Prevalence of Potential Pathogenic and Antimicrobial Resistant Escherichia coli in Danish Broilers. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
555701.0000Prevalence of Potential Pathogenic and Antimicrobial Resistant Escherichia coli in Danish Broilers. Avian pathogenic Escherichia coli (APEC) are important bacteria in broiler production in terms of economy, welfare, and use of antibiotics. During a previous outbreak of APEC in the Nordic countries, it was suggested that the pathogenic clones of E. coli causing the outbreak originated from grandparent stock and were transmitted to the offspring, causing increased first week mortality. This study investigated whether the pathogenic potential of E. coli at the parent and broiler level differs in relation to pathogenic potential described by the level of virulence-associated genes and pattern of antimicrobial resistance. The hypothesis was that, due to higher biosecurity at the parent level, the E. coli population will show a lower level of antimicrobial resistance and carry fewer virulence-associated genes, as a result of fewer E. coli infections observed. From four parent flocks and eight broiler flocks, 715 E. coli were isolated from cloacal swabs of newly hatched chickens (Ross 308). The isolated E. coli were characterized by eight virulence-associated genes and phenotypic resistance against six antimicrobials. It was found that the prevalence of virulence-associated genes and phenotypic antimicrobial resistance varied significantly between flocks, and the virulence-associated genes papC and irp2 and resistance against ampicillin were significantly more prevalent in breeder flocks compared to broiler flocks.202336830255
555810.9998Respiratory microbiota of healthy broilers can act as reservoirs for multidrug-resistant Escherichia coli. This study aimed at evaluate the presence and to study characteristics of Escherichia coli in the respiratory system microbiota of healthy broilers. Trachea, air sacs, and lungs of 20 broilers were analyzed at 21 days of age, reared in experimental conditions, without receiving antimicrobials. E. coli strains were isolated and identified using conventional bacteriology through morphological and biochemical characterization. The production of bacteriocin-like substances, the presence of virulence-associated genes (VAGs) of APEC (Avian Pathogenic Escherichia coli) predictors, and the antimicrobial susceptibility were evaluated. E. coli was found in 85 % of the animals (17/20), in the trachea, air sacs or lungs; and it was not found in 15 % of the animals (3/20). A total of 34 isolates were recovered, 13 from the air sacs, 13 from the lungs, and 8 from the trachea, which showed no production of bacteriocin-like substances nor virulence genes associated with APEC. Most isolates, 59 % (20/34), showed resistance to at least one of the tested antimicrobials, and six multiresistant strains were identified. The results demonstrated that strains of E. coli were commensal of the respiratory microbiota, and that they did not present pathogenicity to the host, since there were no clinical signs of disease, macroscopic lesions in the organs of the evaluated broilers, production of bacteriocin-like substances, nor virulence-associated genes considered as predictors of APEC in bacteria. These strains of E. coli were mostly susceptible to antimicrobials. However, the occurrence of multidrug-resistant strains suggests that these animals can act as reservoirs of resistant to antimicrobials E. coli.202134507109
193020.9998Changes in dominant Escherichia coli and antimicrobial resistance after 24 hr in fecal matter. Intestinal bacteria carry antimicrobial resistance (AMR) genes in mobile genetic elements which have the potential to spread to bacteria in other animal hosts including humans. In fecal matter, Escherichia coli can continue to multiply for 48 hr after being excreted, and in certain environments, E. coli survive long periods of time. It is unclear the extent to which AMR in E. coli changes in the environment outside of its host. In this study, we analyzed changes in the population structure, plasmid content, and AMR patterns of 30 E. coli isolates isolated from 6 chickens (cloacal swabs), and 30 E. coli isolates from fecal samples (from the same 6 chickens) after 24 hr of incubation. Clonality of isolates was screened using the fumC gene sequence and confirmed in a subset of isolates (n = 14) by multi-locus sequence typing. Major shifts in the population structure (i.e., sequence types) and antibiotic resistance patterns were observed among the numerically dominant E. coli isolates after 24 hr. Four E. coli clones isolated from the cloaca swabs and the corresponding fecal samples (after 24 hr incubation) showed different antibiotic resistance patterns. Our study reveals that fecal matter in the environment is an intermediate habitat where rapid and striking changes occur in E. coli populations and antibiotic resistance patterns.201929896865
551630.9998Listeria monocytogenes isolates from food and food environment harbouring tetM and ermB resistance genes. Listeria monocytogenes is a foodborne pathogen that has become an important cause of human and animal diseases worldwide. The purpose of this study was to evaluate the serotypes, virulence potential, antimicrobial resistance profile, and genetic relationships of 50 L. monocytogenes isolates from food and food environment in southern Brazil. In this study, the majority of L. monocytogenes isolates belonged to the serotypes 1/2b (42%) and 4b (26%), which are the main serotypes associated with human listeriosis. In addition, all isolates harboured internalin genes (inlA, inlC, inlJ), indicating a virulence potential. The isolates were sensitive to most of the antimicrobial compounds analysed, and five isolates (10%) were multi-resistant. Two isolates harboured antimicrobial resistance genes (tetM and ermB) and in one of them, the gene was present in the plasmid. Moreover, according to the pulsed field gel electrophoresis assay, two multi-resistant isolates were a single clone isolated from food and the processing plant. The isolates were susceptible to the most frequently used antibiotics for listeriosis treatment. However, the presence of multidrug-resistant isolates and antimicrobial resistance genes including in the plasmid could even be transferred between bacterial species, suggesting a potential health risk to consumers and a potential risk of spreading multi-resistance genes to other bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Listeria monocytogenes is an important agent of foodborne diseases. The results of this study suggest a potential capacity of L. monocytogenes isolates from food and food environment to cause human infections. Antimicrobial multi-resistance profiles were detected in 10%, and two isolates harboured tetM and ermB resistance genes. Moreover, the present research can help to build up a better knowledge about antimicrobial resistance of L. monocytogenes. Additionally, we found one isolate carrying tetM resistance gene in a plasmid, that suggests a possible transmission between commensal and/or other pathogenic bacteria of food environment, thereby raising up concerns regarding bacterial resistance.201626518475
557840.9998Resistance of Escherichia coli from healthy donors and from food--an indicator of antimicrobial resistance level in the population. Escherichia coli, being an important part of normal intestinal flora, is a frequent carrier of antimicrobial drug resistance markers and food is the most important vector of antimicrobial resistance genes between humans and animals. The aim of this study was to confirm the presence and frequency of resistance markers in Escherichia coli from intestinal flora and from food as an indicator of antimicrobial resistance level in the population. The experiment included 100 fecal Escherichia coli isolates from healthy donors, 50 isolated in 2007 and 50 in 2010, and 50 from food samples. The resistance markers were found in all groups of isolates. The resistance to ampicillin and cotrimoxazole was most commonly found. The finding of multi-drug-resistant strains and resistance to ciprofloxacin is important. The frequency of resistance markers was similar in food and feces. The results of this study show the need to introduce systematic monitoring of antimicrobial resistance of these bacteria.201121970069
551050.9998Investigating possible association between multidrug resistance and isolate origin with some virulence factors of Escherichia coli strains isolated from infant faeces and fresh green vegetables. AIMS: In this study, the association between multidrug resistance (MDR) and the expression of some virulence factors were evaluated in Escherichia coli strains isolated from infant faeces and fresh green vegetables. The effect of isolate origin on associated virulence factors was evaluated. In addition, genetic fingerprinting of a sample of these isolates (10 isolates from each group) was studied in order to detect any genetic relatedness among these isolates. METHODS AND RESULTS: Escherichia coli isolates were divided into four groups based on their origin (human faeces or plant) and their antibiotic resistance (multiresistance or susceptible). PCR was used to investigate heat-labile and heat-stable enterotoxin genes, and four siderophore genes (aerobactin, enterobactin, salmochelin and yersiniabactin). Genetic fingerprinting of the isolates was performed using enterobacterial repetitive intergenic consensus PCR. Siderophore production was measured by a colorimetric method. Biofilm formation was evaluated by a crystal violet assay. The results of the study showed that the expression of MDR is not significantly associated with an increase in these virulence factors or with biofilm formation. However, the origin of isolates had a significant association with siderophore gene availability and consequently on the concentrations of siderophores released. Genetic fingerprinting indicated that human and plant isolates have the same clonal origin, suggesting their circulation among humans and plants. CONCLUSION: Antibiotic-susceptible strains of E. coli may be as virulent as MDR strains. Results also suggest that the environment can play a potential role in selection of strains with specific virulence factors. SIGNIFICANCE AND IMPACT OF THE STUDY: Antibiotic-susceptible isolates of Escherichia coli from plant or human origin can be as virulent as the multidrug resistance (MDR) ones. Genetic relatedness was detected among the isolates of plant and human origin, indicating the circulation of these bacteria among human and plants. This could imply a potential role for environmental antimicrobial resistant bacteria in human infection.201931034123
563560.9998Antimicrobial resistance characteristics and fitness of Gram-negative fecal bacteria from volunteers treated with minocycline or amoxicillin. A yearlong study was performed to examine the effect of antibiotic administration on the bacterial gut flora. Gram-negative facultative anaerobic bacteria were recovered from the feces of healthy adult volunteers administered amoxicillin, minocycline or placebo, and changes determined in antimicrobial resistance (AMR) gene carriage. Seventy percent of the 1039 facultative anaerobic isolates recovered were identified by MALDI-TOF as Escherichia coli. A microarray used to determine virulence and resistance gene carriage demonstrated that AMR genes were widespread in all administration groups, with the most common resistance genes being bla TEM, dfr, strB, tet(A), and tet(B). Following amoxicillin administration, an increase in the proportion of amoxicillin resistant E. coli and a three-fold increase in the levels of bla TEM gene carriage was observed, an effect not observed in the other two treatment groups. Detection of virulence genes, including stx1A, indicated not all E. coli were innocuous commensals. Approximately 150 E. coli collected from 6 participants were selected for pulse field gel electrophoresis (PFGE), and a subset used for characterisation of plasmids and Phenotypic Microarrays (PM). PFGE indicated some E. coli clones had persisted in volunteers for up to 1 year, while others were transient. Although there were no unique characteristics associated with plasmids from persistent or transient isolates, PM assays showed transient isolates had greater adaptability to a range of antiseptic biocides and tetracycline; characteristics which were lost in some, but not all persistent isolates. This study indicates healthy individuals carry bacteria harboring resistance to a variety of antibiotics and biocides in their intestinal tract. Antibiotic administration can have a temporary effect of selecting bacteria, showing co-resistance to multiple antibiotics, some of which can persist within the gut for up to 1 year.201425566232
193570.9998Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related.202134356729
556580.9998Vancomycin resistance and virulence genes evaluation in Enterococci isolated from pork and wild boar meat. Enterococci are considered valuable sentinel Gram-positive bacteria for monitoring vancomycin antibiotic resistance due to their widespread presence and characteristics. The use of antimicrobials in farming animals has a role in the increasing of Antimicrobial Resistance (AMR) and the anthropogenic transformation of the landscape has forced wildlife into greater contact with humans and their livestock. The transmission of resistant bacteria by their meat products is a significant contributor to AMR development. The present study aimed to assess the prevalence of vancomycin resistant Enterococci spp. In antimicrobial-treated farmed pigs meat and in antimicrobial-free wild boars meat. A total of 341 Enterococci were isolated from 598 pork meat samples (57 %) and 173 Enterococci were isolated from 404 wild boar meat samples (42.8 %). Data found showed that low-resistance was detected more in wild boars meat Enterococci (52.6 %) than in pork meat once (48.4 %). However, the prevalence of resistance genes was at low level (33.9 % in pork meat Enterococci and 4.4 % in wild boar meat ones) and the only gene found was vanC1/C2, related to intrinsic AMR. Normally, Enterococci persist in the normal intestinal flora of animals including humans. However, the presence of resistance genes was frequently linked to the detection of pathogenic genes, mostly gelE in pork meat isolates and asa1 in wild boars meat isolates. Pathogenic bacteria can cause severe infections in human that can become more risky if associated to the presence of AMR. Pathogenic bacteria were characterized and a high presence of E. gallinarum and E. casseliflavus was found. Given the growing interest in wild game meat consumption the monitoring of AMR in these matrices is essential. Further surveillance studies are needed to fully evaluate the emergence and spread of vancomycin-resistant Enterococci (VRE) and pathogenic Enterococci from animal-derived food to humans, including the role of wildlife in this phenomenon. Giving the higher interest in wild animals meat consumption, it is important to better evaluate the spread of AMR phenomenon in the future and intensify hygienic control of wild animals derived food.202439104496
556790.9998Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry. Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry). A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC). Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of β-lactamases- (ESBLs-) producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria.201526579536
5515100.9998Wildlife Waterfowl as a Source of Pathogenic Campylobacter Strains. BACKGROUND: The aim of the study was to determine whether free-living birds belonging to game species whose meat is used for human consumption can constitute a reservoir of pathogenic Campylobacter strains, spreading these bacteria to other hosts or directly contributing to human infection. METHODS: A total of 91 cloacal swabs were taken from different species of wildlife waterfowl to estimate the Campylobacter prevalence, the genetic diversity of the isolates, and the presence of virulence genes and to evaluate the antimicrobial resistance. RESULTS: The presence of Campylobacter spp. was confirmed in 32.9% of samples. Based on flaA-SVR sequencing, a total of 19 different alleles among the tested Campylobacter isolates were revealed. The virulence genes involved in adhesion were detected at high frequencies among Campylobacter isolates regardless of the host species. The highest resistance was observed for ciprofloxacin. The resistance rates to erythromycin and tetracycline were observed at the same level. CONCLUSIONS: These results suggest that wildlife waterfowl belonging to game species may constitute a reservoir of Campylobacter, spreading these bacteria to other hosts or directly contributing to human disease. The high distribution of virulence-associated genes among wildlife waterfowl Campylobacter isolates make them potentially able to induce infection in humans.202235215056
5545110.9998Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Wide varieties of antibiotics are used in poultry farms to improve the growth and also to control the infection in broiler chicken. To identify the seriousness of the same in the poultry sector, current study has been designed to analyze the presence of tetracycline in poultry feed and also the tetracycline resistance among the bacteria released through the excreta of poultry. In the study, 27 bacteria belonging to the Escherichiacoli and Klebsiellapneumoniae. were isolated from the faecal samples collected from five different farms. Antibiotic susceptibility analysis showed 77% of E. coli and 100% of the K. pneumoniae. to be resistant to tetracycline. Further, molecular screening for tetA and tetB genes showed 85.18% of isolates to have tetA and 22.22% with tetB. The presence of tetracycline in collected feed samples was also analysed quantitatively by Liquid chromatography-mass spectrometry (LC-MS). Here, three out of five feed samples were found to be positive for tetracycline. The study showed a direct correlation between the antibiotic supplemented feed and the emergence of antimicrobial resistance among the intestinal microflora. The results of the study indicate the need for strict control over antibiotic use in animal feed to limit the rapid evolution and spread of antimicrobial resistance.202033039593
1932120.9998Prevalence of Plasmid-Associated Tetracycline Resistance Genes in Multidrug-Resistant Escherichia coli Strains Isolated from Environmental, Animal and Human Samples in Panama. Antimicrobial resistance bacteria are nowadays ubiquitous. Its presence has been reported in almost every type of source, from water for agricultural and recreative use, water distribution pipes, and wastewater, to food, fomites, and clinical samples. Enterobacteriaceae, especially Escherichia coli, are not the exception, showing an increased resistance to several antibiotics, causing a global health and economic burden. Therefore, the monitoring of fecal microbiota is important because it is present in numerous reservoirs where gene transfer between commensal and virulent bacteria can take place, representing a potential source of resistant E. coli. In this work, antibiotic resistance profiles of 150 E. coli isolates from environmental, animal, and human samples, collected in three rural areas in Panama, were analyzed. A total of 116 isolates were resistant to at least one of the nine antibiotics tested. Remarkably, almost 100% of these exhibited resistance to tetracycline. Plasmid-associated tetA and tetB genes were detected in 42.86% of the isolates analyzed, tetA being the most prevalent. These results suggest that tetracycline resistance would be used as a convenient indicator of genetic horizontal transfer within a community.202336830191
5576130.9998First insights into antimicrobial resistance among faecal Escherichia coli isolates from small wild mammals in rural areas. Wild rodents can be carriers of antimicrobial resistant Escherichia coli. As rodents are known to be involved in the transmission of bacteria of human and animal health concern, they could likewise contribute to the dissemination of antimicrobial resistant bacteria in the environment. The aim of this study was therefore to get first insights into the antimicrobial resistance status among E. coli isolated from wild small mammals in rural areas. We tested 188 faecal isolates from eight rodent and one shrew species originating from Germany. Preselected resistant isolates were screened by minimal inhibitory concentration (MIC) testing or agar diffusion test and subsequent PCR analysis of resistance genes. The prevalence of antimicrobial resistant isolates was low with only 5.5% of the isolates exhibiting resistant phenotypes against at least one antimicrobial compound including beta-lactams, tetracyclines, aminoglycosides and sulfonamides. These results suggest a minor role of wild rodents from rural areas in the cycle of transmission and spread of antimicrobial resistant E. coli into the environment. Nevertheless E. coli with multiple antimicrobial resistances were significantly more often detected in wildlife rodents originating from areas with high livestock density suggesting a possible transmission from livestock to wild rodents.201020569968
5736140.9998Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness.202540872636
1931150.9998The level of antimicrobial resistance of sewage isolates is higher than that of river isolates in different Escherichia coli lineages. The dissemination of antimicrobial-resistant bacteria in environmental water is an emerging concern in medical and industrial settings. Here, we analysed the antimicrobial resistance of Escherichia coli isolates from river water and sewage by the use of a combined experimental phenotypic and whole-genome-based genetic approach. Among the 283 tested strains, 52 were phenotypically resistant to one or more antimicrobial agents. The E. coli isolates from the river and sewage samples were phylogenetically indistinguishable, and the antimicrobial-resistant strains were dispersedly distributed in a whole-genome-based phylogenetic tree. The prevalence of antimicrobial-resistant strains as well as the number of antimicrobials to which they were resistant were higher in sewage samples than in river samples. Antimicrobial resistance genes were more frequently detected in strains from sewage samples than in those from river samples. We also found that 16 river isolates that were classified as Escherichia cryptic clade V were susceptible to all the antimicrobials tested and were negative for antimicrobial resistance genes. Our results suggest that E. coli strains may acquire antimicrobial resistance genes more frequently and/or antimicrobial-resistant E. coli strains may have higher rates of accumulation and positive selection in sewage than in rivers, irrespective of their phylogenetic distribution.202033087784
2821160.9998Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Use of antibiotics as feed additives in poultry production has been linked to the presence of antibiotic resistant bacteria in farm workers, consumer poultry products and the environs of confined poultry operations. There are concerns that these resistant bacteria may be transferred to communities near these operations; however, environmental pathways of exposure are not well documented. We assessed the prevalence of antibiotic resistant enterococci and staphylococci in stored poultry litter and flies collected near broiler chicken houses. Drug resistant enterococci and staphylococci were isolated from flies caught near confined poultry feeding operations in the summer of 2006. Susceptibility testing was conducted on isolates using antibiotics selected on the basis of their importance to human medicine and use in poultry production. Resistant isolates were then screened for genetic determinants of antibiotic resistance. A total of 142 enterococcal isolates and 144 staphylococcal isolates from both fly and poultry litter samples were identified. Resistance genes erm(B), erm(A), msr(C), msr(A/B) and mobile genetic elements associated with the conjugative transposon Tn916, were found in isolates recovered from both poultry litter and flies. Erm(B) was the most common resistance gene in enterococci, while erm(A) was the most common in staphylococci. We report that flies collected near broiler poultry operations may be involved in the spread of drug resistant bacteria from these operations and may increase the potential for human exposure to drug resistant bacteria.200919157515
5583170.9998High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: a food safety risk. BACKGROUND: There has been concern about the increase of antimicrobial resistant bacteria and protection of animal and public health, along with food safety. In the present study, we evaluate the incidence of antimicrobial resistance among 192 strains of Escherichia coli isolated from faecal samples of healthy food-producing animals at slaughter in Portugal. RESULTS: Ninety-seven % of the pig isolates, 74% from sheep and 55% from cattle were resistant to one or more antimicrobial agents, with the resistances to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole the most common phenotype detected. Genes encoding resistance to antimicrobial agents were detected in most of the resistant isolates. Ninety-three % of the resistant isolates were included in the A or B1 phylogenetic groups, and the virulence gene fimA (alone or in association with papC or aer genes) was detected in 137 of the resistant isolates. Five isolates from pigs belonging to phylogroup B2 and D were resistant to five different antimicrobial agents. CONCLUSION: Our data shows a high percentage of antibiotic resistance in E. coli isolates from food animals, and raises important questions in the potential impact of antibiotic use in animals and the possible transmission of resistant bacteria to humans through the food chain.201322836880
2041180.9998Carrier flies of multidrug-resistant Escherichia coli as potential dissemination agent in dairy farm environment. The life cycle of synanthropic flies and their behavior, allows them to serve as mechanical vectors of several pathogens. Given that flies can carry multidrug-resistant (MDR) bacteria, this study aimed to investigate the spread of genes of antimicrobial resistance in Escherichia coli isolated from flies collected in two dairy farms in Brazil. Besides antimicrobial resistance determinants, the presence of virulence genes related to bovine colibacillosis was also assessed. Of 94 flies collected, Musca domestica was the most frequently found in the two farms. We isolated 198 E. coli strains (farm A=135 and farm B=63), and >30% were MDR E. coli. We found an association between bla(TEM) and phenotypical resistance to ampicillin, or chloramphenicol, or tetracycline; and bla(CTX-M) and resistance to cefoperazone. A high frequency (86%) of phylogenetic group B1 among MDR strains and the lack of association between multidrug resistance and virulence factors suggest that antimicrobial resistance possibly is associated with the commensal bacteria. Clonal relatedness of MDR E. coli performed by Pulsed-Field Gel Electrophoresis showed wide genomic diversity. Different flies can carry clones, but with distinct antimicrobial resistance pattern. Sanger sequencing showed that the same class 1 integron arrangement is displayed by apparently unrelated strains, carried by different flies. Our conjugation results indicate class 1 integron transfer associated with tetracycline resistance. We report for the first time, in Brazil, that MDR E. coli is carried by flies in the milking environment. Therefore, flies can act as carriers for MDR strains and contribute to dissemination routes of antimicrobial resistance.201829758886
5544190.9998Assessing the Effect of Oxytetracycline on the Selection of Resistant Escherichia coli in Treated and Untreated Broiler Chickens. Oxytetracycline (OTC) is administered in the poultry industry for the treatment of digestive and respiratory diseases. The use of OTC may contribute to the selection of resistant bacteria in the gastrointestinal tract of birds or in the environment. To determine the effect of OTC on the selection of resistant Escherichia coli strains post-treatment, bacteria were isolated from droppings and litter sampled from untreated and treated birds. Bacterial susceptibility to tetracyclines was determined by the Kirby-Bauer test. A total of 187 resistant isolates were analyzed for the presence of tet(A), (B), (C), (D), (E), and (M) genes by PCR. Fifty-four strains were analyzed by PFGE for subtyping. The proportion of tetracycline-resistant E. coli strains isolated was 42.88%. The susceptibility of the strains was treatment-dependent. A high clonal diversity was observed, with the tet(A) gene being the most prevalent, followed by tet(C). Even at therapeutic doses, there is selection pressure on resistant E. coli strains. The most prevalent resistance genes were tet(A) and tet(C), which could suggest that one of the main mechanisms of resistance of E. coli to tetracyclines is through active efflux pumps.202338136686