterial strains were identified as Serratia marcescens, Escherichia coli, Morganella morganii, Pseudomonas aeruginosa, Citrobacter freundii, Providencia alcalifaciens, and Enterococcus faecium. The highest percentage of resistance was for ampicillin (75.75%) and amoxicillin/clavulanic acid (66.66%) in the Gram-negative bacteria and an E. faecium strain showed high resistance to vancomycin (minimum inhibitory concentration 250 μg/mL). Among the strains analyzed, 81.09% had multidrug resistance and eight Gram-negatives carried the bla(OXA-48) gene. All strains were able to form biofilm and 43.23% were strong biofilm formers. This study suggests that resistant bacteria can be selected under selection pressure of tetracycline, and that these bacteria could contribute to the maintenance and spread of antimicrobial resistance in this environment.202235325574
2820170.9999Direct detection of antibiotic resistance genes in specimens of chicken and pork meat. Antibiotic resistance (AR) in bacteria, a major threat to human health, has emerged in the last few decades as a consequence of the selective pressure exerted by the widespread use of antibiotics in medicine, agriculture and veterinary practice and as growth promoters in animal husbandry. The frequency of 11 genes [tet(M), tet(O), tet(K), erm(A), erm(B), erm(C), vanA, vanB, aac (6')-Ie aph (2'')-Ia, mecA, blaZ] encoding resistance to some antibiotics widely used in clinical practice was analysed in raw pork and chicken meat and in fermented sausages as well as in faecal samples from the relevant farm animals using a molecular approach based on PCR amplification of bacterial DNA directly extracted from specimens. Some of the 11 AR genes were highly prevalent, the largest number being detected in chicken meat and pig faeces. The genes found most frequently in meat were tet(K) and erm(B); vanB and mecA were the least represented. All 11 determinants were detected in faecal samples except mecA, which was found only in chicken faeces. erm(B) and erm(C) were detected in all faecal samples. The frequency of AR genes was not appreciably different in meat compared to faecal specimens of the relevant animal except for vanB, which was more prevalent in faeces. Our findings suggest that AR genes are highly prevalent in food-associated bacteria and that AR contamination is likely related to breeding rather than processing techniques. Finally, the cultivation-independent molecular method used in this work to determine the prevalence of AR genes in foods proved to be a rapid and reliable alternative to traditional tools.200717005283
5581180.9999Prevalence of pathogens harbouring mobile antimicrobial resistance genes and virulence factors in retail beef and mutton. Food safety is always a global issue, due to the increased dissemination of antimicrobial resistance and food poisoning related to foodborne bacterial pathogens. The purpose of this study was to assess the risk of potential foodborne bacteria of beef and mutton in retail stores. A total of 134 samples were collected from 24 local markets in Beijing, including raw and cooked beef or mutton, as well as samples derived from the corresponding environment and human beings. We obtained 674 isolates, of which Klebsiella spp. and Staphylococcus spp. were the dominant bacterial species in the meat samples and the environmental samples, respectively. Additionally, environmental bacteria are common in samples from different sources. Based on the results of antimicrobial sensitivity testing, resistance to tetracycline (with a resistance rate of 47.40%), amoxicillin + clavulanate (47.13%) and erythromycin (28.03%) were the major resistant phenotypes. According to the whole genome analysis, the extended spectrum beta-lactamase genes harboured by two K. pneumoniae strains isolated from cooked and raw beef were located on mobile elements. The major toxin genes of Bacillus cereus and adhesion- or invasion-related virulence factors were also shared among isolates from different sources. These factors pose potential risks to public health and need attention.202032510554
2688190.9999Intestinal and Extraintestinal Pathotypes of Escherichia coli Are Prevalent in Food Prepared and Marketed on the Streets from the Central Zone of Mexico and Exhibit a Differential Phenotype of Resistance Against Antibiotics. Background/Objectives: Antibiotic resistance is a serious public health problem threatening the treatment of infectious diseases caused by Escherichia coli, the main source of food contamination and responsible for many infectious diseases with high indices of AR profiles. Our objective was to study the presence of Escherichia coli in foods that are distributed and prepared on the street, characterizing its sensitivity profile and resistance to antibiotic drugs commonly prescribed in this geographical area. Methods: Standard procedures were performed to identify and isolate E. coli colonies from food samples collected during a three-year study. Susceptibility assays were conducted to determine the antibiotic resistance profile, and Colony PCR assays were performed to determine the pathogenic and antibiotic resistance genes. Results: A total of 189 food samples were collected, and 100% of the samples were positive for E. coli, with higher percentages of contamination for vegetables and fruits. ETEC (lt) and UPEC (vat, cnf1, hylA) genes were identified in 100% of the samples and DAEC (afa) in 27%. E. coli exhibited high percentages of resistance against ampicillin and amoxicillin/clavulanic acid (100%) and cephalexin (45%). The most effective antibiotics were tetracycline, TMP-SMX, polymyxin, and quinolones. The AR genes tetA, sul1, catA1, strA, qnrS, and floR were identified among the samples. Conclusions: Food prepared and marketed on the streets seriously threatens human health. Ampicillin and amoxicillin/clavulanic acid should not be used to treat infections caused by the multidrug-resistant ETEC and UPEC identified in this area. To our knowledge, this is the first study that explores the status of AR in this geographical area.202540298585