# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5576 | 0 | 1.0000 | First insights into antimicrobial resistance among faecal Escherichia coli isolates from small wild mammals in rural areas. Wild rodents can be carriers of antimicrobial resistant Escherichia coli. As rodents are known to be involved in the transmission of bacteria of human and animal health concern, they could likewise contribute to the dissemination of antimicrobial resistant bacteria in the environment. The aim of this study was therefore to get first insights into the antimicrobial resistance status among E. coli isolated from wild small mammals in rural areas. We tested 188 faecal isolates from eight rodent and one shrew species originating from Germany. Preselected resistant isolates were screened by minimal inhibitory concentration (MIC) testing or agar diffusion test and subsequent PCR analysis of resistance genes. The prevalence of antimicrobial resistant isolates was low with only 5.5% of the isolates exhibiting resistant phenotypes against at least one antimicrobial compound including beta-lactams, tetracyclines, aminoglycosides and sulfonamides. These results suggest a minor role of wild rodents from rural areas in the cycle of transmission and spread of antimicrobial resistant E. coli into the environment. Nevertheless E. coli with multiple antimicrobial resistances were significantly more often detected in wildlife rodents originating from areas with high livestock density suggesting a possible transmission from livestock to wild rodents. | 2010 | 20569968 |
| 1935 | 1 | 0.9999 | Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related. | 2021 | 34356729 |
| 1932 | 2 | 0.9999 | Prevalence of Plasmid-Associated Tetracycline Resistance Genes in Multidrug-Resistant Escherichia coli Strains Isolated from Environmental, Animal and Human Samples in Panama. Antimicrobial resistance bacteria are nowadays ubiquitous. Its presence has been reported in almost every type of source, from water for agricultural and recreative use, water distribution pipes, and wastewater, to food, fomites, and clinical samples. Enterobacteriaceae, especially Escherichia coli, are not the exception, showing an increased resistance to several antibiotics, causing a global health and economic burden. Therefore, the monitoring of fecal microbiota is important because it is present in numerous reservoirs where gene transfer between commensal and virulent bacteria can take place, representing a potential source of resistant E. coli. In this work, antibiotic resistance profiles of 150 E. coli isolates from environmental, animal, and human samples, collected in three rural areas in Panama, were analyzed. A total of 116 isolates were resistant to at least one of the nine antibiotics tested. Remarkably, almost 100% of these exhibited resistance to tetracycline. Plasmid-associated tetA and tetB genes were detected in 42.86% of the isolates analyzed, tetA being the most prevalent. These results suggest that tetracycline resistance would be used as a convenient indicator of genetic horizontal transfer within a community. | 2023 | 36830191 |
| 2041 | 3 | 0.9999 | Carrier flies of multidrug-resistant Escherichia coli as potential dissemination agent in dairy farm environment. The life cycle of synanthropic flies and their behavior, allows them to serve as mechanical vectors of several pathogens. Given that flies can carry multidrug-resistant (MDR) bacteria, this study aimed to investigate the spread of genes of antimicrobial resistance in Escherichia coli isolated from flies collected in two dairy farms in Brazil. Besides antimicrobial resistance determinants, the presence of virulence genes related to bovine colibacillosis was also assessed. Of 94 flies collected, Musca domestica was the most frequently found in the two farms. We isolated 198 E. coli strains (farm A=135 and farm B=63), and >30% were MDR E. coli. We found an association between bla(TEM) and phenotypical resistance to ampicillin, or chloramphenicol, or tetracycline; and bla(CTX-M) and resistance to cefoperazone. A high frequency (86%) of phylogenetic group B1 among MDR strains and the lack of association between multidrug resistance and virulence factors suggest that antimicrobial resistance possibly is associated with the commensal bacteria. Clonal relatedness of MDR E. coli performed by Pulsed-Field Gel Electrophoresis showed wide genomic diversity. Different flies can carry clones, but with distinct antimicrobial resistance pattern. Sanger sequencing showed that the same class 1 integron arrangement is displayed by apparently unrelated strains, carried by different flies. Our conjugation results indicate class 1 integron transfer associated with tetracycline resistance. We report for the first time, in Brazil, that MDR E. coli is carried by flies in the milking environment. Therefore, flies can act as carriers for MDR strains and contribute to dissemination routes of antimicrobial resistance. | 2018 | 29758886 |
| 5578 | 4 | 0.9999 | Resistance of Escherichia coli from healthy donors and from food--an indicator of antimicrobial resistance level in the population. Escherichia coli, being an important part of normal intestinal flora, is a frequent carrier of antimicrobial drug resistance markers and food is the most important vector of antimicrobial resistance genes between humans and animals. The aim of this study was to confirm the presence and frequency of resistance markers in Escherichia coli from intestinal flora and from food as an indicator of antimicrobial resistance level in the population. The experiment included 100 fecal Escherichia coli isolates from healthy donors, 50 isolated in 2007 and 50 in 2010, and 50 from food samples. The resistance markers were found in all groups of isolates. The resistance to ampicillin and cotrimoxazole was most commonly found. The finding of multi-drug-resistant strains and resistance to ciprofloxacin is important. The frequency of resistance markers was similar in food and feces. The results of this study show the need to introduce systematic monitoring of antimicrobial resistance of these bacteria. | 2011 | 21970069 |
| 1931 | 5 | 0.9998 | The level of antimicrobial resistance of sewage isolates is higher than that of river isolates in different Escherichia coli lineages. The dissemination of antimicrobial-resistant bacteria in environmental water is an emerging concern in medical and industrial settings. Here, we analysed the antimicrobial resistance of Escherichia coli isolates from river water and sewage by the use of a combined experimental phenotypic and whole-genome-based genetic approach. Among the 283 tested strains, 52 were phenotypically resistant to one or more antimicrobial agents. The E. coli isolates from the river and sewage samples were phylogenetically indistinguishable, and the antimicrobial-resistant strains were dispersedly distributed in a whole-genome-based phylogenetic tree. The prevalence of antimicrobial-resistant strains as well as the number of antimicrobials to which they were resistant were higher in sewage samples than in river samples. Antimicrobial resistance genes were more frequently detected in strains from sewage samples than in those from river samples. We also found that 16 river isolates that were classified as Escherichia cryptic clade V were susceptible to all the antimicrobials tested and were negative for antimicrobial resistance genes. Our results suggest that E. coli strains may acquire antimicrobial resistance genes more frequently and/or antimicrobial-resistant E. coli strains may have higher rates of accumulation and positive selection in sewage than in rivers, irrespective of their phylogenetic distribution. | 2020 | 33087784 |
| 5555 | 6 | 0.9998 | New sequence types and multidrug resistance among pathogenic Escherichia coli isolates from coastal marine sediments. The spread of antibiotic-resistant microorganisms is widely recognized, but data about their sources, presence, and significance in marine environments are still limited. We examined 109 Escherichia coli strains from coastal marine sediments carrying virulence genes for antibiotic susceptibility, specific resistance genes, prevalence of class 1 and 2 integrons, and sequence type. Antibiotic resistance was found in 35% of strains, and multiple resistances were found in 14%; the resistances detected most frequently were against tetracycline (28%), ampicillin (16.5%), trimethoprim-sulfamethoxazole (13%), and streptomycin (7%). The highest prevalence of resistant strains was in phylogenetic group A, whereas phylogroup B2 exhibited a significantly lower frequency than all the other groups. Sixty percent of multiresistant strains harbored class 1 or 2 integrase genes, and about 50% carried resistance genes (particularly dfrA and aadA) linked to a class 1 integron. Multilocus sequence typing of 14 selected strains identified eight different types characteristic of extraintestinal pathogens and three new allelic combinations. Our data suggest that coastal marine sediment may be a suitable environment for the survival of pathogenic and antimicrobial-resistant E. coli strains capable of contributing to resistance spread via integrons among benthic bacteria, and they highlight a role for these strains in the emergence of new virulent genotypes. | 2012 | 22447595 |
| 1934 | 7 | 0.9998 | Sulfonamide resistance evaluation in five animal species and first report of sul4 in companion animals. Sulfonamides are one of the oldest groups of antibacterial agents with a broad-spectrum, used as first line treatment in bacterial infections. Their widespread use produced a selective pressure on bacteria, as observed by the high incidence of sulfonamides resistance mainly in Gram negative bacteria isolated from animals. In this research, the presence of sulfonamide resistance genes (sul1, sul2, sul3, and sul4) in phenotypically resistant Escherichia coli isolates has been studied. These genes were amplified in isolates recovered from five animal species, with different interactions to humans: cattle, swine, poultry as livestock, and dogs and cats as companion animals. Isolates were collected according to their phenotypic resistance, and the magnetic bead-based Luminex technology was applied to simultaneously detect sul target genes. The frequency of sul genes was highest in swine, among livestock isolates. The sul1 and sul2 were the most frequently sulfonamide resistance genes detected in all phenotypically resistant isolates. Notably, in companion animals, with a closest interaction with human, sul4 gene was detected. To our knowledge, this is the first report of the presence of sul4 gene in E. coli collected from animals, whereas previously the presence of this gene was reported in environmental, municipal wastewater and human clinical isolates. These results highlighted the importance of continuous antimicrobial resistant genes monitoring in animal species, with a special care to companion animals. | 2024 | 39029236 |
| 5577 | 8 | 0.9998 | Study on Bacteria Isolates and Antimicrobial Resistance in Wildlife in Sicily, Southern Italy. Wild environments and wildlife can be reservoirs of pathogens and antibiotic resistance. Various studies have reported the presence of zoonotic bacteria, resistant strains, and genetic elements that determine antibiotic resistance in wild animals, especially near urban centers or agricultural and zootechnical activities. The purpose of this study was the analysis, by cultural and molecular methods, of bacteria isolated from wild animals in Sicily, Italy, regarding their susceptibility profile to antibiotics and the presence of antibiotic resistance genes. Bacteriological analyses were conducted on 368 wild animals, leading to the isolation of 222 bacterial strains identified by biochemical tests and 16S rRNA sequencing. The most isolated species was Escherichia coli, followed by Clostridium perfringens and Citrobacter freundii. Antibiograms and the determination of resistance genes showed a reduced spread of bacteria carrying antibiotic resistance among wild animals in Sicily. However, since several wild animals are becoming increasingly close to residential areas, it is important to monitor their health status and to perform microbiological analyses following a One Health approach. | 2021 | 33478101 |
| 5630 | 9 | 0.9998 | Preliminary Results on the Prevalence of Salmonella spp. in Marine Animals Stranded in Sicilian Coasts: Antibiotic Susceptibility Profile and ARGs Detection in the Isolated Strains. The presence of Salmonella spp. in marine animals is a consequence of contamination from terrestrial sources (human activities and animals). Bacteria present in marine environments, including Salmonella spp., can be antibiotic resistant or harbor resistance genes. In this study, Salmonella spp. detection was performed on 176 marine animals stranded in the Sicilian coasts (south Italy). Antibiotic susceptibility, by disk diffusion method and MIC determination, and antibiotic resistance genes, by molecular methods (PCR) of the Salmonella spp. strains, were evaluated. We isolated Salmonella spp. in three animals, though no pathological signs were detected. Our results showed a low prevalence of Salmonella spp. (1.7%) and a low incidence of phenotypic resistance in three Salmonella spp. strains isolated. Indeed, of the three strains, only Salmonella subsp. enterica serovar Typhimurium from S. coeruleoalba and M. mobular showed phenotypic resistance: the first to ampicillin, tetracycline, and sulphamethoxazole, while the latter only to sulphamethoxazole. However, all strains harbored resistance genes (bla(TEM), bla(OXA), tet(A), tet(D), tet(E), sulI, and sulII). Although the low prevalence of Salmonella spp. found in this study does not represent a relevant health issue, our data contribute to the collection of information on the spread of ARGs, elements involved in antibiotic resistance, now considered a zoonosis in a One Health approach. | 2021 | 34451393 |
| 1930 | 10 | 0.9998 | Changes in dominant Escherichia coli and antimicrobial resistance after 24 hr in fecal matter. Intestinal bacteria carry antimicrobial resistance (AMR) genes in mobile genetic elements which have the potential to spread to bacteria in other animal hosts including humans. In fecal matter, Escherichia coli can continue to multiply for 48 hr after being excreted, and in certain environments, E. coli survive long periods of time. It is unclear the extent to which AMR in E. coli changes in the environment outside of its host. In this study, we analyzed changes in the population structure, plasmid content, and AMR patterns of 30 E. coli isolates isolated from 6 chickens (cloacal swabs), and 30 E. coli isolates from fecal samples (from the same 6 chickens) after 24 hr of incubation. Clonality of isolates was screened using the fumC gene sequence and confirmed in a subset of isolates (n = 14) by multi-locus sequence typing. Major shifts in the population structure (i.e., sequence types) and antibiotic resistance patterns were observed among the numerically dominant E. coli isolates after 24 hr. Four E. coli clones isolated from the cloaca swabs and the corresponding fecal samples (after 24 hr incubation) showed different antibiotic resistance patterns. Our study reveals that fecal matter in the environment is an intermediate habitat where rapid and striking changes occur in E. coli populations and antibiotic resistance patterns. | 2019 | 29896865 |
| 5561 | 11 | 0.9998 | Antimicrobial Resistance of Escherichia coli and Pseudomonas aeruginosa from Companion Birds. Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated. | 2020 | 33171927 |
| 2871 | 12 | 0.9998 | Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. To assess the impacts of different types of human activity on the development of resistant bacteria in the feces of wild small mammals, we compared the prevalences and patterns of antimicrobial resistance and resistance genes in generic Escherichia coli and Salmonella enterica isolates from fecal samples collected from wild small mammals living in four environments: swine farms, residential areas, landfills, and natural habitats. Resistance to antimicrobials was observed in E. coli isolates from animals in all environments: 25/52 (48%) animals trapped at swine farms, 6/69 (9%) animals trapped in residential areas, 3/20 (15%) animals trapped at landfills, and 1/22 (5%) animals trapped in natural habitats. Animals trapped on farms were significantly more likely to carry E. coli isolates with resistance to tetracycline, ampicillin, sulfisoxazole, and streptomycin than animals trapped in residential areas. The resistance genes sul2, aadA, and tet(A) were significantly more likely to be detected in E. coli isolates from animals trapped on farms than from those trapped in residential areas. Three S. enterica serotypes (Give, Typhimurium, and Newport) were recovered from the feces of 4/302 (1%) wild small mammals. All Salmonella isolates were pansusceptible. Our results show that swine farm origin is significantly associated with the presence of resistant bacteria and resistance genes in wild small mammals in southern Ontario, Canada. However, resistant fecal bacteria were found in small mammals living in all environments studied, indicating that environmental exposure to antimicrobials, antimicrobial residues, resistant bacteria, or resistance genes is widespread. | 2011 | 21131524 |
| 5544 | 13 | 0.9998 | Assessing the Effect of Oxytetracycline on the Selection of Resistant Escherichia coli in Treated and Untreated Broiler Chickens. Oxytetracycline (OTC) is administered in the poultry industry for the treatment of digestive and respiratory diseases. The use of OTC may contribute to the selection of resistant bacteria in the gastrointestinal tract of birds or in the environment. To determine the effect of OTC on the selection of resistant Escherichia coli strains post-treatment, bacteria were isolated from droppings and litter sampled from untreated and treated birds. Bacterial susceptibility to tetracyclines was determined by the Kirby-Bauer test. A total of 187 resistant isolates were analyzed for the presence of tet(A), (B), (C), (D), (E), and (M) genes by PCR. Fifty-four strains were analyzed by PFGE for subtyping. The proportion of tetracycline-resistant E. coli strains isolated was 42.88%. The susceptibility of the strains was treatment-dependent. A high clonal diversity was observed, with the tet(A) gene being the most prevalent, followed by tet(C). Even at therapeutic doses, there is selection pressure on resistant E. coli strains. The most prevalent resistance genes were tet(A) and tet(C), which could suggest that one of the main mechanisms of resistance of E. coli to tetracyclines is through active efflux pumps. | 2023 | 38136686 |
| 5511 | 14 | 0.9998 | Escherichia coli as a Potential Reservoir of Antimicrobial Resistance Genes on the Island of O'ahu. The problem of antimicrobial-resistant bacteria has not been adequately explored in the tropical island environment. To date, there has not been a systematic investigation into the prevalence and distribution of antimicrobial resistance determinants in the Hawaiian Islands. Urinary isolates are the most common bacterial pathogens encountered in the clinical laboratory. Therefore, the antimicrobial resistance determinant profiles of these organisms can serve as a sentinel of the overall antimicrobial resistance situation in a localized patient population. In this study, 82 clinical isolates of Escherichia coli derived from 82 distinct patients were collected at a large medical center on the island of O'ahu. Each isolate was evaluated for the presence of antimicrobial resistance genes using a microarray-based approach. A total of 36 antimicrobial resistance genes covering 10 classes of antimicrobial compounds were identified. Most isolates were found to harbor between 3 and 5 antimicrobial resistance genes. Only a few isolates were found to harbor more than 12 genes. Significantly, a high rate of phenotypic resistance to one of the first-line treatments for uncomplicated urinary tract infection (sulfamethoxazole) was identified. This phenotype was correlated to the presence of sulfonamides and trimethoprim resistance determinants. Since E. coli is one of the most encountered pathogens in the hospital environment, the presence of clinically relevant resistance determinants in isolates of this organism from a clinical setting on O'ahu is a significant finding that warrants further investigation. | 2021 | 33490961 |
| 1600 | 15 | 0.9998 | Simultaneous Carriage of mcr-1 and Other Antimicrobial Resistance Determinants in Escherichia coli From Poultry. The use of antimicrobial growth promoters (AGPs) in sub-therapeutic doses for long periods promotes the selection of resistant microorganisms and the subsequent risk of spreading this resistance to the human population and the environment. Global concern about antimicrobial resistance development and transference of resistance genes from animal to human has been rising. The goal of our research was to evaluate the susceptibility pattern to different classes of antimicrobials of colistin-resistant Escherichia coli from poultry production systems that use AGPs, and characterize the resistance determinants associated to transferable platforms. E. coli strains (n = 41) were obtained from fecal samples collected from typical Argentine commercial broiler farms and susceptibility for 23 antimicrobials, relevant for human or veterinary medicine, was determined. Isolates were tested by PCR for the presence of mcr-1, extended spectrum β-lactamase encoding genes and plasmid-mediated quinolone resistance (PMQR) coding genes. Conjugation and susceptibility patterns of the transconjugant studies were performed. ERIC-PCR and REP-PCR analysis showed a high diversity of the isolates. Resistance to several antimicrobials was determined and all colistin-resistant isolates harbored the mcr-1 gene. CTX-M-2 cefotaximase was the main mechanism responsible for third generation cephalosporins resistance, and PMQR determinants were also identified. In addition, co-transference of the qnrB determinant on the mcr-1-positive transconjugants was corroborated, which suggests that these resistance genes are likely to be located in the same plasmid. In this work a wide range of antimicrobial resistance mechanisms were identified in E. coli strains isolated from the environment of healthy chickens highlighting the risk of antimicrobial abuse/misuse in animals under intensive production systems and its consequences for public health. | 2018 | 30090095 |
| 2872 | 16 | 0.9998 | Escherichia coli Antibiotic Resistance Patterns from Co-Grazing and Non-Co-Grazing Livestock and Wildlife Species from Two Farms in the Western Cape, South Africa. Although limited, studies have found conflicting results on whether co-grazing results in significant antibiotic resistance transfer between species. This type of farming system can act as a vector in the geographical spread of antibiotic-resistant bacteria in the environment. The aim of this study was to determine the antibiotic-resistant patterns between co-grazing and non-co-grazing livestock and wildlife species in South Africa. Escherichia coli was isolated from the faeces of various wildlife and livestock species from two farms in South Africa and was tested for antibiotic resistance using the Kirby-Bauer disk diffusion method against chloramphenicol, nalidixic acid, ampicillin, streptomycin, sulphafurazole, and tetracycline. A selection of some common antibiotic-resistant genes (blaCMY, aadA1, sul1, sul2, tetA, and tetB) were detected using PCR. The E. coli isolates from wildlife and livestock that co-grazed showed no significant differences in antibiotic resistance patterns. However, this was not the case for tetracycline resistance as the livestock isolates were significantly more resistant than the co-grazing wildlife isolates. The E. coli isolates from the non-co-grazing livestock and wildlife had significant differences in their antibiotic susceptibility patterns; the wildlife E. coli isolates were significantly more resistant to sulphafurazole and streptomycin than the livestock isolates, whilst those isolated from the cattle were significantly more resistant to ampicillin than the wildlife and sheep isolates. The results of this study suggest that there could be an exchange of antibiotic-resistant bacteria and genes between livestock and wildlife that co-graze. | 2021 | 34067232 |
| 2821 | 17 | 0.9998 | Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Use of antibiotics as feed additives in poultry production has been linked to the presence of antibiotic resistant bacteria in farm workers, consumer poultry products and the environs of confined poultry operations. There are concerns that these resistant bacteria may be transferred to communities near these operations; however, environmental pathways of exposure are not well documented. We assessed the prevalence of antibiotic resistant enterococci and staphylococci in stored poultry litter and flies collected near broiler chicken houses. Drug resistant enterococci and staphylococci were isolated from flies caught near confined poultry feeding operations in the summer of 2006. Susceptibility testing was conducted on isolates using antibiotics selected on the basis of their importance to human medicine and use in poultry production. Resistant isolates were then screened for genetic determinants of antibiotic resistance. A total of 142 enterococcal isolates and 144 staphylococcal isolates from both fly and poultry litter samples were identified. Resistance genes erm(B), erm(A), msr(C), msr(A/B) and mobile genetic elements associated with the conjugative transposon Tn916, were found in isolates recovered from both poultry litter and flies. Erm(B) was the most common resistance gene in enterococci, while erm(A) was the most common in staphylococci. We report that flies collected near broiler poultry operations may be involved in the spread of drug resistant bacteria from these operations and may increase the potential for human exposure to drug resistant bacteria. | 2009 | 19157515 |
| 5583 | 18 | 0.9998 | High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: a food safety risk. BACKGROUND: There has been concern about the increase of antimicrobial resistant bacteria and protection of animal and public health, along with food safety. In the present study, we evaluate the incidence of antimicrobial resistance among 192 strains of Escherichia coli isolated from faecal samples of healthy food-producing animals at slaughter in Portugal. RESULTS: Ninety-seven % of the pig isolates, 74% from sheep and 55% from cattle were resistant to one or more antimicrobial agents, with the resistances to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole the most common phenotype detected. Genes encoding resistance to antimicrobial agents were detected in most of the resistant isolates. Ninety-three % of the resistant isolates were included in the A or B1 phylogenetic groups, and the virulence gene fimA (alone or in association with papC or aer genes) was detected in 137 of the resistant isolates. Five isolates from pigs belonging to phylogroup B2 and D were resistant to five different antimicrobial agents. CONCLUSION: Our data shows a high percentage of antibiotic resistance in E. coli isolates from food animals, and raises important questions in the potential impact of antibiotic use in animals and the possible transmission of resistant bacteria to humans through the food chain. | 2013 | 22836880 |
| 2837 | 19 | 0.9998 | Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli. Escherichia coli with reduced susceptibility to quinolones isolated from different environmental sources (urban wastewater treatment plants, n=61; hospital effluent, n=10; urban streams, n=9; gulls, n=18; birds of prey, n=17) and from hospitalised patients (n=28) were compared based on multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The habitats with the most diversified genotypes of quinolone-resistant E. coli, corresponding to the highest genetic diversity (H'), were wastewater and gulls. In addition, genetically distinct populations were observed in clinical samples and birds of prey, suggesting the influence of the habitat or selective pressures on quinolone-resistant E. coli. The close genetic relatedness between isolates of clinical origin and from gulls and wastewater suggests the existence of potential routes of propagation between these sources. The most common sequence types were ST131 and ST10, with ST131 being highly specific to patients, although distributed in all of the other habitats except birds of prey. The prevalence of antimicrobial resistance was significantly higher in isolates from patients and gulls than from other sources (P<0.01), suggesting that the effect of selective pressures met by isolates subjected to strong human impacts. The evidence presented suggests the potential circulation of bacteria between the environmental and clinical compartments, with gulls being a relevant vector of bacteria and resistance genes. | 2015 | 27842875 |