Vancomycin resistance and virulence genes evaluation in Enterococci isolated from pork and wild boar meat. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
556501.0000Vancomycin resistance and virulence genes evaluation in Enterococci isolated from pork and wild boar meat. Enterococci are considered valuable sentinel Gram-positive bacteria for monitoring vancomycin antibiotic resistance due to their widespread presence and characteristics. The use of antimicrobials in farming animals has a role in the increasing of Antimicrobial Resistance (AMR) and the anthropogenic transformation of the landscape has forced wildlife into greater contact with humans and their livestock. The transmission of resistant bacteria by their meat products is a significant contributor to AMR development. The present study aimed to assess the prevalence of vancomycin resistant Enterococci spp. In antimicrobial-treated farmed pigs meat and in antimicrobial-free wild boars meat. A total of 341 Enterococci were isolated from 598 pork meat samples (57 %) and 173 Enterococci were isolated from 404 wild boar meat samples (42.8 %). Data found showed that low-resistance was detected more in wild boars meat Enterococci (52.6 %) than in pork meat once (48.4 %). However, the prevalence of resistance genes was at low level (33.9 % in pork meat Enterococci and 4.4 % in wild boar meat ones) and the only gene found was vanC1/C2, related to intrinsic AMR. Normally, Enterococci persist in the normal intestinal flora of animals including humans. However, the presence of resistance genes was frequently linked to the detection of pathogenic genes, mostly gelE in pork meat isolates and asa1 in wild boars meat isolates. Pathogenic bacteria can cause severe infections in human that can become more risky if associated to the presence of AMR. Pathogenic bacteria were characterized and a high presence of E. gallinarum and E. casseliflavus was found. Given the growing interest in wild game meat consumption the monitoring of AMR in these matrices is essential. Further surveillance studies are needed to fully evaluate the emergence and spread of vancomycin-resistant Enterococci (VRE) and pathogenic Enterococci from animal-derived food to humans, including the role of wildlife in this phenomenon. Giving the higher interest in wild animals meat consumption, it is important to better evaluate the spread of AMR phenomenon in the future and intensify hygienic control of wild animals derived food.202439104496
551610.9999Listeria monocytogenes isolates from food and food environment harbouring tetM and ermB resistance genes. Listeria monocytogenes is a foodborne pathogen that has become an important cause of human and animal diseases worldwide. The purpose of this study was to evaluate the serotypes, virulence potential, antimicrobial resistance profile, and genetic relationships of 50 L. monocytogenes isolates from food and food environment in southern Brazil. In this study, the majority of L. monocytogenes isolates belonged to the serotypes 1/2b (42%) and 4b (26%), which are the main serotypes associated with human listeriosis. In addition, all isolates harboured internalin genes (inlA, inlC, inlJ), indicating a virulence potential. The isolates were sensitive to most of the antimicrobial compounds analysed, and five isolates (10%) were multi-resistant. Two isolates harboured antimicrobial resistance genes (tetM and ermB) and in one of them, the gene was present in the plasmid. Moreover, according to the pulsed field gel electrophoresis assay, two multi-resistant isolates were a single clone isolated from food and the processing plant. The isolates were susceptible to the most frequently used antibiotics for listeriosis treatment. However, the presence of multidrug-resistant isolates and antimicrobial resistance genes including in the plasmid could even be transferred between bacterial species, suggesting a potential health risk to consumers and a potential risk of spreading multi-resistance genes to other bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Listeria monocytogenes is an important agent of foodborne diseases. The results of this study suggest a potential capacity of L. monocytogenes isolates from food and food environment to cause human infections. Antimicrobial multi-resistance profiles were detected in 10%, and two isolates harboured tetM and ermB resistance genes. Moreover, the present research can help to build up a better knowledge about antimicrobial resistance of L. monocytogenes. Additionally, we found one isolate carrying tetM resistance gene in a plasmid, that suggests a possible transmission between commensal and/or other pathogenic bacteria of food environment, thereby raising up concerns regarding bacterial resistance.201626518475
193520.9999Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related.202134356729
282030.9999Direct detection of antibiotic resistance genes in specimens of chicken and pork meat. Antibiotic resistance (AR) in bacteria, a major threat to human health, has emerged in the last few decades as a consequence of the selective pressure exerted by the widespread use of antibiotics in medicine, agriculture and veterinary practice and as growth promoters in animal husbandry. The frequency of 11 genes [tet(M), tet(O), tet(K), erm(A), erm(B), erm(C), vanA, vanB, aac (6')-Ie aph (2'')-Ia, mecA, blaZ] encoding resistance to some antibiotics widely used in clinical practice was analysed in raw pork and chicken meat and in fermented sausages as well as in faecal samples from the relevant farm animals using a molecular approach based on PCR amplification of bacterial DNA directly extracted from specimens. Some of the 11 AR genes were highly prevalent, the largest number being detected in chicken meat and pig faeces. The genes found most frequently in meat were tet(K) and erm(B); vanB and mecA were the least represented. All 11 determinants were detected in faecal samples except mecA, which was found only in chicken faeces. erm(B) and erm(C) were detected in all faecal samples. The frequency of AR genes was not appreciably different in meat compared to faecal specimens of the relevant animal except for vanB, which was more prevalent in faeces. Our findings suggest that AR genes are highly prevalent in food-associated bacteria and that AR contamination is likely related to breeding rather than processing techniques. Finally, the cultivation-independent molecular method used in this work to determine the prevalence of AR genes in foods proved to be a rapid and reliable alternative to traditional tools.200717005283
556640.9999Resistance to antimicrobial agents used for animal therapy in pathogenic-, zoonotic- and indicator bacteria isolated from different food animals in Denmark: a baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP). This study describes the establishment and first results of a continuous surveillance system of antimicrobial resistance among bacteria isolated from pigs, cattle and broilers in Denmark. The three categories of bacteria tested were: 1) indicator bacteria (Escherichia coli, Enterococcus faecalis, Enterococcus faecium), 2) zoonotic bacteria (Campylobacter coli/jejuni, Salmonella enterica, Yersinia enterocolitica), and 3) animal pathogens (E. coli, Staphylococcus aureus, coagulase-negative staphylococci (CNS), Staphylococcus hyicus, Actinobacillus pleuropneumoniae). A total of 3304 bacterial isolates collected from October 1995 through December 1996 were tested for susceptibility to all major classes of antimicrobial agents used for therapy in Denmark. Bacterial species intrinsically resistant to an antimicrobial were not tested towards that antimicrobial. Acquired resistance to all antimicrobials was found. The occurrence of resistance varied by animal origin and bacterial species. In general, resistance was observed more frequently among isolates from pigs than from cattle and broilers. The association between the occurrence of resistance and the consumption of the antimicrobial is discussed, as is the occurrence of resistance in other countries. The results of this study show the present level of resistance to antimicrobial agents among a number of bacterial species isolated from food animals in Denmark. Thus, the baseline for comparison with future prospective studies has been established, enabling the determination of trends over time.19989744762
256550.9999Phenotypic and genotypic characterization of antibiotic-resistant bacteria from Swiss ready-to-eat meat products. Antimicrobial resistance is a global health concern, which is partly driven by rising meat consumption, which has led to the intensive farming of livestock that relies on antibiotics. ready-to-eat animal products can carry antibiotic-resistant bacteria, posing risks to humans since they are often consumed without further cooking. While countries such as Switzerland limit antibiotic use in agriculture, contamination of meat with antibiotic-resistant bacteria can still occur during meat processing, and non-antibiotic agents such as heavy metals may contribute to the co-selection of resistance. This study aimed to characterize antibiotic-resistant bacteria in ready-to-eat meat products from various Swiss butcheries. Presumptive resistant bacteria were isolated using selective plating and analyzed phenotypically and genotypically. A total of 53 bacteria-antibiotic resistance combinations were identified, including Enterobacterales resistant to third-generation cephalosporins, vancomycin-resistant Enterococci, and one strain of methicillin-resistant Staphylococcus aureus. Of the 804 products sampled, 177 antibiotic-resistant bacteria were isolated, 148 of which showed multidrug resistance. Notably, these strains remained susceptible to last-resort antibiotics such as carbapenems and colistin. Whole-genome sequencing of 31 selected isolates revealed 164 antibiotic resistance genes spanning 25 classes, confirming resistance to beta-lactams, cephalosporins, and tetracyclines. We also detected genes conferring resistance to metals, suggesting co-selection pressures. Long-read sequencing revealed that the majority of the antibiotic resistance genes were chromosomal, while others were plasmid-encoded, indicating the potential for horizontal gene transfer. This study demonstrates that ready-to-eat meat products are reservoirs of antibiotic and metal resistance genes, as well as antibiotic-resistant bacteria, even at low levels. From a One Health perspective, our results highlight the importance of extending AMR surveillance across the food chain and underscore the need to include non-traditional bacterial indicators.202541001059
282160.9999Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Use of antibiotics as feed additives in poultry production has been linked to the presence of antibiotic resistant bacteria in farm workers, consumer poultry products and the environs of confined poultry operations. There are concerns that these resistant bacteria may be transferred to communities near these operations; however, environmental pathways of exposure are not well documented. We assessed the prevalence of antibiotic resistant enterococci and staphylococci in stored poultry litter and flies collected near broiler chicken houses. Drug resistant enterococci and staphylococci were isolated from flies caught near confined poultry feeding operations in the summer of 2006. Susceptibility testing was conducted on isolates using antibiotics selected on the basis of their importance to human medicine and use in poultry production. Resistant isolates were then screened for genetic determinants of antibiotic resistance. A total of 142 enterococcal isolates and 144 staphylococcal isolates from both fly and poultry litter samples were identified. Resistance genes erm(B), erm(A), msr(C), msr(A/B) and mobile genetic elements associated with the conjugative transposon Tn916, were found in isolates recovered from both poultry litter and flies. Erm(B) was the most common resistance gene in enterococci, while erm(A) was the most common in staphylococci. We report that flies collected near broiler poultry operations may be involved in the spread of drug resistant bacteria from these operations and may increase the potential for human exposure to drug resistant bacteria.200919157515
366370.9999Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted.202438391534
556480.9999Epidemiology of the colonization and acquisition of methicillin-resistant staphylococci and vancomycin-resistant enterococci in dogs hospitalized in a clinic veterinary hospital in Spain. Antibiotic resistance is one of the biggest threats to human and animal health. Methicillin-resistant Staphylococcus spp. (MRS) and vancomycin-resistant Enterococcus spp. (VRE) are of increasing importance in hospital and/or nosocomial infections and represent a potential risk of transmission to humans from infected or colonized companion animals. Studies on the risk factors associated with colonization by multiresistant bacteria in animals are scarce. The present study aimed to estimate the prevalence and incidence of MRS and VRE in canine patients hospitalized in a veterinary hospital and to identify the risk factors for its acquisition and persistence. Nasal and perianal swabs were obtained from 72 dogs. Antimicrobial susceptibility assays and molecular detection of mecA and van genes were performed. A prevalence of 13.9% and incidence of 26.5% was observed in dogs colonized by MRS at hospital admission and release, respectively, higher values than those described in most veterinary studies. Thirty-five Staphylococcus isolates had mecA gene and showed higher resistance levels to most of the antimicrobials evaluated. Previous and concomitant use of antibiotics and corticosteroids has been associated with an increase in MRS colonization. The use of antibiotics in other animals living with the canine patients has also been identified as an associated factor, suggesting cross transmission. The presence of van-resistant genes from Enterococcus spp. was not detected. Pets should be considered possible vehicles of transmission and reservoirs for MRS bacteria and veterinary hospitals should be considered high-risk environments for the occurrence and spread of nosocomial infections and resistant bacteria.202032535110
255890.9999Antimicrobial resistance in wild game mammals: a glimpse into the contamination of wild habitats in a systematic review and meta-analysis. BACKGROUND: Wild game meat has over the years gained popularity across the globe as it is considered a food source with high protein content, low fat content, and a balanced composition of fatty acids and minerals, which are requirements for a healthy diet. Despite this popularity, there is a concern over its safety as many species of wildlife are reservoirs of zoonotic diseases including those of bacterial origin, more so antibiotic-resistant bacteria. METHODS: This study aimed to describe the prevalence of antibiotic-resistant bacteria in mammalian wild game, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: The overall pooled prevalence of antibiotic resistance was established at 59.8% while the prevalence of multidrug resistance (MDR) was 17.2%. Resistance was reported in 32 wild game species and the meta-analysis revealed the highest prevalence of antibiotic resistance in Yersinia spp. (95.5%; CI: 76.8 - 100%) followed by Enterococcus spp. (71%; CI: 44.1 - 92%), Salmonella spp. (69.9%; CI: 44.3 - 90.0%), Staphylococcus spp. (69.3%; CI: 40.3 - 92.3%), and Escherichia coli (39.5%; CI: 23.9 - 56.4%). Most notably, resistance to highest priority, critically important antimicrobials, was recorded in all genera of bacteria studied. Additionally, a significantly higher prevalence of antibiotic resistance was observed in studies conducted in remote settings than those in the vicinity of anthropogenic activities, pointing to extensive contamination of wild habitats. CONCLUSION: This review shows the presence of antibiotic resistance and the carriage of antimicrobial resistance (AMR) genes by bacteria isolated from mammalian wild game species. This is a cause for concern if critical steps to prevent transmission to humans from meat and meat products are not applied in the wild game meat production chain. The extensive occurrence of antibiotic resistance in the wild calls for expansion and adaptation of future AMR surveillance plans to include areas with various anthropogenic pressures including in sylvatic habitats.202539799360
5515100.9999Wildlife Waterfowl as a Source of Pathogenic Campylobacter Strains. BACKGROUND: The aim of the study was to determine whether free-living birds belonging to game species whose meat is used for human consumption can constitute a reservoir of pathogenic Campylobacter strains, spreading these bacteria to other hosts or directly contributing to human infection. METHODS: A total of 91 cloacal swabs were taken from different species of wildlife waterfowl to estimate the Campylobacter prevalence, the genetic diversity of the isolates, and the presence of virulence genes and to evaluate the antimicrobial resistance. RESULTS: The presence of Campylobacter spp. was confirmed in 32.9% of samples. Based on flaA-SVR sequencing, a total of 19 different alleles among the tested Campylobacter isolates were revealed. The virulence genes involved in adhesion were detected at high frequencies among Campylobacter isolates regardless of the host species. The highest resistance was observed for ciprofloxacin. The resistance rates to erythromycin and tetracycline were observed at the same level. CONCLUSIONS: These results suggest that wildlife waterfowl belonging to game species may constitute a reservoir of Campylobacter, spreading these bacteria to other hosts or directly contributing to human disease. The high distribution of virulence-associated genes among wildlife waterfowl Campylobacter isolates make them potentially able to induce infection in humans.202235215056
5563110.9999Exploring the Prevalence of Antimicrobial Resistance in Salmonella and commensal Escherichia coli from Non-Traditional Companion Animals: A Pilot Study. Companion animal ownership has evolved to new exotic animals, including small mammals, posing a new public health challenge, especially due to the ability of some of these new species to harbour zoonotic bacteria, such as Salmonella, and spread their antimicrobial resistances (AMR) to other bacteria through the environment they share. Therefore, the objective of the present pilot study was to evaluate the current epidemiological AMR situation in commensal Escherichia coli and Salmonella spp., in non-traditional companion animal small mammals in the Valencia region. For this purpose, 72 rectal swabs of nine different species of small mammals were taken to assess the antimicrobial susceptibility against 28 antibiotics. A total of one Salmonella enterica serovar Telelkebir 13,23:d:e,n,z(15) and twenty commensal E. coli strains were isolated. For E. coli strains, a high prevalence of AMR (85%) and MDR (82.6%) was observed, although neither of them had access outside the household. The highest AMR were observed in quinolones, one of the highest priority critically important antimicrobials (HPCIAs) in human medicine. However, no AMR were found for Salmonella. In conclusion, the results showed that small mammals' commensal E. coli poses a public health risk due to the high AMR found, and the ability of this bacterium to transmit its resistance genes to other bacteria. For this reason, this pilot study highlighted the need to establish programmes to control AMR trends in the growing population of new companion animals, as they could disseminate AMR to humans and animals through their shared environment.202438398679
5736120.9999Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness.202540872636
1925130.9998Camel Milk Resistome in Kuwait: Genotypic and Phenotypic Characterization. Antimicrobial resistance (AMR) is one of the major global health and economic threats. There is growing concern about the emergence of AMR in food and the possibility of transmission of microorganisms possessing antibiotic resistance genes (ARGs) to the human gut microbiome. Shotgun sequencing and in vitro antimicrobial susceptibility testing were used in this study to provide a detailed characterization of the antibiotic resistance profile of bacteria and their ARGs in dromedary camel milk. Eight pooled camel milk samples, representative of multiple camels distributed in the Kuwait desert, were collected from retail stores and analyzed. The genotypic analysis showed the presence of ARGs that mediate resistance to 18 classes of antibiotics in camel milk, with the highest resistance to fluoroquinolones (12.48%) and disinfecting agents and antiseptics (9%). Furthermore, the results pointed out the possible transmission of the ARGs to other bacteria through mobile genetic elements. The in vitro antimicrobial susceptibility testing indicated that 80% of the isolates were resistant to different classes of antibiotics, with the highest resistance observed against three antibiotic classes: penicillin, tetracyclines, and carbapenems. Multidrug-resistant pathogens including Klebsiella pneumoniae, Escherichia coli, and Enterobacter hormaechei were also revealed. These findings emphasize the human health risks related to the handling and consumption of raw camel milk and highlight the necessity of improving the hygienic practices of farms and retail stores to control the prevalence of ARGs and their transmission.202438786109
5598140.9998Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products.202540298519
2822150.9998Antimicrobial resistance of bacterial flora associated with bovine products in South Africa. The administration of subtherapeutic doses of antibiotics to livestock introduces selective pressures that may lead to the emergence and dissemination of resistant bacteria. This study determined the antibiotic-resistance spectra of the microbial flora found on freshly slaughtered and retail beef and in unpasteurized and pasteurized packaged milk. Staphylococci, Enterobacteriaeae, and isolates from total aerobic plate counts were tested for resistance to vancomycin, streptomycin, methicillin, tetracycline, and gentamicin using the disc diffusion susceptibility test and resistance to penicillin was determined by using oxacillin. A larger proportion of resistance to most antibiotics, except for vancomycin, was displayed by isolates from abattoir samples. The incidence of multiple antibiotic resistance (MAR) pathogenic bacteria is also higher in the abattoir. Resistance genes lost because of lack of selective pressure or resistant flora being replaced by more sensitive flora during processing is the reason for the lower incidence of MAR pathogenic bacteria among retail samples. These resistant bacteria can be transferred to humans through the consumption of rare or raw beef and unpasteurized milk, thus rendering the resultant food-related infections difficult to treat. The present findings clearly demonstrate that antibiotic-resistant bacteria in beef and milk pose a serious problem in South Africa.199910382649
2819160.9998Prevalence of Antibiotic-Resistant Lactobacilli in Sepsis Patients with Long-Term Antibiotic Therapy. Lactobacilli are the most common probiotic bacteria found in the human gut microbiota, and the presence of acquired antibiotic resistance determinants carried on mobile genetic elements must be screened due to safety concerns. Unnecessary and inappropriate antibiotic therapy, as well as ingested antibiotic resistance bacteria (originating from food or food products), influence the abundance of antibiotic resistance genes in human guts, with serious clinical consequences. The current study looked into the antibiotic resistance of lactobacilli isolated from the guts of sepsis patients on long-term antibiotic therapy. The broth microdilution method was used to investigate the minimum inhibitory concentrations (MICs) of antibiotics such as imipenem, meropenem, erythromycin, tetracycline, cefepime, ciprofloxacin, and gentamycin, and the molecular genetic basis of resistance was studied based on the MIC values. The isolates were phenotypically resistant to tetracycline (20%), fluoroquinolone (20%), and macrolide (5%). Following that, resistance genes for tetracycline [tet(L), tet(O), tet(K), and tet(M)], macrolide [erm(B) and erm(C)], and beta-lactams [bla(CMY)] were investigated. Tetracycline or macrolide resistance genes were not found in the isolates, and only one isolate possessed the bla(CMY) resistance gene. The findings suggested that tetracycline and macrolide resistance may be linked to other resistance genes that were not investigated in this study. Because tetracyclines, fluoroquinolones, and macrolides are commonly used in clinics and animals, there has been concern about the spread of resistance in humans. If acquired antibiotic resistance is passed down through mobile genetic elements, it may serve as a reservoir of resistance for gut pathogens and other microbiome environments.202236088413
5577170.9998Study on Bacteria Isolates and Antimicrobial Resistance in Wildlife in Sicily, Southern Italy. Wild environments and wildlife can be reservoirs of pathogens and antibiotic resistance. Various studies have reported the presence of zoonotic bacteria, resistant strains, and genetic elements that determine antibiotic resistance in wild animals, especially near urban centers or agricultural and zootechnical activities. The purpose of this study was the analysis, by cultural and molecular methods, of bacteria isolated from wild animals in Sicily, Italy, regarding their susceptibility profile to antibiotics and the presence of antibiotic resistance genes. Bacteriological analyses were conducted on 368 wild animals, leading to the isolation of 222 bacterial strains identified by biochemical tests and 16S rRNA sequencing. The most isolated species was Escherichia coli, followed by Clostridium perfringens and Citrobacter freundii. Antibiograms and the determination of resistance genes showed a reduced spread of bacteria carrying antibiotic resistance among wild animals in Sicily. However, since several wild animals are becoming increasingly close to residential areas, it is important to monitor their health status and to perform microbiological analyses following a One Health approach.202133478101
5545180.9998Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Wide varieties of antibiotics are used in poultry farms to improve the growth and also to control the infection in broiler chicken. To identify the seriousness of the same in the poultry sector, current study has been designed to analyze the presence of tetracycline in poultry feed and also the tetracycline resistance among the bacteria released through the excreta of poultry. In the study, 27 bacteria belonging to the Escherichiacoli and Klebsiellapneumoniae. were isolated from the faecal samples collected from five different farms. Antibiotic susceptibility analysis showed 77% of E. coli and 100% of the K. pneumoniae. to be resistant to tetracycline. Further, molecular screening for tetA and tetB genes showed 85.18% of isolates to have tetA and 22.22% with tetB. The presence of tetracycline in collected feed samples was also analysed quantitatively by Liquid chromatography-mass spectrometry (LC-MS). Here, three out of five feed samples were found to be positive for tetracycline. The study showed a direct correlation between the antibiotic supplemented feed and the emergence of antimicrobial resistance among the intestinal microflora. The results of the study indicate the need for strict control over antibiotic use in animal feed to limit the rapid evolution and spread of antimicrobial resistance.202033039593
1933190.9998Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination.202236139170