Antibiotic Resistance Genes Carried by Commensal Escherichia coli from Shelter Cats in Italy. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
557401.0000Antibiotic Resistance Genes Carried by Commensal Escherichia coli from Shelter Cats in Italy. Antimicrobial resistance is a widespread global health problem. The presence of resistant bacteria and antibiotic resistance genes has been demonstrated not only in humans but also in animals, including pets. Stray cats share the urban environment with people and pets. This may facilitate transmission of resistant bacteria and resistance genes between stray animals, people and domestic animals. Several studies have investigated the role of stray cats as a fecal carrier of ESBL-producing bacteria. However, there are many genes and resistance mechanisms that can be detected in commensal E. coli, which, because of its genetic plasticity, is considered an indicator for monitoring antibiotic resistance. In this study, rectal swabs were collected from stray cats from colonies and shelters in the city of Monza (Monza Brianza, Italy) to isolate commensal E. coli. Phenotypic tests, such as the minimum inhibitory concentration (MIC) and the double disc test (DDST), and molecular analyses to detect antimicrobial resistance genes (ARGs) were used to study the resistance of these isolates. The results obtained confirm that stray cats can carry ESBL-producing E. coli (6.7%) and genes conferring resistance to other important antibiotic classes such as tetracyclines and sulfonamides.202338133231
556810.9998Antimicrobial Resistance and Molecular Characterization of Extended-Spectrum β-Lactamases and Other Escherichia coli Isolated from Food of Animal Origin and Human Intestinal Isolates. Antibiotics have always appeared miraculous, saving innumerable lives. However, the unwise use of antimicrobial drugs has led to the appearance of resistant bacteria. The purpose of this study was to evaluate antimicrobial resistance in Escherichia coli (n =160) isolated from food of animal origin. The focus was on E. coli -producing extended-spectrum β-lactamases. E. coli was chosen because it is a part of the normal microbiota in mammals and can enter the food chain during slaughtering and food manipulation. Subsequently, its resistance genes can be transferred to pathogenic bacteria and human microbiota. Phenotypic and genotypic analyses of selected antimicrobial resistances were carried out together with a molecular analysis of virulence genes. E. coli isolates from food of animal origin were compared with clinical E. coli strains isolated from the human intestinal tract. Extended-spectrum β-lactamase-producing E. coli isolates were found in 9.4% of food isolates and in 1.8% of intestinal isolates. Phylogenetically, the majority of food (86.3%) and intestinal E. coli (58.1%) isolates were found to belong to the commensal phylogenetic groups A and B1. The distribution of 4 of 14 analyzed virulence factors was similar in the food and intestinal isolates. Strains isolated from food in Slovenia harbored resistance genes and virulence factors, which can constitute a problem for food safety if not handled properly.201728221881
556720.9998Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry. Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry). A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC). Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of β-lactamases- (ESBLs-) producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria.201526579536
159430.9998Production of extended-spectrum beta-lactamases in Escherichia coli isolated from poultry in Rio de Janeiro, Brazil. The overuse of antimicrobials in poultry has led to the development and dissemination of multidrug-resistant bacteria in the poultry industry. One of the most effective mechanisms of resistance found in Escherichia coli is the production of extended-spectrum β-lactamases (ESBL); there are several ESBLs, including the TEM, SHV, and CTX-M families. This resistance mechanism and the risks associated with transmitting these resistant microorganisms between animals, the environment, and humans can occur through direct contact and consumption of infected animals. This study aimed to determine the prevalence of E. coli in samples isolated from three broiler farms in Rio de Janeiro, Brazil, and screen the isolates for ESBL genes. The findings of this study demonstrated the presence of ESBL-producing E. coli in all farms studied. The findings of this study highlight the urgency for a program to monitor the poultry industry value chains at the regional level to control the spread of antimicrobial resistance. Therefore, we recommend that the enzyme subtypes produced by bacterial isolates should be determined to effectively characterize the distribution of genes related to antimicrobial resistance.202236533205
557640.9998First insights into antimicrobial resistance among faecal Escherichia coli isolates from small wild mammals in rural areas. Wild rodents can be carriers of antimicrobial resistant Escherichia coli. As rodents are known to be involved in the transmission of bacteria of human and animal health concern, they could likewise contribute to the dissemination of antimicrobial resistant bacteria in the environment. The aim of this study was therefore to get first insights into the antimicrobial resistance status among E. coli isolated from wild small mammals in rural areas. We tested 188 faecal isolates from eight rodent and one shrew species originating from Germany. Preselected resistant isolates were screened by minimal inhibitory concentration (MIC) testing or agar diffusion test and subsequent PCR analysis of resistance genes. The prevalence of antimicrobial resistant isolates was low with only 5.5% of the isolates exhibiting resistant phenotypes against at least one antimicrobial compound including beta-lactams, tetracyclines, aminoglycosides and sulfonamides. These results suggest a minor role of wild rodents from rural areas in the cycle of transmission and spread of antimicrobial resistant E. coli into the environment. Nevertheless E. coli with multiple antimicrobial resistances were significantly more often detected in wildlife rodents originating from areas with high livestock density suggesting a possible transmission from livestock to wild rodents.201020569968
204150.9998Carrier flies of multidrug-resistant Escherichia coli as potential dissemination agent in dairy farm environment. The life cycle of synanthropic flies and their behavior, allows them to serve as mechanical vectors of several pathogens. Given that flies can carry multidrug-resistant (MDR) bacteria, this study aimed to investigate the spread of genes of antimicrobial resistance in Escherichia coli isolated from flies collected in two dairy farms in Brazil. Besides antimicrobial resistance determinants, the presence of virulence genes related to bovine colibacillosis was also assessed. Of 94 flies collected, Musca domestica was the most frequently found in the two farms. We isolated 198 E. coli strains (farm A=135 and farm B=63), and >30% were MDR E. coli. We found an association between bla(TEM) and phenotypical resistance to ampicillin, or chloramphenicol, or tetracycline; and bla(CTX-M) and resistance to cefoperazone. A high frequency (86%) of phylogenetic group B1 among MDR strains and the lack of association between multidrug resistance and virulence factors suggest that antimicrobial resistance possibly is associated with the commensal bacteria. Clonal relatedness of MDR E. coli performed by Pulsed-Field Gel Electrophoresis showed wide genomic diversity. Different flies can carry clones, but with distinct antimicrobial resistance pattern. Sanger sequencing showed that the same class 1 integron arrangement is displayed by apparently unrelated strains, carried by different flies. Our conjugation results indicate class 1 integron transfer associated with tetracycline resistance. We report for the first time, in Brazil, that MDR E. coli is carried by flies in the milking environment. Therefore, flies can act as carriers for MDR strains and contribute to dissemination routes of antimicrobial resistance.201829758886
159560.9998Anthropogenic antibiotic resistance genes mobilization to the polar regions. Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL)-type CTX-M genes in which multilocus sequencing typing (MLST) showed different sequence types (STs), previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs) appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait) revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M) in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.201627938628
204370.9998Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States. The presence of antibiotic resistance in commensal bacteria may be an influential factor in the persistence of resistance in pathogens. This is especially critical for Escherichia coli that consumers may be exposed to through the consumption of uncooked meat. In this study, E. coli isolates previously recovered from poultry in the US between 2001 and 2012 were whole-genome sequenced to identify their antibiotic resistance genes and mobile genetic elements. The genomes of 98 E. coli isolates from poultry carcass rinsates and 2 isolates from poultry diagnostic samples with multidrug resistance or potential extended-spectrum β-lactam (ESBL)-producing phenotypes as well as the genetic variabilities among the E. coli were assessed. All E. coli isolates were positive for at least one antibiotic resistance gene and plasmid replicon, with 37 resistance genes and 27 plasmid replicons detected among the isolates. While no ESBL genes were detected, bla(CMY-2) was the most common β-lactamase gene, and bla(TEM) and bla(CARB-2) were also identified. Most isolates (95%) harbored at least one intact phage, and as many as seven intact phages were identified in one isolate. These results show the occurrence of antibiotic resistance genes and mobile genetic elements in these 100 poultry-associated E. coli isolates, which may be responsible for the resistance phenotypes exhibited by the isolates. This retrospective study also enables comparisons of resistance genes and mobile genetic elements from more recent E. coli isolates associated with poultry to aid in understanding the trends of both antibiotic resistance phenotypes and genotypes in the poultry setting over time.202540872236
556280.9998Multidrug-Resistant Escherichia coli Strains to Last Resort Human Antibiotics Isolated from Healthy Companion Animals in Valencia Region. Failure in antibiotic therapies due to the increase in antimicrobial-resistant (AMR) bacteria is one of the main threats to public and animal health. In recent decades, the perception of companion animals has changed, from being considered as a work tool to a household member, creating a family bond and sharing spaces in their daily routine. Hence, the aim of this study is to assess the current epidemiological situation regarding the presence of AMR and multidrug resistance (MDR) in companion animals in the Valencia Region, using the indicator bacteria Escherichia coli as a sentinel. For this purpose, 244 samples of dogs and cats were collected from veterinary centres to assess antimicrobial susceptibility against a panel of 22 antibiotics with public health relevance. A total of 197 E. coli strains were isolated from asymptomatic dogs and cats. The results showed AMR against all the 22 antibiotics studied, including those critically important to human medicine. Moreover, almost 50% of the strains presented MDR. The present study revealed the importance of monitoring AMR and MDR trends in companion animals, as they could pose a risk due to the spread of AMR and its resistance genes to humans, other animals and the environment they cohabit.202337998840
160090.9997Simultaneous Carriage of mcr-1 and Other Antimicrobial Resistance Determinants in Escherichia coli From Poultry. The use of antimicrobial growth promoters (AGPs) in sub-therapeutic doses for long periods promotes the selection of resistant microorganisms and the subsequent risk of spreading this resistance to the human population and the environment. Global concern about antimicrobial resistance development and transference of resistance genes from animal to human has been rising. The goal of our research was to evaluate the susceptibility pattern to different classes of antimicrobials of colistin-resistant Escherichia coli from poultry production systems that use AGPs, and characterize the resistance determinants associated to transferable platforms. E. coli strains (n = 41) were obtained from fecal samples collected from typical Argentine commercial broiler farms and susceptibility for 23 antimicrobials, relevant for human or veterinary medicine, was determined. Isolates were tested by PCR for the presence of mcr-1, extended spectrum β-lactamase encoding genes and plasmid-mediated quinolone resistance (PMQR) coding genes. Conjugation and susceptibility patterns of the transconjugant studies were performed. ERIC-PCR and REP-PCR analysis showed a high diversity of the isolates. Resistance to several antimicrobials was determined and all colistin-resistant isolates harbored the mcr-1 gene. CTX-M-2 cefotaximase was the main mechanism responsible for third generation cephalosporins resistance, and PMQR determinants were also identified. In addition, co-transference of the qnrB determinant on the mcr-1-positive transconjugants was corroborated, which suggests that these resistance genes are likely to be located in the same plasmid. In this work a wide range of antimicrobial resistance mechanisms were identified in E. coli strains isolated from the environment of healthy chickens highlighting the risk of antimicrobial abuse/misuse in animals under intensive production systems and its consequences for public health.201830090095
1592100.9997Identification of ESBL-Producing Enterobacterales From Vegetable Plants: Preliminary Findings From a Small Cross-Sectional Study in a Rural Area of Madagascar. Extended-spectrum beta-lactamases (ESBL)-producing enterobacterales are considered a key indicator for antimicrobial resistance (AMR) epidemiological surveillance in animal, human, and environment compartments. In this study, we aim to investigate the presence and genetic diversity of ESBL-producing enterobacterales on vegetable plants. We isolated beta-lactam resistant enterobacterales from several vegetable plants and sequenced their whole genome. Utilising standard genomic and phylogenetic methods, we sought to (i) characterise the resistance genes and plasmid content of the plant-isolated strains, (ii) investigate their genetic structure, and (iii) determine their relationships with strains from other reservoirs. Among the 22 strains collected from vegetable plants, 6 showed resistance to beta-lactam antibiotics, with 5 of them identified as ESBL producers. Our results indicated the presence of multidrug-resistant (MDR) strains containing multiple antibiotic resistance genes (ARGs). Importantly, no host-specific lineages were identified among the plant-isolated ESBL-producing E. coli (ESBL-Ec). Instead, these strains exhibited genetic and epidemiological connections with strains isolated from animals, humans, and the environment, suggesting transfer of ESBL-Ec between plants and other sources in rural Madagascar. These preliminary findings suggest that vegetable plants are contaminated as a result of human activities, posing a potential risk of human and animal exposure to antibiotic-resistant bacteria and genes.202540528688
5583110.9997High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: a food safety risk. BACKGROUND: There has been concern about the increase of antimicrobial resistant bacteria and protection of animal and public health, along with food safety. In the present study, we evaluate the incidence of antimicrobial resistance among 192 strains of Escherichia coli isolated from faecal samples of healthy food-producing animals at slaughter in Portugal. RESULTS: Ninety-seven % of the pig isolates, 74% from sheep and 55% from cattle were resistant to one or more antimicrobial agents, with the resistances to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole the most common phenotype detected. Genes encoding resistance to antimicrobial agents were detected in most of the resistant isolates. Ninety-three % of the resistant isolates were included in the A or B1 phylogenetic groups, and the virulence gene fimA (alone or in association with papC or aer genes) was detected in 137 of the resistant isolates. Five isolates from pigs belonging to phylogroup B2 and D were resistant to five different antimicrobial agents. CONCLUSION: Our data shows a high percentage of antibiotic resistance in E. coli isolates from food animals, and raises important questions in the potential impact of antibiotic use in animals and the possible transmission of resistant bacteria to humans through the food chain.201322836880
5577120.9997Study on Bacteria Isolates and Antimicrobial Resistance in Wildlife in Sicily, Southern Italy. Wild environments and wildlife can be reservoirs of pathogens and antibiotic resistance. Various studies have reported the presence of zoonotic bacteria, resistant strains, and genetic elements that determine antibiotic resistance in wild animals, especially near urban centers or agricultural and zootechnical activities. The purpose of this study was the analysis, by cultural and molecular methods, of bacteria isolated from wild animals in Sicily, Italy, regarding their susceptibility profile to antibiotics and the presence of antibiotic resistance genes. Bacteriological analyses were conducted on 368 wild animals, leading to the isolation of 222 bacterial strains identified by biochemical tests and 16S rRNA sequencing. The most isolated species was Escherichia coli, followed by Clostridium perfringens and Citrobacter freundii. Antibiograms and the determination of resistance genes showed a reduced spread of bacteria carrying antibiotic resistance among wild animals in Sicily. However, since several wild animals are becoming increasingly close to residential areas, it is important to monitor their health status and to perform microbiological analyses following a One Health approach.202133478101
5570130.9997Monitoring the Spread of Multidrug-Resistant Escherichia coli Throughout the Broiler Production Cycle. The extensive use of antimicrobials in broiler production is changing the bird microbiota, fostering drug-resistant bacteria, and complicating therapeutic interventions, making the problem of multidrug resistance global. The monitoring of antimicrobial virulence and resistance genes are tools that have come to assist the breeding of these animals, directing possible treatments as already used in human medicine and collecting data to demonstrate possible dissemination of multidrug-resistant strains that may cause damage to industry and public health. This work aimed to monitor broiler farms in southern Brazil, isolating samples of E. coli and classifying them according to the profile of resistance to antimicrobials of interest to human and animal health. We also monitored the profile of virulence genes and conducted an epidemiological survey of possible risk factors that contribute to this selection of multidrug-resistant isolates. Monitoring was carried out on farms in the three southern states of the country, collecting samples of poultry litter, cloacal swabs, and beetles of the species Alphitobius diaperinus, isolating E. coli from each of these samples. These were evaluated by testing their susceptibility to antimicrobials of animal and human interest; detecting whether the samples were extended-spectrum β-lactamase enzyme (ESBL) producers; and when positive, selected for genotypic tests to identify resistant genes (CTX-M, TEM, and SHV) and virulence. Among the antimicrobials tested, enrofloxacin and ciprofloxacin demonstrated some of the highest frequencies of resistance in the isolated strains, with significant statistical results. The use of these antimicrobials increased the likelihood of resistance by over three times and was associated with a 1.5-fold higher probability of multidrug resistance. Of all isolates, 95% were multidrug-resistant, raising concerns for production and public health. Among 231 ESBL-positive samples, the CTX-M1 group predominated.202539858355
1935140.9997Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related.202134356729
1593150.9997Epidemiological Description and Detection of Antimicrobial Resistance in Various Aquatic Sites in Marseille, France. Antibiotic resistance is a worldwide public health concern and has been associated with reports of elevated mortality. According to the One Health concept, antibiotic resistance genes are transferrable to organisms, and organisms are shared among humans, animals, and the environment. Consequently, aquatic environments are a possible reservoir of bacteria harboring antibiotic resistance genes. In our study, we screened water and wastewater samples for antibiotic resistance genes by culturing samples on different types of agar media. Then, we performed real-time PCR to detect the presence of genes conferring resistance to beta lactams and colistin, followed by standard PCR and gene sequencing for verification. We mainly isolated Enterobacteriaceae from all samples. In water samples, 36 Gram-negative bacterial strains were isolated and identified. We found three extended-spectrum β-lactamase (ESBL)-producing bacteria-Escherichia coli and Enterobacter cloacae strains-harboring the CTX-M and TEM groups. In wastewater samples, we isolated 114 Gram-negative bacterial strains, mainly E. coli, Klebsiella pneumoniae, Citrobacter freundii and Proteus mirabilis strains. Forty-two bacterial strains were ESBL-producing bacteria, and they harbored at least one gene belonging to the CTX-M, SHV, and TEM groups. We also detected carbapenem-resistant genes, including NDM, KPC, and OXA-48, in four isolates of E. coli. This short epidemiological study allowed us to identify new antibiotic resistance genes present in bacterial strains isolated from water in Marseille. This type of surveillance shows the importance of tracking bacterial resistance in aquatic environments. IMPORTANCE Antibiotic-resistant bacteria are involved in serious infections in humans. The dissemination of these bacteria in water, which is in close contact with human activities, is a serious problem, especially under the concept of One Health. This study was done to survey and localize the circulation of bacterial strains, along with their antibiotic resistance genes, in the aquatic environment in Marseille, France. The importance of this study is to monitor the frequency of these circulating bacteria by creating and surveying water treatments.202336976002
1591160.9997Influence of agricultural practice on mobile bla genes: IncI1-bearing CTX-M, SHV, CMY and TEM in Escherichia coli from intensive farming soils. Many calls have been made to address antibiotic resistance in an environmental perspective. With this study, we showed the widespread presence of high-level antibiotic resistant isolates on a collection of non-susceptible Gram-negative bacteria (n = 232) recovered from soils. Bacteria were selected using amoxicillin, cefotaxime and imipenem, from sites representing different agricultural practices (extensive, intensive and organic). Striking levels of non-susceptibility were noticed in intensive soils for norfloxacin (74%), streptomycin (50.7%) and tetracycline (46.6%); indeed, the exposure to intensive agricultural practices constituted a risk factor for non-susceptibility to many antibiotics, multidrug resistance and production of extended-spectrum β-lactamases (ESBL). Analyses of non-susceptibility highlighted that environmental and clinical bacteria from the same species might not share the same intrinsic resistance patterns, raising concerns for therapy choices in environment-borne infections. The multiple sequence-type IncI1-driven spread of penicillinases (blaTEM-1, blaTEM-135), ESBL (blaSHV-12 and blaCTX-M-1) and plasmid-mediated AmpC β-lactamases (blaCMY-2), produced by isolates that share their molecular features with isolates from humans and animals, suggests contamination of agricultural soils. This is also the first appearance of IncI1/ST28-harbouring blaCTX-M-1, which should be monitored to prevent their establishment as successfully dispersed plasmids. This research may help disclose paths of contamination by mobile antibiotic resistance determinants and the risks for their dissemination.201626279315
2534170.9997Prevalence, antibiotic resistance, and virulence gene profile of Escherichia coli strains shared between food and other sources in Africa: A systematic review. BACKGROUND AND AIM: Foodborne diseases caused by Escherichia coli are prevalent globally. Treatment is challenging due to antibiotic resistance in bacteria, except for foodborne infections due to Shiga toxin-producing E. coli, for which treatment is symptomatic. Several studies have been conducted in Africa on antibiotic resistance of E. coli isolated from several sources. The prevalence and distribution of resistant pathogenic E. coli isolated from food, human, and animal sources and environmental samples and their virulence gene profiles were systematically reviewed. MATERIALS AND METHODS: Bibliographic searches were performed using four databases. Research articles published between 2000 and 2022 on antibiotic susceptibility and virulence gene profile of E. coli isolated from food and other sources were selected. RESULTS: In total, 64 articles were selected from 14 African countries: 45% of the studies were conducted on food, 34% on animal samples, 21% on human disease surveillance, and 13% on environmental samples. According to these studies, E. coli is resistant to ~50 antimicrobial agents, multidrug-resistant, and can transmit at least 37 types of virulence genes. Polymerase chain reaction was used to characterize E. coli and determine virulence genes. CONCLUSION: A significant variation in epidemiological data was noticed within countries, authors, and sources (settings). These results can be used as an updated database for monitoring E. coli resistance in Africa. More studies using state-of-the-art equipment are needed to determine all resistance and virulence genes in pathogenic E. coli isolated in Africa.202338023276
2689180.9997Detection and drug resistance profile of Escherichia coli from subclinical mastitis cows and water supply in dairy farms in Saraburi Province, Thailand. Subclinical mastitis is a persistent problem in dairy farms worldwide. Environmental Escherichia coli is the bacterium predominantly responsible for this condition. In Thailand, subclinical mastitis in dairy cows is usually treated with various antibiotics, which could lead to antibiotic resistance in bacteria. E. coli is also a reservoir of many antibiotic resistance genes, which can be conveyed to other bacteria. In this study, the presence of E. coli in milk and water samples was reported, among which enteropathogenic E. coli was predominant, followed by enteroaggregative E. coli and enterohemorrhagic E. coli, which was found only in milk samples. Twenty-one patterns of antibiotic resistance were identified in this study. Ampicillin- and carbenicillin-resistant E. coli was the most common among the bacterial isolates from water samples. Meanwhile, resistance to ampicillin, carbenicillin, and sulfamethoxazole-trimethoprim was the pattern found most commonly in the E. coli from milk samples. Notably, only the E. coli from water samples possessed ESBL phenotype and carried antibiotic resistance genes, bla(TEM) and bla(CMY-2). This indicates that pathogenic E. coli in dairy farms is also exposed to antibiotics and could potentially transfer these genes to other pathogenic bacteria under certain conditions.201728626609
5561190.9997Antimicrobial Resistance of Escherichia coli and Pseudomonas aeruginosa from Companion Birds. Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated.202033171927