# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5520 | 0 | 1.0000 | Emergence of highly virulent and multidrug-resistant Escherichia coli in breeding sheep with pneumonia, Hainan Province, China. BACKGROUND: Sheep are a rarely raised livestock in Hainan Island, China, because of the unfavorable tropical marine climate. Here, this article reports a severe pneumonia in the sheep breeding and domestication facility caused acute mortality during the winter 2021-2022. METHODS: Six sheep were clinically dissected and histopathologically observed. The bacteria were isolated and cultured by traditional methods and identified by 16S rRNA sequencing. The genotypes, serotypes, virulence genes and antimicrobial resistance genes were analyzed by PCR and whole genome sequencing. The pubMLST website was used for phylogenetic analysis of related strains. Kirby-Bauer disk diffusion method was used for antimicrobial susceptibility test. The antimicrobial susceptibility test standard was referred to the Clinical and Laboratory Standards Institute (CLSI). The virulence of bacteria was detected by mouse infection model. RESULTS: Etiology and histopathology examination of the pneumonia reveled pulmonary abscess and alveolar neutrophilia and pulmonary fibrinous exudates. Escherichia coli was the only bacterial species isolated, primarily from the lungs and blood of the six dead or moribund sheep, a total of 29 E. coli strains were isolated. Antimicrobial resistance profiling shows that all the isolates were resistant to six agents (penicillin, ampicillin, cephalothin, neomycin, erythromycin, and vancomycin) belonging to five classes of antibiotics, classifying them as multi drug resistant (MDR). Furthermore, genotyping analysis revealed all strains were common with 11-17 virulence factors indicating high pathogenicity. The lab mice infection model shows that all strains severely affect the health status particularly weight loss, lethargy, pneumonia and shortly lead to death. The molecular epidemiological analysis indicated most strains share the same genotype as previously reported strains in humans and other farmed animals this suggests a high possibility of cross-species transmission (CST) of virulent and MDR isolates. This CST could be from sheep to humans and other farmed animals or from humans and other farmed animals to sheep. CONCLUSION: Therefore, this study indicates that E. coli is an emerging threat that causes sheep pneumonia in Hainan, and the quarantine of contacts is important to control the spread of virulent E. coli and the transmission of acquired resistance genes between humans and farmed animals such as sheep. | 2024 | 39507338 |
| 1961 | 1 | 0.9998 | Trends in Antimicrobial Resistance of Canine Otitis Pathogens in the Iberian Peninsula (2010-2021). Background: The close relationship between humans and petsraises health concerns due to the potential transmission of antimicrobial-resistant (AMR) bacteria and genes. Bacterial otitis is an emerging health problem in dogs, given its widespread prevalence and impact on animal welfare. Early detection of resistance is vital in veterinary medicine to anticipate future treatment challenges. Objective: This study aimed to determine the prevalence of AMR bacteria involved in 12,498 cases of otitis in dogs from the Iberian Peninsula and the evolution of AMR patterns over an 11-year period. Methods: Data was provided by the Veterinary Medicine Department of a large private diagnostic laboratory in Barcelona. Antimicrobial susceptibility testing was performed using the standard disk diffusion method and minimum inhibitory concentration (MIC) testing. Results: The frequency of the principal bacterial agents was 35% Staphylococcus spp. (principally S. pseudointermedius), 20% Pseudomonas spp. (P. aeruginosa), 13% Streptococcus spp. (S. canis), and 11% Enterobacterales (Escherichia coli and Proteus mirabilis). Antimicrobial susceptibility testing revealed P. aeruginosa (among Gram-negatives) and Enterococcus faecalis (among Gram-positives) as the species with the highest AMR to multiple antimicrobial classes throughout the years. According to the frequency and time evolution of multidrug resistance (MDR), Gram-negative bacteria like P. mirabilis (33%) and E. coli (25%) presented higher MDR rates compared to Gram-positive strains like Corynebacterium (7%) and Enterococcus (5%). The AMR evolution also showed an increase in resistance patterns in Proteus spp. to doxycycline and Streptococcus spp. to amikacin. Conclusions: This information can be useful for clinicians, particularly in this region, to make rational antimicrobial use decisions, especially when empirical treatment is common in companion animal veterinary medicine. In summary, improving treatment guidelines is a key strategy for safeguarding both animal and human health, reinforcing the One Health approach. | 2025 | 40298475 |
| 5599 | 2 | 0.9998 | Antimicrobial susceptibility profiles of Staphylococcus spp. contaminating raw goat milk. BACKGROUND AND AIM: Antimicrobial resistance poses a major threat to global public health. Foodstuff of animal origin can serve as potential vehicles for the dissemination of antimicrobial-resistant bacteria and resistance genes to consumers. In view of the lack of knowledge about antimicrobial resistance in bacteria associated with goat milk, the aim of this study was to report species-level identification and antimicrobial susceptibility profiles of a large collection of Staphylococcus spp. isolates recovered from raw goat milk in Brazil. MATERIALS AND METHODS: A total of 434 Staphylococcus spp. isolates originated from 510 goat milk samples in Northeast Brazil were investigated. The isolates were obtained by conventional microbiological methods. Species identification and antimicrobial susceptibility testing were performed by means of a semi-automated system using a panel for biochemical tests and broth microdilution method for 19 antimicrobial drugs. RESULTS: Although Staphylococcus aureus (22.6%) accounted for the majority of the isolates, a total of 13 different non-aureus staphylococci spp. were identified. High resistance rates against erythromycin (40.8%), and the beta-lactams ampicillin (45.9%) and penicillin (42.9%) were observed among S. aureus isolates. The most significant findings were related to the resistance against quinupristin-dalfopristin, a drug of last resort used in human medicine to treat infections caused by vancomycin-resistant S. aureus and enterococci. CONCLUSION: The high diversity of Staphylococcus spp. showing phenotypic resistance against different antimicrobial drugs encourages further investigations on the real impact of these bacteria as reservoirs of antimicrobial resistance genes to consumers. Furthermore, the potential impact of technological processes, such as pasteurization, fermentation, and maturation, on the maintenance and dissemination of antimicrobial resistance among the microbial populations in milk and dairy products must also be investigated. | 2021 | 34220106 |
| 5618 | 3 | 0.9997 | An Epidemiological Study on Salmonella in Tibetan Yaks from the Qinghai-Tibet Plateau Area in China. Salmonella is an important foodborne pathogen that can cause a range of illnesses in humans; it has also been a key focus for monitoring in the field of public health, including gastroenteritis, sepsis, and arthritis, and can also cause a decline in egg production in poultry and diarrhea and abortion in livestock, leading to death in severe cases, resulting in huge economic losses. This study aimed to investigate the isolation rate, antimicrobial resistance, serotypes, and genetic diversity of Salmonella isolated from yak feces in various regions on the Qinghai-Tibet Plateau. A total of 1222 samples of yak dung were collected from major cities in the Qinghai-Tibet Plateau area, and the sensitivity of the isolated bacteria to 10 major classes of antibiotics was determined using the K-B paper disk diffusion method for drug susceptibility. Meanwhile, the serotypes of the isolated bacteria were analyzed using the plate agglutination test for serum antigens, and their carriage of drug resistance and virulence genes was determined using PCR and gel electrophoresis experiments. The isolated bacteria were also classified using MLST (Multi-Locus Sequence Typing). The overall isolation rate for Salmonella was 18.25% (223/1222), and the results of the antibiotic susceptibility tests showed that 98.65% (220/223) of the isolated bacteria were resistant to multiple antibiotics. In the 223 isolates of Salmonella, eight classes of 20 different resistance genes, 30 serotypes, and 15 different types of virulence genes were detected. The MLST analysis identified 45 distinct sequence types (STs), including five clonal complexes, of which ST34, ST11, and ST19 were the most common. These findings contribute valuable information about strain resources, genetic profiles, and typing data for Salmonella in the Qinghai-Tibet Plateau area, facilitating improved bacterial surveillance, identification, and control in yak populations. They also provide certain data supplements for animal Salmonella infections globally, filling research gaps. | 2024 | 39765601 |
| 1960 | 4 | 0.9997 | Phenotypic Investigation and Detection of Biofilm-Associated Genes in Acinetobacter baumannii Isolates, Obtained from Companion Animals. Bacteria of the genus Acinetobacter, especially Acinetobacter baumannii (Ab), have emerged as pathogens of companion animals during the last two decades and are commonly associated with hospitalization and multidrug resistance. A critical factor for the distribution of relevant strains in healthcare facilities, including veterinary facilities, is their adherence to both biotic and abiotic surfaces and the production of biofilms. A group of 41 A. baumannii isolates obtained from canine and feline clinical samples in Greece was subjected to phenotypic investigation of their ability to produce biofilms using the tissue culture plate (TCP) method. All of them (100%) produced biofilms, while 23 isolates (56.1%) were classified as strong producers, 11 (26.8%) as moderate producers, and 7 (17.1%) as weak producers. A correlation between the MDR and XDR phenotypes and weak or moderate biofilm production was identified. Moreover, the presence of four biofilm-associated genes bap, bla(PER), ompA, and csuE was examined by PCR, and they were detected in 100%, 65.9%, 97.6%, and 95.1% of the strains respectively. All isolates carried at least two of the investigated genes, whereas most of the strong biofilm producers carried all four genes. In conclusion, the spread and persistence of biofilm-producing Ab strains in veterinary facilities is a matter of concern, since they are regularly obtained from infected animals, indicating their potential as challenging pathogens for veterinarians due to multidrug resistance and tolerance in conventional eradication measures. Furthermore, considering that companion animals can act as reservoirs of relevant strains, public health concerns emerge. | 2024 | 38787042 |
| 5688 | 5 | 0.9997 | Isolation and molecular identification of bacteria from sheep with eye infections. BACKGROUND: Ocular disease in sheep is a severe concern for the health and welfare of livestock animals, as well as losses of productivity and value to the livestock industry. AIM: This study aimed to isolate and characterize bacteria in sheep with eye disease on the molecular level. METHODS: One hundred fifty sheep with eye infections were treated, and tissue samples were taken for microbiological studies. We isolated bacteria from traditional cultures and discovered molecules by polymerase chain reaction (PCR) of single bacterial genes. RESULTS: A total of 150 ocular samples were collected from sheep, with bacterial growth observed in 120 samples, resulting in an isolation rate of 80%. Staphylococcus aureus was the most bacteria isolated in this study, which PCR also confirmed. We found antibiotic-resistant bacteria such as S. aureus, Escherichia coli, and Pasteurella multocida. These results reveal that preventing sheep ocular infections requires the effective use of antibiotics. CONCLUSION: This study suggests the prevalence of bacterial infection in sheep eyes and argues the utility of molecular methods in veterinary diagnosis. Record levels of antibiotic resistance must be maintained in animal husbandry and the use of antibiotic stewardship programs. | 2024 | 39927373 |
| 2329 | 6 | 0.9997 | Antibiotic resistance and genotyping of clinical group B Salmonella isolated in Accra, Ghana. AIMS: The purpose of this study was to investigate the antibiotic resistance and clonal lineage of serogroup B Salmonella isolated from patients suspected of suffering from enteric fever in Accra, Ghana. METHODS AND RESULTS: Serogroup B Salmonella were isolated from blood (n=28), cerebral spinal fluid (CSF) (n=1), or urine (n=2), and identified based on standard biochemical testing and agglutinating antisera. Isolates were examined for their susceptibility to ampicillin, chloramphenicol, tetracycline and trimethoprim-sulfamethoxazole. Most of the isolates could be classified as multiple-drug resistant. Furthermore, the genetic location of resistance genes was shown to be on conjugative plasmids. Genetic fingerprinting by plasmid profiling, enterobacterial repetitive intergenic consensus (ERIC)-PCR, and repetitive element (REP)-PCR were performed to determine the diversity among the isolates. Plasmid profiling discriminated five unique groupings, while ERIC-PCR and REP-PCR resulted in two and three groupings, respectively. CONCLUSIONS: A high rate of antibiotic resistance was associated with the Salmonella isolates and the genes responsible for the resistance are located on conjugative plasmids. Also, there appears to be minimal diversity associated with the isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: As a result of the increasing antibiotic resistance among bacteria of all genera, surveys to monitor microbial populations are critical to determine the extent of the problem. The inability to treat many infectious diseases with current antibiotic regimens should prompt the medical community to be more prudent with its antibiotic use. | 2003 | 12534821 |
| 2649 | 7 | 0.9997 | Multidrug Resistance and Virulence Traits of Salmonella enterica Isolated from Cattle: Genotypic and Phenotypic Insights. Background/Objective: Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide and presents a significant One Health concern due to zoonotic transmission. Although antibiotic therapy remains a standard approach for treating salmonellosis in severe cases in animals, the widespread misuse of antibiotics has contributed to the emergence of multidrug-resistant (MDR) Salmonella strains. This study provides insights into the genotypic and phenotypic characteristics among Salmonella isolates from necropsied cattle. Methods: A total of 1008 samples were collected from necropsied cattle. Salmonella enterica subspecies were identified by MALDI-TOF MS and subsequently confirmed by serotyping. The biofilm-forming ability of the isolated bacteria was assessed using a crystal violet assay. The motility of the isolates was assessed on soft agar plates. Additionally, the antimicrobial resistance genes (ARGs) and virulence genes were investigated. Antimicrobial resistance patterns were investigated against 19 antibiotics representing 9 different classes. Results:Salmonella species were isolated and identified in 27 necropsied cattle. Salmonella Dublin was the most prevalent serotype (29.6%). Additionally, all the isolates were biofilm producers at different levels of intensity, and 96.3% of the isolates exhibited both swarming and swimming motility. Furthermore, virulence genes, including invA, hilA, fimA, and csgA, were detected in all the isolates. The highest resistance was observed to macrolides (azithromycin and clindamycin) (100%), followed by imipenem (92.6%), and chloramphenicol (85.2%). All isolates were multidrug-resistant, with a multiple antibiotic resistance (MAR) index ranging between 0.32 and 0.74. The aminoglycoside resistance gene aac(6')-Ib was detected in all the isolates (100%), whereas the distribution of other antimicrobial resistance genes (ARGs) varied among the isolates. Conclusions: The increasing prevalence of MDR Salmonella poses a significant public health risk. These resistant strains can reduce the effectiveness of standard treatments and elevate outbreak risks. Strengthening surveillance and regulating antibiotic use in livestock are essential to mitigating these threats. | 2025 | 40723992 |
| 5519 | 8 | 0.9997 | Antimicrobial susceptibility, virulence potential and sequence types associated with Arcobacter strains recovered from human faeces. PURPOSE: The genus Arcobacter includes bacteria that are considered emergent pathogens because they can produce infections in humans and animals. The most common symptoms are bloody and non-bloody persistent diarrhea but cases with abdominal cramps without diarrhea or asymptomatic cases have also been described as well as cases with bacteremia. The objective was to characterize Arcobacter clinical strains isolated from the faeces of patients from three Spanish hospitals. METHODOLOGY: We have characterized 28 clinical strains (27 of A. butzleri and one of A. cryaerophilus) isolated from faeces, analysing their epidemiological relationship using the multilocus sequence typing (MLST) approach and screening them for their antibiotic susceptibility and for the presence of virulence genes.Results/Key findings. Typing results showed that only one of the 28 identified sequence types (i.e. ST 2) was already present in the MLST database. The other 27 STs constituted new records because they included new alleles for five of the seven genes or new combinations of known alleles of the seven genes. All strains were positive for the ciaB virulence gene and sensitive to tetracycline. However, 7.4 % of the A. butzleri and A. cryaerophilus strains showed resistance to ciprofloxacin. CONCLUSION: The fact that epidemiological unrelated strains show the same ST indicates that other techniques with higher resolution should be developed to effectively recognize the infection source. Resistance to ciprofloxacin, one of the antibiotics recommended for the treatment of Arcobacter intestinal infections, demonstrated in 10.7 % of the strains, indicates the importance of selecting the most appropriate effective treatment. | 2017 | 29120301 |
| 2534 | 9 | 0.9997 | Prevalence, antibiotic resistance, and virulence gene profile of Escherichia coli strains shared between food and other sources in Africa: A systematic review. BACKGROUND AND AIM: Foodborne diseases caused by Escherichia coli are prevalent globally. Treatment is challenging due to antibiotic resistance in bacteria, except for foodborne infections due to Shiga toxin-producing E. coli, for which treatment is symptomatic. Several studies have been conducted in Africa on antibiotic resistance of E. coli isolated from several sources. The prevalence and distribution of resistant pathogenic E. coli isolated from food, human, and animal sources and environmental samples and their virulence gene profiles were systematically reviewed. MATERIALS AND METHODS: Bibliographic searches were performed using four databases. Research articles published between 2000 and 2022 on antibiotic susceptibility and virulence gene profile of E. coli isolated from food and other sources were selected. RESULTS: In total, 64 articles were selected from 14 African countries: 45% of the studies were conducted on food, 34% on animal samples, 21% on human disease surveillance, and 13% on environmental samples. According to these studies, E. coli is resistant to ~50 antimicrobial agents, multidrug-resistant, and can transmit at least 37 types of virulence genes. Polymerase chain reaction was used to characterize E. coli and determine virulence genes. CONCLUSION: A significant variation in epidemiological data was noticed within countries, authors, and sources (settings). These results can be used as an updated database for monitoring E. coli resistance in Africa. More studies using state-of-the-art equipment are needed to determine all resistance and virulence genes in pathogenic E. coli isolated in Africa. | 2023 | 38023276 |
| 1702 | 10 | 0.9997 | Molecular Epidemiology and Antimicrobial Resistance of Outbreaks of Klebsiella pneumoniae Clinical Mastitis in Chinese Dairy Farms. Klebsiella pneumoniae is an opportunistic pathogen that causes serious infections in humans and animals. However, the availability of epidemiological information on clinical mastitis due to K. pneumoniae is limited. To acquire new information regarding K. pneumoniae mastitis, data were mined about K. pneumoniae strains on dairy cattle farms (farms A to H) in 7 Chinese provinces in 2021. Hypermucoviscous strains of K. pneumoniae were obtained by the string test. MICs of antimicrobial agents were determined via the broth microdilution method. Ten antimicrobial resistance genes and virulence genes were identified by PCR. The prevalence of K. pneumoniae was 35.91% (65/181), and 100% of the bacteria were sensitive to enrofloxacin. Nine antimicrobial resistance genes and virulence genes were identified and compared among farms. The hypermucoviscous phenotype was present in 94.44% of isolates from farm B, which may be a function of the rmpA virulence gene. Based on these data, the multidrug-resistant strains SD-14 and HB-21 were chosen and sequenced. Genotypes were assayed for K. pneumoniae isolates from different countries and different hosts using multilocus sequence typing (MLST). Ninety-four sequence types (STs) were found, and 6 STs present a risk for spreading in specific regions. Interestingly, ST43 was observed in bovine isolates for the first time. Our study partially reveals the current distribution characteristics of bovine K. pneumoniae in China and may provide a theoretical basis for the prevention and treatment of bovine K. pneumoniae mastitis. IMPORTANCE K. pneumonia is ubiquitous in nature and infects a wide range of hosts, including animals, and humans. It is one of the leading inducements of clinical mastitis (CM) in dairy cows, a prevalent and costly disease that is predominantly associated with bacterial infection. In general, CM caused by Gram-negative bacteria is more difficult to cure than that associated with Gram-positive pathogens, with an average cost per case of 211.03 U.S. dollars (USD) for Gram-negative bacterial infections compared with 133.73 USD for Gram-positive bacterial CM cases. After Escherichia coli, K. pneumoniae is the second most common Gram-negative cause of bovine CM, but it is the most detrimental in terms of decreased milk yield, discarded milk, treatment costs, death, and culling. In view of the economic implications of K. pneumoniae infection in dairy farming, research into population structure and antibiotic resistance is particularly important. | 2022 | 36374018 |
| 5567 | 11 | 0.9997 | Comparison of Antibiotic Resistance and Virulence Factors among Escherichia coli Isolated from Conventional and Free-Range Poultry. Microbiological contamination in commercial poultry production has caused concerns for human health because of both the presence of pathogenic microorganisms and the increase in antimicrobial resistance in bacterial strains that can cause treatment failure of human infections. The aim of our study was to analyze the profile of antimicrobial resistance and virulence factors of E. coli isolates from chicken carcasses obtained from different farming systems (conventional and free-range poultry). A total of 156 E. coli strains were isolated and characterized for genes encoding virulence factors described in extraintestinal pathogenic E. coli (ExPEC). Antimicrobial susceptibility testing was performed for 15 antimicrobials, and strains were confirmed as extended spectrum of β-lactamases- (ESBLs-) producing E. coli by phenotypic and genotypic tests. The results indicated that strains from free-range poultry have fewer virulence factors than strains from conventional poultry. Strains from conventionally raised chickens had a higher frequency of antimicrobial resistance for all antibiotics tested and also exhibited genes encoding ESBL and AmpC, unlike free-range poultry isolates, which did not. Group 2 CTX-M and CIT were the most prevalent ESBL and AmpC genes, respectively. The farming systems of poultries can be related with the frequency of virulence factors and resistance to antimicrobials in bacteria. | 2015 | 26579536 |
| 5522 | 12 | 0.9997 | Drug resistance and virulence-associated genes screening in Salmonella enterica isolated from Caspian pony, Iran. The most serious problem in public health is salmonellosis, a common disease in horse. The aim of this study was to investigate the shedding of Salmonella serotypes in healthy Caspian pony. We examined 143 pony's fecal samples collected from the north of Iran belonging to different ages and sexes. Samples were cultured, then identification of isolates were performed by common bacteriological methods and polymerase chain reaction (PCR). The PCR was also used to explore the presence of fimA and salmonella secreted effector L (SseL) genes as virulence factors in the isolates and all were assigned to antibiotic susceptibility test via disc diffusion method. Results showed two fecal samples (1.39%) contaminated with Salmonella and further examination demonstrated the isolates belonging to S. enterica serotype typhimurium. Both serotypes were isolated from female and ˂6 years of age group of ponies and we detected fimA and SseL genes in the isolates. Observing multiple drug resistance and virulence genes in isolates is of utmost importance from both clinical and public health perspectives. It is highly likely that we face instances of salmonellosis in animals or humans that lead to severe infections and fail to respond to treatment in future. This study revealed that the occurrence of Salmonella was low in ponies, however, regarding the presence of virulence factors with multidrug resistant trend in this zoonotic bacterium, establishment of good hygienic measurement to prevent the transmission of bacteria between animal and human is necessary. | 2024 | 39564468 |
| 1695 | 13 | 0.9997 | Presence of the blaTEM Gene in Commensal Neisseria spp.: A Possible Cause for the Acquired Drug Resistance Among Pathogenic Respiratory Bacteria. Background The oral microbiome consists of various bacterial genera, with Neisseria spp. being a prominent part of this niche. While Neisseria gonorrhoeae and Neisseria meningitidis are human-restricted pathogens, non-pathogenic Neisseria species like Neisseria sicca, Neisseria perflava, etc., are primarily commensals that can also behave as opportunistic pathogens. With increasing penicillin resistance in commensal Neisseria, there is a concern that these bacteria might harbor resistance genes that can be transferred to other pathogens. This study aimed to characterize the blaTEM gene (encodes for the plasmid-mediated β-lactamase enzyme that hydrolyzes the β-lactam ring) of commensal Neisseria spp. isolated from respiratory samples. Methodology The research was conducted in the Department of Clinical Microbiology at Sri Ramachandra University, Chennai. The specimens used were sputum and throat swabs, which were subjected to a series of phenotypic methods and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) for speciation. The antibiogram was determined using the Kirby-Bauer disk diffusion method, and a PCR assay was utilized to identify the blaTEM( )gene responsible for β-lactamase production. Results Out of 274 processed samples, 65 unique commensal Neisseria spp. were identified. The study highlighted the presence of the blaTEM gene in 93.9% (61) of the isolates, which is responsible for β-lactamase production. All isolates exhibited resistance to penicillin. Most blaTEM-positive commensal Neisseria spp. were susceptible to cefuroxime (83.6%), ceftriaxone (85.2%), and cefotaxime (85.2%). The high prevalence of the blaTEM gene in commensal Neisseria is alarming. The gene, found on plasmids, could potentially transfer to other related species like Neisseria gonorrhoeae and Neisseria meningitidis, as well as other Gram-negative bacilli. Conclusion The presence of resistance genes in commensal bacteria is of concern, as they might be reservoirs for resistance transfer to pathogenic strains. The study emphasizes the importance of continuous monitoring and deeper investigations into commensal bacteria, emphasizing the need for a broader community screening approach to understand resistance mechanisms in the normal microbiome. | 2023 | 38146567 |
| 5537 | 14 | 0.9997 | Four novel Acinetobacter lwoffii strains isolated from the milk of cows in China with subclinical mastitis. BACKGROUND: Acinetobacter lwoffii (A. lwoffii) is a Gram-negative bacteria common in the environment, and it is the normal flora in human respiratory and digestive tracts. The bacteria is a zoonotic and opportunistic pathogen that causes various infections, including nosocomial infections. The aim of this study was to identify A. lwoffii strains isolated from bovine milk with subclinical mastitis in China and get a better understanding of its antimicrobial susceptibility and resistance profile. This is the first study to analyze the drug resistance spectrum and corresponding mechanisms of A. lwoffii isolated in raw milk. RESULTS: Four A. lwoffii strains were isolated by PCR method. Genetic evolution analysis using the neighbor-joining method showed that the four strains had a high homology with Acinetobacter lwoffii. The strains were resistant to several antibiotics and carried 17 drug-resistance genes across them. Specifically, among 23 antibiotics, the strains were completely susceptible to 6 antibiotics, including doxycycline, erythromycin, polymyxin, clindamycin, imipenem, and meropenem. In addition, the strains showed variable resistance patterns. A total of 17 resistance genes, including plasmid-mediated resistance genes, were detected across the four strains. These genes mediated resistance to 5 classes of antimicrobials, including beta-lactam, aminoglycosides, fluoroquinolones, tetracycline, sulfonamides, and chloramphenicol. CONCLUSION: These findings indicated that multi-drug resistant Acinetobacter lwoffii strains exist in raw milk of bovine with subclinical mastitis. Acinetobacter lwoffii are widespread in natural environmental samples, including water, soil, bathtub, soap box, skin, pharynx, conjunctiva, saliva, gastrointestinal tract, and vaginal secretions. The strains carry resistance genes in mobile genetic elements to enhance the spread of these genes. Therefore, more attention should be paid to epidemiological surveillance and drug resistant A. lwoffii. | 2024 | 38918815 |
| 2688 | 15 | 0.9997 | Intestinal and Extraintestinal Pathotypes of Escherichia coli Are Prevalent in Food Prepared and Marketed on the Streets from the Central Zone of Mexico and Exhibit a Differential Phenotype of Resistance Against Antibiotics. Background/Objectives: Antibiotic resistance is a serious public health problem threatening the treatment of infectious diseases caused by Escherichia coli, the main source of food contamination and responsible for many infectious diseases with high indices of AR profiles. Our objective was to study the presence of Escherichia coli in foods that are distributed and prepared on the street, characterizing its sensitivity profile and resistance to antibiotic drugs commonly prescribed in this geographical area. Methods: Standard procedures were performed to identify and isolate E. coli colonies from food samples collected during a three-year study. Susceptibility assays were conducted to determine the antibiotic resistance profile, and Colony PCR assays were performed to determine the pathogenic and antibiotic resistance genes. Results: A total of 189 food samples were collected, and 100% of the samples were positive for E. coli, with higher percentages of contamination for vegetables and fruits. ETEC (lt) and UPEC (vat, cnf1, hylA) genes were identified in 100% of the samples and DAEC (afa) in 27%. E. coli exhibited high percentages of resistance against ampicillin and amoxicillin/clavulanic acid (100%) and cephalexin (45%). The most effective antibiotics were tetracycline, TMP-SMX, polymyxin, and quinolones. The AR genes tetA, sul1, catA1, strA, qnrS, and floR were identified among the samples. Conclusions: Food prepared and marketed on the streets seriously threatens human health. Ampicillin and amoxicillin/clavulanic acid should not be used to treat infections caused by the multidrug-resistant ETEC and UPEC identified in this area. To our knowledge, this is the first study that explores the status of AR in this geographical area. | 2025 | 40298585 |
| 1696 | 16 | 0.9997 | Assessment of the presence of Acinetobacter spp. resistant to β-lactams in commercial ready-to-eat salad samples. Acinetobacter baumannii is a well-known nosocomial infection causing agent. However, other Acinetobacter spp. have also been implicated in cases of human infection. Additionally, these bacteria are known for the development of antibiotic resistance thus making the treatment of the infections they cause, challenging. Due to their relevance in clinical setups less attention has been paid to their presence in foods, and its relation with infection/dissemination routes. In the current study commercial Ready-To-Eat (RTE) salads were analyzed seeking for antibiotic resistant Acinetobacter spp. A preliminary screening allowed us to recover Gram-negative bacteria resistant to β - lactams using cefotaxime, third generation cephalosporins, as the selective agent, and this was followed by identification with CHROMagar™ Acinetobacter and 16S rDNA sequencing. Finally, the isolates identified as Acinetobacter spp. were reanalyzed by PCR to determine the presence of nine potential Extended Spectrum β Lactamases (ESBL). Two commercial RTE salad brands were included in the study (2 batches per brand and 8 samples of each batch making a total of 32 independent samples), and compared against an organic lettuce. High concentrations of β - lactam, resistant bacteria were found in all the samples tested (5 log CFU/g). Additionally, 209 isolates were phenotypically characterized on CHROMagar Acinetobacter. Finally, PCR analysis identified the presence of different ESBL genes, being positive for blaACC, blaSHV, blaDHA and blaVEB; out of these, blaACC was the most prevalent. None of the isolates screened were positive for more than one gene. To conclude, it is important to highlight the fact that pathogenic species within the genus Acinetobacter spp., other than A. baumannii, have been identified bearing resistance genes not typically associated to these microorganisms highlight the importance of continuous surveillance. | 2024 | 38049272 |
| 5791 | 17 | 0.9997 | Revisiting the Frequency and Antimicrobial Resistance Patterns of Bacteria Implicated in Community Urinary Tract Infections. Urinary tract infections (UTIs) are one of the most common infectious diseases at the community level. The continue misuse of antimicrobials is leading to an increase in bacterial resistance, which is a worldwide problem. The objective of this work was to study the incidence and pattern of antimicrobial resistance of the main bacteria responsible for UTI in the community of central and northern Portugal, and establish an appropriate empirical treatment. The urine samples were collected in Avelab—Laboratório Médico de Análises Clínicas over a period of 5 years (2015−2019). The urine cultures were classified as positive when bacterial growth was equal to or higher than 105 CFU/mL, and only for these cases, an antimicrobial susceptibility test was performed. Of the 106,019 samples analyzed, 15,439 had a urinary infection. Urinary infections were more frequent in females (79.6%) than in males (20.4%), affecting more elderly patients (56.9%). Escherichia coli (70.1%) was the most frequent uropathogen, followed by Klebsiella pneumoniae (8.9%). The bacteria responsible for UTI varied according to the patient’s sex, with the greatest differences being observed for Enterococcus faecalis and Pseudomonas aeruginosa, these being more prevalent in men. In general, there was a growth in bacterial resistance as the age of the patients increased. The resistance of bacteria in male patients was, in most cases, statistically different (Chi-Square test, p < 0.05) from that observed for bacteria isolated from female patients, showing, in general, higher resistance in male patients. Although E. coli was the most responsible uropathogen for UTI, it was among the bacteria most susceptible to antibiotics. The isolates of K. pneumoniae, Proteus vulgaris and Enterobacter showed high resistance to the tested antimicrobials. The most common multidrug-resistant (MDR) bacteria implicated in UTI were K. pneumoniae (40.4%) and P. aeruginosa (34.7%), but E. coli, the most responsible bacteria for UTI, showed a MDR of 23.3%. When we compared our results with the results from 10 years ago for the same region, in general, an increase in bacterial resistance was observed. The results of this study confirmed that urinary tract infections are a very common illness, caused frequently by resistant uropathogens, for which the antibiotic resistance profile has varied over a short time, even within a specific region. This indicates that periodically monitoring the microbial resistance of each region is essential in order to select the best empirical antibiotic therapy against these infections, and prevent or decrease the resistance among uropathogenic strains. | 2022 | 35740174 |
| 5521 | 18 | 0.9997 | Presence of blaCTX-M antibiotic resistance gene in Lactobacillus spp. isolated from Hirschsprung diseased infants with stoma. INTRODUCTION: Although antibiotics have revolutionized health care by saving lives, the evolution of both pathogenic and commensal antibiotic-resistant bacteria are emerging as a threat in the health sector. As for Lactobacillus spp., it is usually a non-pathogenic bacteria. However, it can cause infection in immunocompromised condition. In this study, Lactobacillus spp. has been isolated from the faeces of infants with Hirschsprung disease (HD), which is congenital aganglionosis of intestine, where surgical approach and antibiotics are frequently used as medical intervention. The aim of this study is to assess the antibiotic resistance pattern and determine the presence of resistance genes, if any, in Lactobacillus spp. isolated from HD infants with ileostomy. METHODOLOGY: Six Lactobacillus spp. were isolated from faeces of six HD infants and confirmed using both conventional and molecular methods. Antibiotic resistance pattern was checked through disc diffusion method and was further investigated for the presence of antibiotic resistance genes (blaTEM, blaCTX-M, blaOXA-2, blaIMP, blaVIM-2, blaNDM-1 and mcr-1). RESULTS: Antibiotic susceptibility of the isolates showed high level of resistance towards cephalosporins, oxacillin, aztreonam, meropenem and polymyxin group. However, four of the isolates showed the presence of blaCTX-M gene after PCR amplification. CONCLUSIONS: To our knowledge, this is the first report on the presence of antibiotic resistance gene blaCTX-M in Lactobacillus spp. and this presence may pose a serious threat in treatment regimen. As not much is known regarding the presence of blaCTX-M in Lactobacillus spp., this finding may provide new light to research on antibiotic resistance in gut microflora. | 2019 | 32053512 |
| 2687 | 19 | 0.9997 | Antimicrobial resistance in E. coli isolated from dairy calves and bedding material. INTRODUCTION: E. coli is a ubiquitous bacterium commonly used as a sentinel in antimicrobial resistance studies. Here, E. coli was isolated from three groups (sick calves, healthy calves and bedding material), to assess the presence of antimicrobial resistance, describe resistance profiles, and compare these resistances among groups. MATERIAL AND METHODS: Samples were collected from calves and calving pens from 20 dairy farms. Using the disc diffusion method, E. coli isolates were screened for antimicrobial resistance against seven antimicrobials: Amoxicillin, Ceftiofur, Gentamicin, Enrofloxacin, Trimethoprim-sulfamethoxazole, Florfenicol and Oxytetracycline. Isolates resistant to all these seven antimicrobials were tested again against an extended 19 antimicrobial drug panel and for the presence of the most common E. coli pathogenicity genes through PCR. RESULTS & DISCUSSION: Three hundred forty-nine E. coli isolates were obtained; most isolates were resistant to a single antimicrobial, but 2.3% (8) were resistant to 16 to 19 of the antimicrobials tested. The group with the highest percentage of multiresistant isolates was the calves with diarrhea group. Younger calves provided samples with higher antimicrobial resistance levels. CONCLUSIONS: There is a high rate of antimicrobial resistance in dairy farms calving pens. These bacteria could not only be a resistance gene reservoir, but also could have the potential to spread these determinants through horizontal gene transfer to other susceptible bacteria. Measures should be taken to protect colonization of younger calves, based on hygienic measures and proper management. | 2019 | 31844709 |