Prevalence of Antimicrobial Resistance Among the Hydrogen Sulfide Producing Bacteria Isolated on XLD Agar from the Poultry Fecal Samples. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
554801.0000Prevalence of Antimicrobial Resistance Among the Hydrogen Sulfide Producing Bacteria Isolated on XLD Agar from the Poultry Fecal Samples. Poultry products remain as one of the most popular and extensively consumed foods in the world and the introduction of hydrogen sulfide (H(2)S) producing antibiotic resistant bacterial species into it is an emerging challenge. The current study has been designed to analyze the distribution of antibiotic resistance among the H(2)S producing bacteria isolated from the fecal samples of chickens from different poultry farms. Here, twenty bacterial isolates were selected based on their ability to produce H(2)S on XLD agar, and the16S rDNA sequencing was carried out for their molecular identification. The results showed the isolates as belong to Salmonella spp. and Citrobacter spp. and in the antibiotic susceptibility test (AST), three of the Salmonella strains were found to be resistant to antibiotics such as tetracycline, doxycycline, nalidixic acid, and amikacin. Also, fourteen Citrobacter strains showed resistance towards azithromycin, and furthermore, eleven of them were also resistant to streptomycin. Resistance towards tetracycline was observed among five of the Citrobacter strains, and seven were resistant to doxycycline. Further molecular screening by the PCR has showed three of the Salmonella strains along with eight Citrobacter isolates to have tetA gene along with four of the Citrobacter strains to have co-harbored bla(TEM) gene. The results on biofilm formation have also demonstrated three Salmonella strains along with nine Citrobacter strains to have the ability to form moderate biofilm. The study thus describes the occurrence of H(2)S producing multidrug-resistant bacteria in poultry feces, which might contribute towards the dissemination of antibiotic resistance genes to other microorganisms including human pathogens with likely risk to treat disease conditions.202437540287
193510.9999Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related.202134356729
554920.9999Analysis of Antibiotic Resistance and Biofilm-Forming Capacity in Tetracycline-Resistant Bacteria from a Coastal Lagoon. Concerns have been raised regarding co-selection for antibiotic resistance among bacteria exposed to antibiotics used as growth promoters for some livestock and poultry species. Tetracycline had been commonly used for this purpose worldwide, and its residue has been associated with selection of resistant bacteria in aquatic biofilms. This study aimed to determine the resistance profile, the existence of some beta-lactamases genes and the capacity to form biofilm of bacteria isolated from water samples previously exposed to tetracycline (20 mg/L). Thirty-seven tetracycline-resistant bacterial strains were identified as Serratia marcescens, Escherichia coli, Morganella morganii, Pseudomonas aeruginosa, Citrobacter freundii, Providencia alcalifaciens, and Enterococcus faecium. The highest percentage of resistance was for ampicillin (75.75%) and amoxicillin/clavulanic acid (66.66%) in the Gram-negative bacteria and an E. faecium strain showed high resistance to vancomycin (minimum inhibitory concentration 250 μg/mL). Among the strains analyzed, 81.09% had multidrug resistance and eight Gram-negatives carried the bla(OXA-48) gene. All strains were able to form biofilm and 43.23% were strong biofilm formers. This study suggests that resistant bacteria can be selected under selection pressure of tetracycline, and that these bacteria could contribute to the maintenance and spread of antimicrobial resistance in this environment.202235325574
564430.9999Identification and Characterization of Antibiotic-Resistant, Gram-Negative Bacteria Isolated from Korean Fresh Produce and Agricultural Environment. The consumption of fresh produce and fruits has increased over the last few years as a result of increasing consumer awareness of healthy lifestyles. Several studies have shown that fresh produces and fruits could be potential sources of human pathogens and antibiotic-resistant bacteria. In this study, 248 strains were isolated from lettuce and surrounding soil samples, and 202 single isolates selected by the random amplified polymorphic DNA (RAPD) fingerprinting method were further characterized. From 202 strains, 184 (91.2%) could be identified based on 16S rRNA gene sequencing, while 18 isolates (8.9%) could not be unequivocally identified. A total of 133 (69.3%) and 105 (54.7%) strains showed a resistance phenotype to ampicillin and cefoxitin, respectively, while resistance to gentamicin, tobramycin, ciprofloxacin, and tetracycline occurred only at low incidences. A closer investigation of selected strains by whole genome sequencing showed that seven of the fifteen sequenced strains did not possess any genes related to acquired antibiotic resistance. In addition, only one strain possessed potentially transferable antibiotic resistance genes together with plasmid-related sequences. Therefore, this study indicates that there is a low possibility of transferring antibiotic resistance by potential pathogenic enterobacteria via fresh produce in Korea. However, with regards to public health and consumer safety, fresh produce should nevertheless be continuously monitored to detect the occurrence of foodborne pathogens and to hinder the transfer of antibiotic resistance genes potentially present in these bacteria.202337317216
555040.9999Prevalence, plasmids and antibiotic resistance correlation of enteric bacteria in different drinking water resources in sohag, egypt. BACKGROUND: One of the major health causing problems is contamination of drinking water sources with human pathogenic bacteria. Enteric bacteria such as Shigella, Salmonella and Escherichia coli are most enteric bacteria causing serious health problems. Occurrence of such bacteria infection, which may resist antibiotics, increases the seriousness of problem. OBJECTIVES: The aim of this study was to examine the prevalence of some enteric bacteria (Shigella, Salmonella and E. coli) in addition to Pseudomonas. The antibiotic susceptibility of these bacteria was also tested, in addition to assessing plasmid(s) roles in supposed resistance. MRSA genes in non-staphylococci were clarified. MATERIALS AND METHODS: Water samples were collected from different drinking sources (Nile, ground water) and treated tap water. Selective media were used to isolate enteric bacteria and Pseudomonas. These bacteria were identified, counted and examined for its susceptibility against 10 antibiotics. The plasmids were screened in these strains. MRSA genes were also examined using PCR. RESULTS: Thirty-two bacterial strains were isolated from Nile and ground water and identified as S. flexneri, S. sonnei, S. serovar Newport, Pseudomonas aeruginosa and E. coli strains according to standard methods. According to antibiotic susceptibility test, 81% of strains were resistant to Cefepime, whereas 93.75% were sensitive to Ciprofloxacin. Correlation analysis between plasmids profiles and antibiotics sensitivities showed that 50% of the total strains had plasmids. These strains showed resistance to 50% of the used antibiotics (as average value); whereas, the plasmids free strains (50%) were resistant to 48.7% of the antibiotics. No distinct correlation between plasmids and antibiotic resistance in some strains could be concluded in this study. No MRSA gene was detected among these non-staphylococci strains. No bacteria were isolated from treated tap water. CONCLUSIONS: Thirty-three bacterial strains; 10 strains of E. coli, 10 strains of S. flexneri, 3 strains S. sonnei, 2 strains of S. serovar Newport, and 7 strains of P. aeruginosa, were isolated and identified from Nile water and ground water in Sohag governorate. The prevalence of enteric bacteria in water sources in studying area was considerable. No clear or distinct correlation could be concluded between plasmids and antibiotic resistance. No MRSA gene was detected in these non-staphylococci strains, and no pathogenic bacteria were isolated from treated tap water. The hygiene procedures in the studying area seem to be adequate, despite the failure to maintain water sources form sewage pollution.201525763135
554750.9999Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages. This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas) and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77%) and ampicillin (69.2%). More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%), ceftiofur (53.8%), and erythromycin (53.3%). All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.201729147114
554560.9999Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Wide varieties of antibiotics are used in poultry farms to improve the growth and also to control the infection in broiler chicken. To identify the seriousness of the same in the poultry sector, current study has been designed to analyze the presence of tetracycline in poultry feed and also the tetracycline resistance among the bacteria released through the excreta of poultry. In the study, 27 bacteria belonging to the Escherichiacoli and Klebsiellapneumoniae. were isolated from the faecal samples collected from five different farms. Antibiotic susceptibility analysis showed 77% of E. coli and 100% of the K. pneumoniae. to be resistant to tetracycline. Further, molecular screening for tetA and tetB genes showed 85.18% of isolates to have tetA and 22.22% with tetB. The presence of tetracycline in collected feed samples was also analysed quantitatively by Liquid chromatography-mass spectrometry (LC-MS). Here, three out of five feed samples were found to be positive for tetracycline. The study showed a direct correlation between the antibiotic supplemented feed and the emergence of antimicrobial resistance among the intestinal microflora. The results of the study indicate the need for strict control over antibiotic use in animal feed to limit the rapid evolution and spread of antimicrobial resistance.202033039593
564570.9999Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province. Bacillus cereus is a common pathogen causing foodborne diseases, secreting and producing a large number of toxins that can cause a variety of diseases and pose many threats to human health. In this study, 73 strains of Bacillus cereus were isolated and identified from six types of foods from seven different cities in a province, and the antibiotic-resistant phenotype was detected by using the Bauer-Kirby method. Results showed that the 73 isolates were completely sensitive to gentamicin and 100% resistant to chloramphenicol, in addition to which all strains showed varying degrees of resistance to 13 other common antibiotics, and a large number of strains resistant to multiple antibiotics were found. A bioinformatic analysis of the expression of resistance genes in Bacillus cereus showed three classes of antibiotic-resistant genes, which were three of the six classes of antibiotics identified according to the resistance phenotype. The presence of other classes of antibiotic-resistant genes was identified from genome-wide information. Antibiotic-resistant phenotypes were analyzed for correlations with genotype, and remarkable differences were found among the phenotypes. The spread of antibiotic-resistant strains is a serious public health problem that requires the long-term monitoring of antimicrobial resistance in Bacillus cereus, and the present study provides important information for monitoring antibiotic resistance in bacteria from different types of food.202338138092
557880.9999Resistance of Escherichia coli from healthy donors and from food--an indicator of antimicrobial resistance level in the population. Escherichia coli, being an important part of normal intestinal flora, is a frequent carrier of antimicrobial drug resistance markers and food is the most important vector of antimicrobial resistance genes between humans and animals. The aim of this study was to confirm the presence and frequency of resistance markers in Escherichia coli from intestinal flora and from food as an indicator of antimicrobial resistance level in the population. The experiment included 100 fecal Escherichia coli isolates from healthy donors, 50 isolated in 2007 and 50 in 2010, and 50 from food samples. The resistance markers were found in all groups of isolates. The resistance to ampicillin and cotrimoxazole was most commonly found. The finding of multi-drug-resistant strains and resistance to ciprofloxacin is important. The frequency of resistance markers was similar in food and feces. The results of this study show the need to introduce systematic monitoring of antimicrobial resistance of these bacteria.201121970069
554690.9999Antibiotic resistance and Caco-2 cell invasion of Pseudomonas aeruginosa isolates from farm environments and retail products. The potential pathogenicity of Pseudomonas aeruginosa isolates from food animals, retail meat products, and food processing environments was evaluated by determining their antibiotic resistance profiles and invasiveness into human intestinal Caco-2 cell. In general, the genomically diversified isolates of P. aeruginosa were resistant to beta-lactams (ampicillin, amoxicillin-clavulanic acid, cefoxitin, ceftiofur, and cephalothin), chloramphenicol, tetracycline, kanamycin, nalidixic acid, and sulfamethoxazole-trimethoprim. Acquisition of any other antibiotic resistance genes, such as class 1 integrons and other beta-lactamase genes, was not found in the tested isolates. The expression of OprM membrane protein, which is associated with a multidrug efflux system, played a major role in their antibiotic resistance. Single mutation in the GyrA to confer resistance to nalidixic acids was also found in the tested isolates, indicating that these factors could synergistically affect the resistance of the P. aeruginosa isolates. The number of bacteria invading into the Caco-2 cells was 2.5 log(10) CFU/ml on average. Therefore, the public health concern of P. aeruginosa could be relevant since its occurrence in food animals could cross contaminate the retail meat products during food handling and processing.200717289197
2060100.9999Plasmid-mediated high-level gentamicin resistance among enteric bacteria isolated from pet turtles in Louisiana. The sale of small turtles is banned by the Food and Drug Administration from the U.S. market due to concerns about their excretion of Salmonella spp. To produce a safe pet for the export market, the Louisiana pet turtle industry uses gentamicin sulfate baths (1,000 microg/ml) to eradicate Salmonella spp. from turtle eggs. In 1999, we analyzed bacterial samples recovered from turtle farms and found that strains of Salmonella enterica subsp. arizonae and other bacteria, such as Enterobacter cloacae, Citrobacter freundii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were resistant to high concentrations of gentamicin (>2,000 microg/ml) and to other aminoglycosides. The goal of this study was to identify the gene(s) which contributes to the high-level gentamicin resistance phenotype observed in bacteria from environmental samples with turtle farming activity, particularly the salmonellae, and to estimate the incidence of such genes in these bacteria. R plasmids from gentamicin-resistant strains were transferred by conjugation and transformation to naive Escherichia coli cells. Cloning and sequencing of the gentamicin resistance determinants on these plasmids revealed the presence of the aminoglycoside acetyltransferase genes aac(3)-IIa and aac(3)-VIa; the latter was present as a gene cassette of a class 1 integron. Multiplex PCR assays showed that every gentamicin-resistant isolate carried one of these acetyltransferase genes. Pulsed-field gel electrophoresis and restriction enzyme digestion analysis of R plasmids carrying these genes revealed different restriction profiles and sizes, indicating a dissemination of the gentamicin resistance genes through mobile molecular elements. The data presented highlight the need to develop an alternate method for the eradication of Salmonella spp. from turtle eggs.200616391058
5510110.9999Investigating possible association between multidrug resistance and isolate origin with some virulence factors of Escherichia coli strains isolated from infant faeces and fresh green vegetables. AIMS: In this study, the association between multidrug resistance (MDR) and the expression of some virulence factors were evaluated in Escherichia coli strains isolated from infant faeces and fresh green vegetables. The effect of isolate origin on associated virulence factors was evaluated. In addition, genetic fingerprinting of a sample of these isolates (10 isolates from each group) was studied in order to detect any genetic relatedness among these isolates. METHODS AND RESULTS: Escherichia coli isolates were divided into four groups based on their origin (human faeces or plant) and their antibiotic resistance (multiresistance or susceptible). PCR was used to investigate heat-labile and heat-stable enterotoxin genes, and four siderophore genes (aerobactin, enterobactin, salmochelin and yersiniabactin). Genetic fingerprinting of the isolates was performed using enterobacterial repetitive intergenic consensus PCR. Siderophore production was measured by a colorimetric method. Biofilm formation was evaluated by a crystal violet assay. The results of the study showed that the expression of MDR is not significantly associated with an increase in these virulence factors or with biofilm formation. However, the origin of isolates had a significant association with siderophore gene availability and consequently on the concentrations of siderophores released. Genetic fingerprinting indicated that human and plant isolates have the same clonal origin, suggesting their circulation among humans and plants. CONCLUSION: Antibiotic-susceptible strains of E. coli may be as virulent as MDR strains. Results also suggest that the environment can play a potential role in selection of strains with specific virulence factors. SIGNIFICANCE AND IMPACT OF THE STUDY: Antibiotic-susceptible isolates of Escherichia coli from plant or human origin can be as virulent as the multidrug resistance (MDR) ones. Genetic relatedness was detected among the isolates of plant and human origin, indicating the circulation of these bacteria among human and plants. This could imply a potential role for environmental antimicrobial resistant bacteria in human infection.201931034123
5646120.9999Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. Staphylococcus spp. and Mammaliicoccus spp. colonize the skin and mucosa of humans and other animals and are responsible for several opportunistic infections. Staphylococci antibiotic resistance may be present in the environment due to the spread of treated and untreated manure from the livestock industry due to antibiotic use to disease control or growth promoter. In this work, we analyzed the species distribution and antimicrobial susceptibility of Staphylococcus and Mammaliicoccus species along different sites of a swine manure treatment plant from Southeastern Brazil. Bacterial colonies were obtained on mannitol salt agar, selected after catalase test and Gram staining, and finally identified by mass spectrometry and sequencing of the tuf gene. According to the results, S.cohnii and S. simulans were the most prevalent species. Antibiotic resistance test revealed that several strains were resistant to multiple drugs, with high levels of chloramphenicol resistance (98%), followed by erythromycin (79%), tetracycline (73%), gentamicin (46%), ciprofloxacin (42%), cefoxitin (18%), sulfamethoxazole + trimethoprim (12%), and linezolid (4%). In addition, gene detection by PCR showed that all strains carried at least 2 resistance genes and one of them carried all 11 genes investigated. Using the GTG(5)-PCR approach, a high genetic similarity was observed between some strains that were isolated from different points of the treatment plant. Although some were seemingly identical, differences in their resistance phenotype and genotype suggest horizontal gene transfer. The presence of resistant bacteria and resistance genes along the treatment system highlights the potential risk of contamination by people in direct contact with these animals and the soil since the effluent is used as a biofertilizer in the surrounding environment.202336515883
5598130.9999Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products.202540298519
3663140.9999Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted.202438391534
5567150.9999Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry. Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry). A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC). Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of β-lactamases- (ESBLs-) producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria.201526579536
5544160.9999Assessing the Effect of Oxytetracycline on the Selection of Resistant Escherichia coli in Treated and Untreated Broiler Chickens. Oxytetracycline (OTC) is administered in the poultry industry for the treatment of digestive and respiratory diseases. The use of OTC may contribute to the selection of resistant bacteria in the gastrointestinal tract of birds or in the environment. To determine the effect of OTC on the selection of resistant Escherichia coli strains post-treatment, bacteria were isolated from droppings and litter sampled from untreated and treated birds. Bacterial susceptibility to tetracyclines was determined by the Kirby-Bauer test. A total of 187 resistant isolates were analyzed for the presence of tet(A), (B), (C), (D), (E), and (M) genes by PCR. Fifty-four strains were analyzed by PFGE for subtyping. The proportion of tetracycline-resistant E. coli strains isolated was 42.88%. The susceptibility of the strains was treatment-dependent. A high clonal diversity was observed, with the tet(A) gene being the most prevalent, followed by tet(C). Even at therapeutic doses, there is selection pressure on resistant E. coli strains. The most prevalent resistance genes were tet(A) and tet(C), which could suggest that one of the main mechanisms of resistance of E. coli to tetracyclines is through active efflux pumps.202338136686
5642170.9999Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin. The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the environment.201526385434
5582180.9999Detection and prevalence of antimicrobial resistance genes in Campylobacter spp. isolated from chickens and humans. Campylobacter spp. are common pathogenic bacteria in both veterinary and human medicine. Infections caused by Campylobacter spp. are usually treated using antibiotics. However, the injudicious use of antibiotics has been proven to spearhead the emergence of antibiotic resistance. The purpose of this study was to detect the prevalence of antibiotic resistance genes in Campylobacter spp. isolated from chickens and human clinical cases in South Africa. One hundred and sixty one isolates of Campylobacter jejuni and Campylobacter coli were collected from chickens and human clinical cases and then screened for the presence of antimicrobial resistance genes. We observed a wide distribution of the tetO gene, which confers resistance to tetracycline. The gyrA genes that are responsible quinolone resistance were also detected. Finally, our study also detected the presence of the blaOXA-61, which is associated with ampicillin resistance. There was a higher (p < 0.05) prevalence of the studied antimicrobial resistance genes in chicken faeces compared with human clinical isolates. The tetO gene was the most prevalent gene detected, which was isolated at 64% and 68% from human and chicken isolates, respectively. The presence of gyrA genes was significantly (p < 0.05) associated with quinolone resistance. In conclusion, this study demonstrated the presence of gyrA (235 bp), gyrA (270 bp), blaOXA-61 and tetO antimicrobial resistance genes in C. jejuni and C. coli isolated from chickens and human clinical cases. This indicates that Campylobacter spp. have the potential of resistance to a number of antibiotic classes.201728582978
5569190.9999Antimicrobial Resistance and Extended-Spectrum Beta-Lactamase Production in Enterobacteria Isolated from Free-Living Primates. The aim of this study was to evaluate the profile of antimicrobial resistance in members of the family Enterobacteriaceae and to detect strains of extended-spectrum beta-lactamases (ESBL) in free-living Sapajus nigritus. Oral and rectal swabs were collected from 15 primates to isolate and identify bacteria, conduct phenotypic tests to detect antimicrobial sensitivity and ESBL-producing strains, and calculate the multiple antimicrobial resistance index. The least effective antimicrobial was amoxicillin (72.72%) and ampicillin (57.57%), and the samples were considered as high risk for public health. No sample was positive for ESBL production. The results show that this study is relevant to One Health initiatives, considering the possibility of transmission of bacterial resistance and resistant genes originating from direct or indirect interaction of S. nigritus with parkgoers. However, these animals cannot be considered as the only reservoirs and transmitters of resistant bacteria as they can be contaminated by human-origin bacteria that can be extremely harmful and often prove lethal to them that play an important role in relationship to the ecology, spreading seeds and controlling insects.202032315580