# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5494 | 0 | 1.0000 | Molecular characterization of antimicrobial resistance in Brachyspira species isolated from UK chickens: Identification of novel variants of pleuromutilin and beta-lactam resistance genes. Brachyspira species are Gram negative, anaerobic bacteria that colonise the gut of many animals, including poultry. In poultry, Brachyspira species can be commensal (B. innocens, B. murdochii, 'B. pulli') or pathogenic (B. pilosicoli, B. intermedia, B. alvinipulli or rarely B. hyodysenteriae), the latter causing avian intestinal spirochaetosis (AIS). Antimicrobial therapy options for treatment is limited, frequently involving administration of the pleuromutilin, tiamulin, in water. In this study 38 Brachyspira isolates from chickens in the UK, representing both commensal and pathogenic species, were whole genome sequenced to identify antimicrobial resistance (AMR) mechanisms and the minimum inhibitory concentration (MIC) to a number of antimicrobials was also determined. We identified several new variants of bla(OXA) in B. pilosicoli and B. pulli isolates, and variations in tva which led to two new tva variants in B.murdochii and B.pulli. A number of isolates also harboured mutations known to encode AMR in the 16S and 23S rRNA genes. The percentage of isolates that were genotypically multi-drug resistance (MDR) was 16%, with the most common resistance profile being: tetracycline, pleuromutilin and beta-lactam, which were found in three 'B. pulli' and one B. pilosicoli. There was good correlation with the genotype and the corresponding antibiotic MIC phenotypes: pleuromutilins (tiamulin and valnemulin), macrolides (tylosin and tylvalosin), lincomycin and doxycycline. The occurrence of resistance determinants identified in this study in pathogenic Brachyspira, especially those which were MDR, is likely to impact treatment of AIS and clearance of infections on farm. | 2024 | 38306769 |
| 2442 | 1 | 0.9992 | Macrolide, lincosamide, and streptogramin B resistance in lipophilic Corynebacteria inhabiting healthy human skin. Corynebacteria exist as part of human skin microbiota. However, under some circumstances, they can cause opportunistic infections. The subject of the study was to examine the macrolide-lincosamide-streptogramin B (MLSB) antibiotic resistance in 99 lipophilic strains of Corynebacterium genus isolated from the skin of healthy men. Over 70% of the tested strains were resistant to erythromycin and clindamycin. All of which demonstrated a constitutive type of MLSB resistance mechanism. In all strains, there were being investigated the erm(A), erm(B), erm(C), erm(X), lin(A), msr(A), and mph(C) genes that could be responsible for the different types of resistance to marcolides, lincosamides, and streptogramin B. In all strains with the MLSB resistance phenotype, the erm(X) gene was detected. None of the other tested genes were discovered. Strains harboring the erm(X) gene were identified using a phenotypic method based on numerous biological and biochemical tests. Identification of the chosen strains was compared with the results of API Coryne, MALDI-TOF MS, and 16S rDNA sequencing methods. Only 7 out of the 23 investigated resistant strains provided successful results in all the used methods, showing that identification of this group of bacteria is still a great challenge. The MLSB resistance mechanism was common in most frequently isolated from healthy human skin Corynebacterium tuberculostearicum and Corynebacterium jeikeium strains. This represents a threat as these species are also commonly described as etiological factors of opportunistic infections. | 2014 | 24735183 |
| 2439 | 2 | 0.9992 | Differences in distribution of MLS antibiotics resistance genes in clinical isolates of staphylococci belonging to species: S. epidermidis, S. hominis, S. haemolyticus, S. simulans and S. warneri. BACKGROUND: Macrolides and lincosamides are two leading types of antibiotics commonly used in therapies. The study examines the differences in resistance to these antibiotics and their molecular bases in S. epidermidis as well as in rarely isolated species of coagulase-negative staphylococci such as S. hominis, S. haemolyticus, S. warneri and S. simulans. The isolates were tested for the presence of the erm(A), erm(B), erm(C), lnu(A), msr(A), msr(B), mph(C), ere(A) and ere(B) genes. Phenotypic resistance to methicillin and mecA presence were also determined. RESULTS: The MLS(B) resistance mechanism was phenotypically found in isolates of species included in the study. The most prevalent MLS(B) resistance mechanism was observed in S. hominis, S. haemolyticus and S. epidermidis isolates mainly of the MLS(B) resistance constitutive type. Macrolide, lincosamide and streptogramin B resistance genes were rarely detected in isolates individually. The erm(B), ere(A) and ere(B) genes were not found in any of the strains. The erm(A) gene was determined only in four strains of S. epidermidis and S. hominis while lnu(A) was seen in eight strains (mainly in S. hominis). The erm(C) gene was present in most of S. epidermidis strains and predominant in S. hominis and S. simulans isolates. The examined species clearly differed between one another in the repertoire of accumulated genes. CONCLUSIONS: The presence of genes encoding the MLS(B) resistance among CoNS strains demonstrates these genes' widespread prevalence and accumulation in opportunistic pathogens that might become gene reservoir for bacteria with superior pathogenic potential. | 2019 | 31182020 |
| 5930 | 3 | 0.9992 | Clinical Resistant Strains of Enterococci and Their Correlation to Reduced Susceptibility to Biocides: Phenotypic and Genotypic Analysis of Macrolides, Lincosamides, and Streptogramins. Enterococci are troublesome nosocomial, opportunistic Gram-positive cocci bacteria showing enhanced resistance to many commonly used antibiotics. This study aims to investigate the prevalence and genetic basis of antibiotic resistance to macrolides, lincosamides, and streptogramins (MLS) in Enterococci, as well as the correlation between MLS resistance and biocide resistance. From 913 clinical isolates collected from King Khalid Hospital, Hail, Saudi Arabia, 131 isolates were identified as Enterococci spp. The susceptibility of the clinical enterococcal isolates to several MLS antibiotics was determined, and the resistance phenotype was detected by the triple disk method. The MLS-involved resistance genes were screened in the resistant isolates. The current results showed high resistance rates to MLS antibiotics, and the constitutive resistance to all MLS (cMLS) was the most prevalent phenotype, observed in 76.8% of resistant isolates. By screening the MLS resistance-encoding genes in the resistant isolates, the erythromycin ribosome methylase (erm) genes that are responsible for methylation of bacterial 23S rRNA were the most detected genes, in particular, ermB. The ereA esterase-encoding gene was the most detected MLS modifying-encoding genes, more than lnuA (adenylation) and mphC (phosphorylation). The minimum inhibitory concentrations (MICs) of commonly used biocides were detected in resistant isolates and correlated with the MICs of MLS antibiotics. The present findings showed a significant correlation between MLS resistance and reduced susceptibility to biocides. In compliance with the high incidence of the efflux-encoding genes, especially mefA and mefE genes in the tolerant isolates with higher MICs to both MLS antibiotics and biocides, the efflux of resistant isolates was quantified, and there was a significant increase in the efflux of resistant isolates with higher MICs as compared to those with lower MICs. This could explain the crucial role of efflux in developing cross-resistance to both MLS antibiotics and biocides. | 2023 | 36978327 |
| 5499 | 4 | 0.9992 | Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes. In food, bacteria carrying antibiotic resistance genes could play a prominent role in the spread of resistance. Staphylococcus equorum populations can become large in a number of fermented foods, yet the antibiotic resistance properties of this species have been little studied. In this work, the resistance/susceptibility (R/S) profile of S. equorum strains (n = 30) from cheese to 16 antibiotics was determined by broth microdilution. The minimum inhibitory concentration (MIC) for all antibiotics was low in most strains, although higher MICs compatible with acquired genes were also noted. Genome analysis of 13 strains showed the S. equorum resistome to be composed of intrinsic mechanisms, acquired mutations, and acquired genes. As such, a plasmidic cat gene providing resistance to chloramphenicol was found in one strain; this was able to provide resistance to Staphylococcus aureus after electroporation. An msr(A) polymorphic gene was identified in five strains. The Mrs(A) variants were associated with variable resistance to erythromycin. However, the genetic data did not always correlate with the phenotype. As such, all strains harbored a polymorphic fosB/fosD gene, although only one acquired copy was associated with strong resistance to fosfomycin. Similarly, a plasmid-associated blaR1-blaZI operon encoding a penicillinase system was identified in five ampicillin- and penicillin G-susceptible strains. Identified genes not associated with phenotypic resistance further included mph(C) in two strains and norA in all strains. The antibiotic R/S status and gene content of S. equorum strains intended to be employed in food systems should be carefully determined. | 2023 | 37511416 |
| 5505 | 5 | 0.9992 | Concordance between Antimicrobial Resistance Phenotype and Genotype of Staphylococcus pseudintermedius from Healthy Dogs. Staphylococcus pseudintermedius, a common commensal canine bacterium, is the main cause of skin infections in dogs and is a potential zoonotic pathogen. The emergence of methicillin-resistant S. pseudintermedius (MRSP) has compromised the treatment of infections caused by these bacteria. In this study, we compared the phenotypic results obtained by minimum inhibitory concentration (MICs) for 67 S. pseudintermedius isolates from the skin of nine healthy dogs versus the genotypic data obtained with Nanopore sequencing. A total of 17 antibiotic resistance genes (ARGs) were detected among the isolates. A good correlation between phenotype and genotype was observed for some antimicrobial classes, such as ciprofloxacin (fluoroquinolone), macrolides, or tetracycline. However, for oxacillin (beta-lactam) or aminoglycosides the correlation was low. Two antibiotic resistance genes were located on plasmids integrated in the chromosome, and a third one was in a circular plasmid. To our knowledge, this is the first study assessing the correlation between phenotype and genotype regarding antimicrobial resistance of S. pseudintermedius from healthy dogs using Nanopore sequencing technology. | 2022 | 36421269 |
| 5503 | 6 | 0.9992 | Molecular characterization of multi-drug resistant coagulase negative cocci in non-hospital environment. Antibiotic resistance crisis occasioned by sporadic appearance of multi-drug resistance (MDR) in human pathogens to clinically applied antimicrobials is a serious threat to global health. In this study, we investigated the drug resistant phenotype of Gram-positive cocci isolates from environment. Staphylococcus capitis and Staphylococcus haemolyticus colonies were isolated on mannitol-salt agar plates supplemented with tetracycline. Antibiotic susceptibility profile of the isolates via minimum inhibitory concentration (MIC) determination was examined. Isolates showed decreased sensitivity to clinically applied antimicrobial agents: tetracycline, kanamycin, erythromycin, norfloxacin, teicoplanin, and ampicillin. Genomic analysis demonstrated the presence of multiple antibiotic resistant genes in these bacteria, suggesting the origin of the multiple antimicrobials resistant phenotype. Tetracycline resistance of these isolates was transduced to Staphylococcus aureus-RN4220 strain. These findings indicate the presence of multiple antimicrobials resistant S. capitis and S. haemolyticus strain in a non-hospital setting. Moreover, the presence of plethora of genes responsible for MDR suggest that these strains could present potential threat to human health by serving as reservoir for lateral transference of antimicrobial resistance conferring foreign genetic elements to other clinically relevant pathogens. | 2019 | 31231110 |
| 5504 | 7 | 0.9992 | Whole Genome Sequencing of Staphylococci Isolated From Bovine Milk Samples. Staphylococci are among the commonly isolated bacteria from intramammary infections in bovines, where Staphylococcus aureus is the most studied species. This species carries a variety of virulence genes, contributing to bacterial survival and spread. Less is known about non-aureus staphylococci (NAS) and their range of virulence genes and mechanisms, but they are the most frequently isolated bacteria from bovine milk. Staphylococci can also carry a range of antimicrobial resistance genes, complicating treatment of the infections they cause. We used Illumina sequencing to whole genome sequence 93 staphylococcal isolates selected from a collection of staphylococcal isolates; 45 S. aureus isolates and 48 NAS isolates from 16 different species, determining their content of antimicrobial resistance genes and virulence genes. Antimicrobial resistance genes were frequently observed in the NAS species as a group compared to S. aureus. However, the lincosamide resistance gene lnuA and penicillin resistance gene blaZ were frequently identified in NAS, as well as a small number of S. aureus. The erm genes conferring macrolide resistance were also identified in several NAS isolates and in a small number of S. aureus isolates. In most S. aureus isolates, no antimicrobial resistance genes were detected, but in five S. aureus isolates three to six resistance genes were identified and all five of these carried the mecA gene. Virulence genes were more frequently identified in S. aureus, which contained on average five times more virulence genes compared to NAS. Among the NAS species there were also differences in content of virulence genes, such as S. chromogenes with a higher average number of virulence genes. By determining the content of a large selection of virulence genes and antimicrobial resistance genes in S. aureus and 16 different NAS species our results contribute with knowledge regarding the genetic basis for virulence and antimicrobial resistance in bovine staphylococci, especially the less studied NAS. The results can create a broader basis for further research into the virulence mechanisms of this important group of bacteria in bovine intramammary infections. | 2021 | 34987483 |
| 5500 | 8 | 0.9991 | Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of Enterococcus faecium strains isolated from commercial swine and cattle probiotic products. Enterococcus faecium is one of the more commonly used bacterial species as a probiotic in animals. The organism, a common inhabitant of the gut of animals and humans, is a major nosocomial pathogen responsible for a variety infections in humans and sporadic infections in animals. In swine and cattle, E. faecium-based probiotic products are used for growth promotion and gut functional and health benefits. The objective of this study was to utilize whole genome sequence-based analysis to assess virulence potential, detect antimicrobial resistance genes, and analyze phylogenetic relationships of E. faecium strains from commercial swine and cattle probiotics. Genomic DNA extracted from E. faecium strains, isolated from commercial probiotic products of swine (n = 9) and cattle (n = 13), were sequenced in an Illumina MiSeq platform and analyzed. Seven of the nine swine strains and seven of the 13 cattle strains were identified as Enterococcus lactis, and not as E. faecium. None of the 22 probiotic strains carried major virulence genes required to initiate infections, but many carried genes involved in adhesion to host cells, which may benefit the probiotic strains to colonize and persist in the gut. Strains also carried genes encoding resistance to a few medically important antibiotics, which included aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia], macrolide, lincosamide and streptogramin B (msrC), tetracyclines [tet(L) and tet(M)], and phenicols [cat-(pc194)]. The comparison of the genotypic to phentypic AMR data showed presence of both related and unrelated genes in the probiotic strains. Swine and cattle probiotic E. faecium strains belonged to diverse sequence types. Phylogenetic analysis of the probiotic strains, and strains of human (n = 29), swine (n = 4), and cattle (n = 4) origin, downloaded from GenBank, indicated close clustering of strains belonging to the same species and source, but a few swine and cattle probiotic strains clustered closely with other cattle and human fecal strains. In conclusion, the absence of major virulence genes characteristic of the clinical E. faecium strains suggests that these probiotic strains are unlikely to initiate opportunistic infection. However, the carriage of AMR genes to medically important antibiotics and close clustering of the probiotic strains with other human and cattle fecal strains suggests that probiotic strains may pose risk to serve as a source of transmitting AMR genes to other gut bacteria. | 2022 | 35150575 |
| 5595 | 9 | 0.9991 | Microbial Diversity and Resistome in Milk of Cows with Subclinical Mastitis in a Coastal District of Odisha, India. Mastitis is a globally prevalent bacterial disease of lactating cows. Prevention and control of this multi-etiological complex disease relies upon administration of antibiotics. This has led to the emergence of newer multi-drug resistant strains. In the current study, milk samples from subclinical mastitis cows and their healthy counterparts were subjected to Illumina-based whole genome metagenome sequencing to explore bacterial communities and antibiotic resistance genes associated with mastitis-affected and healthy udder. Bovine milk microbiome in subclinical mastitis-affected cows were dominated by pathogenic bacteria such as Acinetobacter baylyi, Acinetobacter pittii, Streptococcus agalactiae, Streptococcus suis, Streptococcus uberis, Aeromonas hydrophila, Aeromonas enteropelogenes, Lactococcus lactis, Corynebacterium resistens and Kocuria rhizophila. We observed higher bacterial abundance and diversity in milk of cows suffering from subclinical mastitis as compared to apparently healthy cows. Resistant genes against fluoroquinolones, peptides, β-lactams, tetracyclines and macrolides were detected in the subclinical group. In contrast, genes resistant to aminoglycosides, penams and β-lactams were found in healthy cow milk. The findings of the study expand our knowledge of bacterial diversity and associated resistant genes found in the milk of mastitis-affected and healthy cow milk. | 2024 | 39678985 |
| 2819 | 10 | 0.9991 | Prevalence of Antibiotic-Resistant Lactobacilli in Sepsis Patients with Long-Term Antibiotic Therapy. Lactobacilli are the most common probiotic bacteria found in the human gut microbiota, and the presence of acquired antibiotic resistance determinants carried on mobile genetic elements must be screened due to safety concerns. Unnecessary and inappropriate antibiotic therapy, as well as ingested antibiotic resistance bacteria (originating from food or food products), influence the abundance of antibiotic resistance genes in human guts, with serious clinical consequences. The current study looked into the antibiotic resistance of lactobacilli isolated from the guts of sepsis patients on long-term antibiotic therapy. The broth microdilution method was used to investigate the minimum inhibitory concentrations (MICs) of antibiotics such as imipenem, meropenem, erythromycin, tetracycline, cefepime, ciprofloxacin, and gentamycin, and the molecular genetic basis of resistance was studied based on the MIC values. The isolates were phenotypically resistant to tetracycline (20%), fluoroquinolone (20%), and macrolide (5%). Following that, resistance genes for tetracycline [tet(L), tet(O), tet(K), and tet(M)], macrolide [erm(B) and erm(C)], and beta-lactams [bla(CMY)] were investigated. Tetracycline or macrolide resistance genes were not found in the isolates, and only one isolate possessed the bla(CMY) resistance gene. The findings suggested that tetracycline and macrolide resistance may be linked to other resistance genes that were not investigated in this study. Because tetracyclines, fluoroquinolones, and macrolides are commonly used in clinics and animals, there has been concern about the spread of resistance in humans. If acquired antibiotic resistance is passed down through mobile genetic elements, it may serve as a reservoir of resistance for gut pathogens and other microbiome environments. | 2022 | 36088413 |
| 5498 | 11 | 0.9991 | The prevalence of multidrug resistance in Staphylococcus hominis isolated from clinical materials. The treatment of infections caused by Staphylococcus hominis remains a challenge, mainly due to the increasing resistance of these bacteria to antibiotics. The aim of the study was to determine antibiotic resistance in 62 strains S. hominis isolated from clinical materials, and to identify the molecular basis of resistance to antibiotics. Forty-six strains were both methicillin-resistant and harbored the mecA gene. Twenty-three of these strains had mec complex A and ccr complex AB1. Such a combination of the mec and ccr complexes does not correspond to any cassettes that have been demonstrated so far. However, over 80% of the tested strains were multidrug-resistant, of which as many as 12 were resistant to at least seven antibiotics. More than a half of strains harbored the tetK, acc(6')-Ie aph(2''), and ant(4')-I genes. erm(C) was the most common resistant gene to antibiotics from the MLS group. Two strains had as many as five antibiotic resistance genes from the tested groups (erm(C), msr(A), msr(B), mph(C), lnu(A)). The presence of the vga gene encoding resistance to streptogramins A was detected in one strain. All of strains were sensitive to vancomycin. However, 11 of them had reduced sensitivity to this antibiotic and eight of them were characterized by a heterogeneous resistance profile to this antibiotic. Our results clearly shows increasing threat of S. hominis caused by their multi-resistance. Moreover, these bacteria can constitute a reservoir of resistance genes for more pathogenic bacteria. | 2025 | 39747570 |
| 5596 | 12 | 0.9991 | Enterotoxigenicity and Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Raw Buffalo and Cow Milk. Staphylococcal food poisoning is considered to be one of the most common foodborne illnesses worldwide. Because milk is rich in nutrients and its neutral pH, it leads to the growth of various bacteria. To date, the correlation between enterotoxigenic potential in Staphylococcus species and antimicrobial resistance (AMR), using bioinformatics analysis in buffalo and cow raw milk and the possible health risks from these bacteria, has not been examined in Egypt. A total of 42 Staphylococcus isolates representing 12 coagulase-positive staphylococci (Staphylococcus aureus and Staphylococcus intermedius) and 30 coagulase-negative staphylococci (Staphylococcus capitis, Staphylococcus xylosus, Staphylococcus carnosus, Staphylococcus saccharolyticus, and Staphylococcus auricularis) were isolated. An assay of the antimicrobial resistance phenotypes indicated low resistance against vancomycin (9.5%). The blaZ gene was associated with penicillin G and methicillin resistance and not with sulbactam + ampicillin. The presence of the gene ermB presented the correlation with erythromycin resistance and tetK with tetracycline resistance (correlation index: 0.57 and 0.49, respectively), despite the absence of the same behavior for ermC and tetM, respectively. Interestingly, the gene mecA was not correlated with resistance to methicillin or any other β-lactam. Correlation showed that slime-producing isolates had more resistance to antibiotics than those of nonslime producers. The multiple correlations between antibiotic resistance phenotypes and resistance genes indicate a complex nature of resistance in Staphylococcus species. The antimicrobial resistance could potentially spread to the community and thus, the resistance of Staphylococcus species to various antibiotics does not depend only on the use of a single antimicrobial, but also extends to other unrelated classes of antimicrobials. | 2020 | 31750778 |
| 5502 | 13 | 0.9991 | Short communication: Diversity of species and transmission of antimicrobial resistance among Staphylococcus spp. isolated from goat milk. The increasing production of goat milk and its derivatives is affected by the occurrence of intramammary infections, which are highly associated with the presence of Staphylococcus species, including some with zoonotic potential. Staphylococci in general can exchange mobile genetic elements, a process that may be facilitated by the isolate's capacity of forming biofilms. In this study we identified, to the species level, Staphylococcus isolated from goat milk samples by MALDI-TOF and confirmed the identification by sequencing housekeeping genes (rrs and tuf). Eight species were identified, more than half being either Staphylococcus epidermidis or Staphylococcus lugdunensis. The isolates were shown by pulsed-field gel electrophoresis to be genetically diverse between the studied herds. Resistance to ampicillin and penicillin was widespread, and 2 Staph. epidermidis isolates contained the methicillin-resistance gene mecA. Most of the isolates that were resistant to at least 1 of the 13 antimicrobials tested harbored plasmids, one of which was demonstrated to be conjugative, being transferred from a Staph. epidermidis to a Staphylococcus aureus strain. Biofilm formation was observed in almost every isolate, which may contribute to their capacity of exchanging antimicrobial resistance genes in addition to acting as a physical barrier to the access of drugs. Our results showed that antimicrobial resistance among goat staphylococci may be emerging in a process facilitated by the exchange of mobile genetic elements between the bacteria and the establishment of biofilms, which calls for careful monitoring and more effective control therapies. | 2019 | 30928272 |
| 2821 | 14 | 0.9991 | Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Use of antibiotics as feed additives in poultry production has been linked to the presence of antibiotic resistant bacteria in farm workers, consumer poultry products and the environs of confined poultry operations. There are concerns that these resistant bacteria may be transferred to communities near these operations; however, environmental pathways of exposure are not well documented. We assessed the prevalence of antibiotic resistant enterococci and staphylococci in stored poultry litter and flies collected near broiler chicken houses. Drug resistant enterococci and staphylococci were isolated from flies caught near confined poultry feeding operations in the summer of 2006. Susceptibility testing was conducted on isolates using antibiotics selected on the basis of their importance to human medicine and use in poultry production. Resistant isolates were then screened for genetic determinants of antibiotic resistance. A total of 142 enterococcal isolates and 144 staphylococcal isolates from both fly and poultry litter samples were identified. Resistance genes erm(B), erm(A), msr(C), msr(A/B) and mobile genetic elements associated with the conjugative transposon Tn916, were found in isolates recovered from both poultry litter and flies. Erm(B) was the most common resistance gene in enterococci, while erm(A) was the most common in staphylococci. We report that flies collected near broiler poultry operations may be involved in the spread of drug resistant bacteria from these operations and may increase the potential for human exposure to drug resistant bacteria. | 2009 | 19157515 |
| 4591 | 15 | 0.9991 | Phenotypic and Genotypic Characterization of Antimicrobial Resistance in Streptococci Isolated from Human and Animal Clinical Specimens. Recently, the phenomenon of infection of humans as hosts by animal pathogens has been increasing. Streptococcus is an example of a genus in which bacteria overcome the species barrier. Therefore, monitoring infections caused by new species of human pathogens is critical to their spread. Seventy-five isolates belonging to streptococcal species that have recently been reported as a cause of human infections with varying frequency, were tested. The aim of the study was to determine the drug resistance profiles of the tested strains, the occurrence of resistance genes and genes encoding the most important streptococcal virulence factors. All tested isolates retained sensitivity to β-lactam antibiotics. Resistance to tetracyclines occurred in 56% of the tested strains. We have detected the MLS(B) type resistance (cross-resistance to macrolide, lincosamide, and streptogramin B) in 20% of the tested strains. 99% of the strains had tetracycline resistance genes. The erm class genes encoding MLS(B) resistance were present in 47% of strains. Among the strains with MLS(B) resistance, 92% had the streptokinase gene, 58% the streptolysin O gene and 33% the streptolysin S gene. The most extensive resistance concerned isolates that accumulated the most traits and genes, both resistance genes and virulence genes, increasing their pathogenic potential. Among the tested strains, the gene encoding streptokinase was the most common. The results of the prove that bacteria of the species S. uberis, S. dysgalactiae and S. gallolyticus are characterized by a high pathogenic potential and can pose a significant threat in case of infection of the human body. | 2023 | 37256427 |
| 5635 | 16 | 0.9991 | Antimicrobial resistance characteristics and fitness of Gram-negative fecal bacteria from volunteers treated with minocycline or amoxicillin. A yearlong study was performed to examine the effect of antibiotic administration on the bacterial gut flora. Gram-negative facultative anaerobic bacteria were recovered from the feces of healthy adult volunteers administered amoxicillin, minocycline or placebo, and changes determined in antimicrobial resistance (AMR) gene carriage. Seventy percent of the 1039 facultative anaerobic isolates recovered were identified by MALDI-TOF as Escherichia coli. A microarray used to determine virulence and resistance gene carriage demonstrated that AMR genes were widespread in all administration groups, with the most common resistance genes being bla TEM, dfr, strB, tet(A), and tet(B). Following amoxicillin administration, an increase in the proportion of amoxicillin resistant E. coli and a three-fold increase in the levels of bla TEM gene carriage was observed, an effect not observed in the other two treatment groups. Detection of virulence genes, including stx1A, indicated not all E. coli were innocuous commensals. Approximately 150 E. coli collected from 6 participants were selected for pulse field gel electrophoresis (PFGE), and a subset used for characterisation of plasmids and Phenotypic Microarrays (PM). PFGE indicated some E. coli clones had persisted in volunteers for up to 1 year, while others were transient. Although there were no unique characteristics associated with plasmids from persistent or transient isolates, PM assays showed transient isolates had greater adaptability to a range of antiseptic biocides and tetracycline; characteristics which were lost in some, but not all persistent isolates. This study indicates healthy individuals carry bacteria harboring resistance to a variety of antibiotics and biocides in their intestinal tract. Antibiotic administration can have a temporary effect of selecting bacteria, showing co-resistance to multiple antibiotics, some of which can persist within the gut for up to 1 year. | 2014 | 25566232 |
| 5929 | 17 | 0.9991 | Characterization of biocide-tolerant bacteria isolated from cheese and dairy small-medium enterprises. A collection of 120 bacterial isolates from small medium enterprises involved in the production of cow milk and the manufacture of goat cheese were screened for sensitivity to biocides benzalkonium chloride (BC), cetrimide (CT), hexadecylpyridinium chloride (HDP), triclosan (TC), hexachlorophene (CF) and poly-(hexamethylen guanidinium) hydrochloride (PHMG). Nineteen isolates were selected according to biocide tolerance and identified by 16S rDNA sequencing as Lactococcus sp. (6) Enterococcus sp. (1), Lactobacillus sp. (4), Bacillus sp. (1) Escherichia sp. (5), Enterobacter sp. (1) and Helicobacter sp. (1). These were further characterised regarding antimicrobial resistance phenotype and genotype. Several isolates were multiply (3 or more) tolerant to biocides or resistant to antibiotics, but only two Escherichia sp. isolates and Enterobacter sp. were multiply resistant to biocides and antibiotics. Statistical analysis of biocide tolerance and antibiotic resistance revealed significant positive correlations between different biocides and between biocides and antibiotics. The biocide tolerance genes most frequently found were qacEΔ1 and qacA/B. The sulfonamide resistance gene sul1 was found in two Escherichia sp. isolates and in Enterobacter sp., all of which also carried qacEΔ1. Beta-lactam (bla(CTX-M), bla(PSE)) and tetracycline resistance genes [tet(A), tet(C) and tet(D)] were detected. Efflux pump genes acrB and mdfA were found in most Gram-negative isolates. Results from the study suggest that exposure to biocides can indirectly select for antibiotic resistance. | 2017 | 27889169 |
| 5736 | 18 | 0.9991 | Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness. | 2025 | 40872636 |
| 2441 | 19 | 0.9991 | Phenotypic and molecular assessment of antimicrobial resistance profile of airborne Staphylococcus spp. isolated from flats in Kraków. Bacteria of the genus Staphylococcus were isolated from air sampled from living spaces in Kraków (Poland). In total, 55 strains belonging to the genus Staphylococcus were isolated from 45 sites, and 13 species of coagulase-negative staphylococci were identified. The species composition of studied airborne microbiota contains Staphylococcus species that are rarely infectious to humans. Most commonly isolated species comprised S. hominis and S. warneri. The disk-diffusion tests showed that the collected isolates were most frequently resistant to erythromycin. The PCR technique was employed to search for genes conferring the resistance in staphylococci to antibiotics from the group of macrolides, lincosamides and streptogramins. The analyzed Staphylococcus isolates possessed simultaneously 4 different resistance genes. The molecular analysis with the use of specific primers allowed to determine the most prevalent gene which is mphC, responsible for the resistance to macrolides and for the enzymatic inactivation of the drug by phosphotransferase. The second most often detected gene was msrA1, which confers the resistance of staphylococci to macrolides and is responsible for active pumping of antimicrobial particles out of bacterial cells. | 2017 | 28955110 |