# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5525 | 0 | 1.0000 | A comprehensive survey of Aeromonas sp. and Vibrio sp. in seabirds from southeastern Brazil: outcomes for public health. AIMS: To perform a microbiological survey regarding the presence, prevalence and characterization of Aeromonas sp. and Vibrio sp. in debilitated wrecked marine birds recovered from the centre-north coast of the state of Rio de Janeiro, Brazil. METHODS AND RESULTS: Swabs obtained from 116 alive and debilitated wrecked marine birds, comprising 19 species, from the study area were evaluated by biochemical methods. Antimicrobial susceptibility tests and pathogenicity gene screening were performed for bacterial strains of public health importance. Vibrio sp. and Aeromonas sp. were identified, as well as certain pathogenic genes and resistance to selected antimicrobials. CONCLUSIONS: This study demonstrates that the identified bacteria, mainly Vibrio sp., are fairly prevalent and widespread among several species of seabirds and highlights the importance of migratory birds in bacterial dispersion. In addition, it demonstrates the importance of the bacterial strains regarding their pathogenic potential. Therefore, seabirds can act as bacterial reservoirs, and their monitoring is of the utmost importance in a public health context. SIGNIFICANCE AND IMPACT OF THE STUDY: The study comprehensively evaluates the importance of seabirds as bacteria of public health importance reservoirs, since birds comprising several pathogenic bacterial species were evaluated. | 2018 | 29356247 |
| 5577 | 1 | 0.9998 | Study on Bacteria Isolates and Antimicrobial Resistance in Wildlife in Sicily, Southern Italy. Wild environments and wildlife can be reservoirs of pathogens and antibiotic resistance. Various studies have reported the presence of zoonotic bacteria, resistant strains, and genetic elements that determine antibiotic resistance in wild animals, especially near urban centers or agricultural and zootechnical activities. The purpose of this study was the analysis, by cultural and molecular methods, of bacteria isolated from wild animals in Sicily, Italy, regarding their susceptibility profile to antibiotics and the presence of antibiotic resistance genes. Bacteriological analyses were conducted on 368 wild animals, leading to the isolation of 222 bacterial strains identified by biochemical tests and 16S rRNA sequencing. The most isolated species was Escherichia coli, followed by Clostridium perfringens and Citrobacter freundii. Antibiograms and the determination of resistance genes showed a reduced spread of bacteria carrying antibiotic resistance among wild animals in Sicily. However, since several wild animals are becoming increasingly close to residential areas, it is important to monitor their health status and to perform microbiological analyses following a One Health approach. | 2021 | 33478101 |
| 5716 | 2 | 0.9998 | Genomic analysis of Salmonella isolated from canal water in Bangkok, Thailand. Antimicrobial resistance (AMR) poses an escalating global public health threat. Canals are essential in Thailand, including the capital city, Bangkok, as agricultural and daily water sources. However, the characteristic and antimicrobial-resistance properties of the bacteria in the urban canals have never been elucidated. This study employed whole genome sequencing to characterize 30 genomes of a causal pathogenic bacteria, Salmonella enterica, isolated from Bangkok canal water between 2016 and 2020. The dominant serotype was Salmonella Agona. In total, 35 AMR genes and 30 chromosomal-mediated gene mutations were identified, in which 21 strains carried both acquired genes and mutations associated with fluoroquinolone resistance. Virulence factors associated with invasion, adhesion, and survival during infection were detected in all study strains. 75.9% of the study stains were multidrug-resistant and all the strains harbored the necessary virulence factors associated with salmonellosis. One strain carried 20 resistance genes, including mcr-3.1, mutations in GyrA, ParC, and ParE, and typhoid toxin-associated genes. Fifteen plasmid replicon types were detected, with Col(pHAD28) being the most common type. Comparative analysis of nine S. Agona from Bangkok and 167 from public databases revealed that specific clonal lineages of S. Agona might have been circulating between canal water and food sources in Thailand and globally. These findings provide insight into potential pathogens in the aquatic ecosystem and support the inclusion of environmental samples into comprehensive AMR surveillance initiatives as part of a One Health approach. This approach aids in comprehending the rise and dissemination of AMR and devising sustainable intervention strategies.IMPORTANCEBangkok is the capital city of Thailand and home to a large canal network that serves the city in various ways. The presence of pathogenic and antimicrobial-resistant Salmonella is alarming and poses a significant public health risk. The present study is the first characterization of the genomic of Salmonella strains from Bangkok canal water. Twenty-two of 29 strains (75.9%) were multidrug-resistant Salmonella and all the strains carried essential virulence factors for pathogenesis. Various plasmid types were identified in these strains, potentially facilitating the horizontal transfer of AMR genes. Additional investigations indicated a potential circulation of S. Agona between canal water and food sources in Thailand. The current study underscores the role of environmental water in an urban city as a reservoir of pathogens and these data obtained can serve as a basis for public health risk assessment and help shape intervention strategies to combat AMR challenges in Thailand. | 2024 | 38563788 |
| 5526 | 3 | 0.9998 | Detection of Morganella morganii bound to a plastic substrate in surface water. OBJECTIVES: Around the globe, escalation in rare opportunistic microbial infections is alarming as they are heading steadily towards 'superbug' status. In aquatic ecosystems, plastic fosters multidrug-resistant pathogenic bacteria and plays a significant role in trafficking antibiotic-resistant genes. In this study, we focused on a multidrug-resistant bacterial strain isolated from microbial communities found on plastic substrates of a volcanic lake in central Italy. METHODS: Extended-spectrum beta-lactamase-producing strains were isolated from both raw water and plastic substrates for a comparative investigation using microbiological and molecular methods, and antibiotic susceptibility profiling was performed against a panel of ten antibiotics. RESULTS: Molecular identification and Basic Local Alignment Search Tool analysis confirmed an almost identical sequencing pattern of two isolated strains and their homology with Morganella morganii. Antibiotic susceptibility tests revealed their resistance to almost all tested antibiotics. Class 1 integron-associated gene (intI1) and seven antibiotic resistance genes were detected in both strains, confirming their superbug status. CONCLUSION: To our knowledge, this is the first study on the characterization of extended-spectrum beta-lactamase-producing M. morganii isolated from the biofilm of plastic substrates, depicting the potential toxicity of plastic in harbouring and dispersing virulent, multidrug-resistant, opportunistic human pathogens. | 2023 | 36764658 |
| 5619 | 4 | 0.9998 | Whole Genome Sequencing of Escherichia coli and Enterococcus spp. in wildlife-livestock interface: a pilot study. OBJECTIVES: This pilot study provides a multidisciplinary investigation to monitor livestock-wildlife interface. Ecological data, microbiological investigations, and whole genome sequencing were used to characterize eight bacterial isolates obtained from sympatric domestic and wild ruminants in Maiella National Park (Italy) in terms of genetic patterns of antimicrobial resistance. METHODS: Using selective culturing of fresh fecal samples of monitored and georeferenced populations of Apennine chamois, goats, red deer, and sheep, Escherichia coli, Enterococcus faecium, and Enterococcus faecalis isolates were isolated and subjected to minimum inhibitory concentration determination and whole genome sequencing. RESULTS: The analyzed isolates showed phenotypic and genotypic resistance to tetracycline and critically important antibiotics such as linezolid and carbapenems. Virulence genes related to biofilm regulation and Shiga toxins were also detected. Furthermore, serotypes related to nosocomial infections, harbouring plasmids recognized as important mobile resistance gene transmitters, were identified. CONCLUSIONS: This multidisciplinary pilot study represents a promising initial step to identify the environmental drivers and the transmission routes of antimicrobial resistance and virulence factors, providing new data on bacteria from rare and endangered species such as Apennine chamois. | 2023 | 36764655 |
| 2571 | 5 | 0.9998 | Multidrug-resistant Enterobacter spp. in wastewater and surface water: Molecular characterization of β-lactam resistance and metal tolerance genes. Among the ESKAPE group pathogens, Enterobacter spp. is an opportunistic Gram-negative bacillus, widely dispersed in the environment, that causes infections. In the present study, samples of hospital wastewater, raw and treated urban wastewater, as well as surface receiving water, were collected to assess the occurrence of multidrug-resistant (MDR) Enterobacter spp. A molecular characterization of β-lactam antibiotic resistance and metal tolerance genes was performed. According to identification by MALDI-TOF MS, 14 isolates were obtained: 7 E. bugandensis, 5 E. kobei, and 2 E. cloacae. The isolates showed resistance mainly to β-lactam antibiotics, including those used to treat infections caused by MDR bacteria. Multiple antibiotic resistance index was calculated for all isolates. It allowed verify whether sampling points showed a high risk due to antibiotic resistant Enterobacter spp., as well as to determine if the isolates have been in environments with a frequent antibiotic use. Twelve isolates showed β-lactam antibiotic resistance gene, being the bla(KPC) widely detected. Regarding metal tolerance, 13 isolates showed at least two genes that encode metal tolerance mechanisms. Overall, metal tolerance mechanisms to silver, copper, mercury, arsenic and tellurium were found. New data on metal tolerance mechanisms dispersion and antibiotic-resistance characterization of the E. bugandensis and E. kobei species were here provided. The occurrence of MDR Enterobacter spp. in analyzed samples draws attention to an urgent need to put control measures into practice. It also evidences waterborne spread of clinically important antibiotic-resistant bacteria recognized as critical priority pathogens. | 2023 | 37356524 |
| 1923 | 6 | 0.9998 | Emerging Issues on Antibiotic-Resistant Bacteria Colonizing Plastic Waste in Aquatic Ecosystems. Antibiotic-resistant bacteria (ARB) adhesion onto plastic substrates is a potential threat to environmental and human health. This current research investigates the prevalence of two relevant human pathogens, Staphylococcus spp. and Klebsiella spp., and their sophisticated equipment of antibiotic-resistant genes (ARGs), retrieved from plastic substrates submerged into an inland water body. The results of microbiological analysis on selective and chromogenic media revealed the presence of colonies with distinctive phenotypes, which were identified using biochemical and molecular methods. 16S rDNA sequencing and BLAST analysis confirmed the presence of Klebsiella spp., while in the case of Staphylococcus spp., 63.6% of strains were found to be members of Lysinibacillus spp., and the remaining 36.3% were identified as Exiguobacterium acetylicum. The Kirby-Bauer disc diffusion assay was performed to test the susceptibility of the isolates to nine commercially available antibiotics, while the genotypic resistant profile was determined for two genes of class 1 integrons and eighteen ARGs belonging to different classes of antibiotics. All isolated bacteria displayed a high prevalence of resistance against all tested antibiotics. These findings provide insights into the emerging risks linked to colonization by potential human opportunistic pathogens on plastic waste commonly found in aquatic ecosystems. | 2024 | 38667014 |
| 5736 | 7 | 0.9998 | Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness. | 2025 | 40872636 |
| 2534 | 8 | 0.9998 | Prevalence, antibiotic resistance, and virulence gene profile of Escherichia coli strains shared between food and other sources in Africa: A systematic review. BACKGROUND AND AIM: Foodborne diseases caused by Escherichia coli are prevalent globally. Treatment is challenging due to antibiotic resistance in bacteria, except for foodborne infections due to Shiga toxin-producing E. coli, for which treatment is symptomatic. Several studies have been conducted in Africa on antibiotic resistance of E. coli isolated from several sources. The prevalence and distribution of resistant pathogenic E. coli isolated from food, human, and animal sources and environmental samples and their virulence gene profiles were systematically reviewed. MATERIALS AND METHODS: Bibliographic searches were performed using four databases. Research articles published between 2000 and 2022 on antibiotic susceptibility and virulence gene profile of E. coli isolated from food and other sources were selected. RESULTS: In total, 64 articles were selected from 14 African countries: 45% of the studies were conducted on food, 34% on animal samples, 21% on human disease surveillance, and 13% on environmental samples. According to these studies, E. coli is resistant to ~50 antimicrobial agents, multidrug-resistant, and can transmit at least 37 types of virulence genes. Polymerase chain reaction was used to characterize E. coli and determine virulence genes. CONCLUSION: A significant variation in epidemiological data was noticed within countries, authors, and sources (settings). These results can be used as an updated database for monitoring E. coli resistance in Africa. More studies using state-of-the-art equipment are needed to determine all resistance and virulence genes in pathogenic E. coli isolated in Africa. | 2023 | 38023276 |
| 5514 | 9 | 0.9998 | Resistance and virulence gene analysis and molecular typing of Escherichia coli from duck farms in Zhanjiang, China. INTRODUCTION: The widespread use of antibiotics in animal agriculture has increased the resistance of Escherichia coli, and pathogenic E. coli often harbor complex virulence factors. Antimicrobial resistance in pathogenic bacteria can cause public health problems. Correlation analyses of the resistance, virulence, and serotype data from the pathogenic bacteria found on farms and in the surrounding environment can thus provide extremely valuable data to help improve public health management. METHODS: In this investigation, we have assessed the drug resistance and virulence genes as well as the molecular typing characteristics of 30 E. coli strains isolated from duck farms in the Zhanjiang area of China. Polymerase chain reaction was used to detect the drug resistance and virulence genes as well as serotypes, and whole-genome sequencing was used to analyze the multilocus sequence typing. RESULTS: The detection rates for the oqxA resistance gene and fimC virulence gene were highest (93.3%, respectively). There were no correlations between the drug resistance and virulence gene numbers in the same strain. The epidemic serotype was O81 (5/24), ST3856 was an epidemic sequence type, and strains I-9 and III-6 carried 11 virulence genes. The E. coli strains from the duck farms in the Zhanjiang area were thus found to have a broad drug resistance spectrum, various virulence genes, complex serotypes, and certain pathogenicity and genetic relationship. DISCUSSION: Monitoring the spread of pathogenic bacteria and the provision of guidance regarding the use of antibiotics in the livestock and poultry industries will be required in the future in the Zhanjiang area. | 2023 | 37396302 |
| 5715 | 10 | 0.9998 | Genomic Characterization of Mobile Genetic Elements Associated with Multidrug-Resistant Acinetobacter Non-baumannii Species from Southern Thailand. This study investigated the genetic diversity, antimicrobial resistance profiles, and virulence characteristics of Acinetobacter non-baumannii isolates obtained from four hospitals in southern Thailand. Clinical data, genome information, and average nucleotide identity (ANI) were analyzed for eight isolates, revealing diverse genetic profiles and novel sequence types (STs). Minimum spanning tree analysis indicated potential clonal spread of certain STs across different geographic regions. Antimicrobial resistance genes (ARGs) were detected in all isolates, with a high prevalence of genes conferring resistance to carbapenems, highlighting the challenge of antimicrobial resistance in Acinetobacter spp. infections. Mobile genetic elements (MGEs) carrying ARGs were also identified, emphasizing the role of horizontal gene transfer in spreading resistance. Evaluation of virulence-associated genes revealed a diverse range of virulence factors, including those related to biofilm formation and antibiotic resistance. However, no direct correlation was found between virulence-associated genes in Acinetobacter spp. and specific clinical outcomes, such as infection severity or patient mortality. This complexity suggests that factors beyond gene presence may influence disease progression and outcomes. This study emphasizes the importance of continued surveillance and molecular epidemiological studies to combat the spread of multidrug-resistant (MDR) Acinetobacter non-baumannii strains. The findings provide valuable insights into the epidemiology and genetic characteristics of this bacteria in southern Thailand, with implications for infection control and antimicrobial management efforts. | 2024 | 38391535 |
| 1935 | 11 | 0.9998 | Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related. | 2021 | 34356729 |
| 5561 | 12 | 0.9997 | Antimicrobial Resistance of Escherichia coli and Pseudomonas aeruginosa from Companion Birds. Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated. | 2020 | 33171927 |
| 5562 | 13 | 0.9997 | Multidrug-Resistant Escherichia coli Strains to Last Resort Human Antibiotics Isolated from Healthy Companion Animals in Valencia Region. Failure in antibiotic therapies due to the increase in antimicrobial-resistant (AMR) bacteria is one of the main threats to public and animal health. In recent decades, the perception of companion animals has changed, from being considered as a work tool to a household member, creating a family bond and sharing spaces in their daily routine. Hence, the aim of this study is to assess the current epidemiological situation regarding the presence of AMR and multidrug resistance (MDR) in companion animals in the Valencia Region, using the indicator bacteria Escherichia coli as a sentinel. For this purpose, 244 samples of dogs and cats were collected from veterinary centres to assess antimicrobial susceptibility against a panel of 22 antibiotics with public health relevance. A total of 197 E. coli strains were isolated from asymptomatic dogs and cats. The results showed AMR against all the 22 antibiotics studied, including those critically important to human medicine. Moreover, almost 50% of the strains presented MDR. The present study revealed the importance of monitoring AMR and MDR trends in companion animals, as they could pose a risk due to the spread of AMR and its resistance genes to humans, other animals and the environment they cohabit. | 2023 | 37998840 |
| 5724 | 14 | 0.9997 | Convergence of virulence and resistance in international clones of WHO critical priority enterobacterales isolated from Marine Bivalves. The global spread of critical-priority antimicrobial-resistant Enterobacterales by food is a public health problem. Wild-caught seafood are broadly consumed worldwide, but exposure to land-based pollution can favor their contamination by clinically relevant antimicrobial-resistant bacteria. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we performed genomic surveillance and cell culture-based virulence investigation of WHO critical priority Enterobacterales isolated from marine bivalves collected in the Atlantic Coast of South America. Broad-spectrum cephalosporin-resistant Klebsiella pneumoniae and Escherichia coli isolates were recovered from eight distinct geographical locations. These strains harbored bla(CTX-M)-type or bla(CMY)-type genes. Most of the surveyed genomes confirmed the convergence of wide virulome and resistome (i.e., antimicrobials, heavy metals, biocides, and pesticides resistance). We identified strains belonging to the international high-risk clones K. pneumoniae ST307 and E. coli ST131 carrying important virulence genes, whereas in vitro experiments confirmed the high virulence potential of these strains. Thermolabile and thermostable toxins were identified in some strains, and all of them were biofilm producers. These data point to an alarming presence of resistance and virulence genes in marine environments, which may favor horizontal gene transfer and the spread of these traits to other bacterial species. | 2022 | 35383231 |
| 5723 | 15 | 0.9997 | A high-risk carbapenem-resistant Pseudomonas aeruginosa clone detected in red deer (Cervus elaphus) from Portugal. Pseudomonas aeruginosa is a ubiquitous bacterium, successfully exploiting a variety of environmental niches due to its remarkable metabolic versatility. The World Health Organization classifies P. aeruginosa as a "priority pathogen" due to its a great ability to overcome the action of antimicrobials, including carbapenems. Hitherto, most studies have focused on clinical settings from humans, but much less on animal and environmental settings, particularly on wildlife. In this work, we report the isolation of a carbapenem-resistant Pseudomonas aeruginosa strain recovered from the faeces of a red deer adult female sampled in a humanized area. This isolate was obtained during a nationwide survey on antimicrobial resistance in wildlife aimed to determine the occurrence of carbapenem-resistant bacteria among 181 widely distributed wild ungulates. This P. aeruginosa isolate was found to be a high-risk clone, belonging to the sequence type (ST) 274. The genomic analysis of P. aeruginosa isolate UP4, classified this isolate as belonging to serogroup O3, which was also found to harbour the genes bla(PAO), bla(PDC-24), bla(OXA-486) (encoding resistance to beta-lactams), aph(3')-IIb (aminoglycosides resistance), fosA (fosfomycin resistance) and catB7 (chloramphenicol resistance). Antimicrobial susceptibility screening, according to EUCAST, showed resistance to imipenem and intermediate resistance to meropenem and doripenem. To our knowledge, this is the first description of carbapenem-resistant P. aeruginosa in deer in Europe. Our results highlight the importance of wild ungulates either as victims of human activity or amplifiers of AMR, either way with potential impacts on animal, human and ecosystem health, since excretion of AMR bacteria might directly or indirectly contaminate other animals and the surrounding environment, perpetuating the spill-over and chain dissemination of AMR determinants. | 2022 | 35318052 |
| 5682 | 16 | 0.9997 | Reservoirs of resistance: polymyxin resistance in veterinary-associated companion animal isolates of Pseudomonas aeruginosa. BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen and a major cause of infections. Widespread resistance in human infections are increasing the use of last resort antimicrobials such as polymyxins. However, these have been used for decades in veterinary medicine. Companion animals are an understudied source of antimicrobial resistant P. aeruginosa isolates. This study evaluated the susceptibility of P. aeruginosa veterinary isolates to polymyxins to determine whether the veterinary niche represents a potential reservoir of resistance genes for pathogenic bacteria in both animals and humans. METHODS AND RESULTS: Clinical P. aeruginosa isolates (n=24) from UK companion animals were compared for antimicrobial susceptibility to a panel of human-associated isolates (n=37). Minimum inhibitory concentration (MIC) values for polymyxin B and colistin in the companion animals was significantly higher than in human isolates (P=0.033 and P=0.013, respectively). Genotyping revealed that the veterinary isolates were spread throughout the P. aeruginosa population, with shared array types from human infections such as keratitis and respiratory infections, suggesting the potential for zoonotic transmission. Whole genome sequencing revealed mutations in genes associated with polymyxin resistance and other antimicrobial resistance-related genes. CONCLUSION: The high levels of resistance to polymyxin shown here, along with genetic similarities between some human and animal isolates, together suggest a need for sustained surveillance of this veterinary niche as a potential reservoir for resistant, clinically relevant bacteria in both animals and humans. | 2019 | 31239295 |
| 1926 | 17 | 0.9997 | Whole genome sequencing revealed high occurrence of antimicrobial resistance genes in bacteria isolated from poultry manure. BACKGROUND: Global demand for food has driven expansion and intensification of livestock production, particularly in developing nations where antibiotic use is often routine. Waste from poultry production, including manure, is commonly utilized as fertilizers in agroecosystems, risking environmental contamination with potentially zoonotic bacteria and antimicrobial resistance genes (ARGs). METHODS: Here, 33 bacterial isolates were recovered from broiler (n = 17) and layer (n = 16) chicken manure by aerobic culture using Luria Bertani agar. Antimicrobial susceptibility testing (AST) was performed using disc diffusion method. MALDI-ToF and 16S rRNA sequencing were used to identify and compare a subset of antibiotic-resistant isolates (n = 13). Comparison of whole genome sequence assemblies and phenotypic assays were used to assess capacity for biofilm formation, heavy metal tolerance and virulence. RESULTS: AST by disc diffusion revealed all isolates were resistant to a minimum of three antibiotics, with resistance to ampicillin, co-trimoxazole, fluoroquinolones, tetracyclines, streptomycin, rifampicin and/or chloramphenicol detected. Stutzerimonas sp. and Acinetobacter sp. were the common genera observed in this study. Genome sequencing of each selected isolate revealed carriage of multiple ARGs capable of conferring resistance to many antimicrobials commonly employed in poultry production and human medicine, including tetracyclines, quinolones, macrolides, sulfonamide and cephalosporins. CONCLUSIONS: The high occurrence of ARGs in studied bacterial isolates confirms that poultry manure could act as a source of genetic material that could be transferred to commensal microbiota and opportunistic pathogens of humans. Understanding the complex resistome interplay between humans, animals, and the environment requires a One Health approach, with implications for agricultural settings and public health. | 2025 | 39880102 |
| 5519 | 18 | 0.9997 | Antimicrobial susceptibility, virulence potential and sequence types associated with Arcobacter strains recovered from human faeces. PURPOSE: The genus Arcobacter includes bacteria that are considered emergent pathogens because they can produce infections in humans and animals. The most common symptoms are bloody and non-bloody persistent diarrhea but cases with abdominal cramps without diarrhea or asymptomatic cases have also been described as well as cases with bacteremia. The objective was to characterize Arcobacter clinical strains isolated from the faeces of patients from three Spanish hospitals. METHODOLOGY: We have characterized 28 clinical strains (27 of A. butzleri and one of A. cryaerophilus) isolated from faeces, analysing their epidemiological relationship using the multilocus sequence typing (MLST) approach and screening them for their antibiotic susceptibility and for the presence of virulence genes.Results/Key findings. Typing results showed that only one of the 28 identified sequence types (i.e. ST 2) was already present in the MLST database. The other 27 STs constituted new records because they included new alleles for five of the seven genes or new combinations of known alleles of the seven genes. All strains were positive for the ciaB virulence gene and sensitive to tetracycline. However, 7.4 % of the A. butzleri and A. cryaerophilus strains showed resistance to ciprofloxacin. CONCLUSION: The fact that epidemiological unrelated strains show the same ST indicates that other techniques with higher resolution should be developed to effectively recognize the infection source. Resistance to ciprofloxacin, one of the antibiotics recommended for the treatment of Arcobacter intestinal infections, demonstrated in 10.7 % of the strains, indicates the importance of selecting the most appropriate effective treatment. | 2017 | 29120301 |
| 1606 | 19 | 0.9997 | Salmonella spp. profiles isolated from seabird samples from the Brazilian coast. In view of growing concerns, in a One Health context, regarding the transport and dissemination of pathogenic microorganisms among seabirds and other vertebrate animals, including humans, the aim of this study was to identify Salmonella spp. in stranded and non-stranded resident and migratory wild seabirds from the Brazilian coast. Antimicrobial susceptibility and molecular profiles, quinolone resistance genes and antigenic characterization of the isolates were also carried out. Fresh faeces and cloacal swabs were obtained totaling 122 seabirds sampled throughout different Brazilian coast regions. At the laboratory, sample culturing, Salmonella spp. isolation and biochemical identification were performed, followed by antigenic profile identification by serum agglutination, susceptibility profile characterization by the agar disc diffusion technique, detection of quinolone resistance genes (qnrA, qnrB, qnrS) using the multiplex polymerase chain reaction technique (multiplex PCR) and, finally, isolates profiles identification by pulsed field gel electrophoresis (PFGE). Salmonella enterica subsp. enterica was identified in 7% of the studied birds, comprising three different serovars: Panama (63 %), Typhimurium (25 %) and Newport (13 %). The most important findings reported herein are the first description of Salmonella panama in seabirds and the totality of isolates being resistant (or intermediate) to at least one tested antimicrobial, with emphasis on quinolone resistance. The molecular results suggest that the observed resistance cannot be explained by the presence of plasmid-mediated quinolone resistance genes. The PFGE suggests that the Panama and Newport profiles detected herein are not yet widespread in Brazil, unlike Typhimurium, which is already well distributed throughout the country. Considering this finding, we suggest that seabirds are an important link in the epidemiological chain of this serovar. The monitoring of these bacteria in seabirds, as well as of their susceptibility profiles to antimicrobials, must be continuous, strengthening the role of these animals as environmental health indicators and sentinels. | 2021 | 34175569 |