# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5488 | 0 | 1.0000 | Comparative genomics analysis of Acinetobacter haemolyticus isolates from sputum samples of respiratory patients. Acinetobacter haemolyticus (A. haemolyticus) is a significant Acinetobacter pathogen, and the resistance of A. haemolyticus continues to rise due to abuse of antibiotics and the frequent gene exchange between bacteria in hospital. In this study, we performed complete genome sequencing of two A. haemolyticus strains TJR01 and TJS01 to improve our understanding of pathogenic and resistance of A. haemolyticus. Both TJR01 and TJS01 contain one chromosome and two plasmids. Compared to TJS01, more virulence factors (VFs) associated pathogenicity and resistant genes were predicted in TJR01 due to T4SS and integron associated with combination and transport. Antimicrobial susceptibility results were consistent with sequencing. We suppose TJS01 was a susceptive strain and TJR01 was an acquired multidrug resistance strain due to plasmid-mediated horizontal gene transfer. We hope these findings may be helpful for clinical treatment of A. haemolyticus infection and reduce the risk of potential outbreak infection. | 2020 | 32209379 |
| 4929 | 1 | 0.9992 | Comparative genomics analysis of Acinetobacter baumannii multi-drug resistant and drug sensitive strains in China. The incidence of multidrug-resistant Acinetobacter baumannii has posed a major challenge for clinical treatment. There is still a significant gap in understanding the mechanism causing multi-drug resistance (MDR). In this study, the genomes of 10 drug sensitive and 10 multi-drug resistant A.baumannii strains isolated from a hospital in China were sequenced and compared. The antibiotic resistance genes, virulence factors were determined and CRIPSR-Cas system along with prophages were detected. The results showed that MDR strains are significantly different from the drug sensitive strains in the CARD entries, patterns of sequences matching up to plasmids, VFDB entries and CRISPR-Cas system. MDR strains contain unique CARD items related to antibiotic resistance which are absent in sensitive strains. Furthermore, sequences from genomes of MDR strains can match up with plasmids from more diversified bacteria genera compared to drug sensitive strains. MDR strains also contain a lower level of CRISPR genes and larger amount of prophages, along with higher levels of spacer sequences. These findings provide new experimental evidences for the study of the antibiotic resistance mechanism of A. baumannii. | 2022 | 35307599 |
| 4595 | 2 | 0.9991 | Transfer of mupirocin resistance from Staphylococcus haemolyticus clinical strains to Staphylococcus aureus through conjugative and mobilizable plasmids. Coagulase-negative staphylococci are thought to act as reservoirs of antibiotic resistance genes that can be transferred to Staphylococcus aureus, thus hindering the combat of this bacterium. In this work, we analyzed the presence of plasmids conferring resistance to the antibiotic mupirocin-widely used to treat and prevent S. aureus infections in hospital environments-in nosocomial S. haemolyticus strains. About 12% of the 75 strains tested were resistant to mupirocin, and this phenotype was correlated with the presence of plasmids. These plasmids were shown to be diverse, being either conjugative or mobilizable, and capable of transferring mupirocin resistance to S. aureus Our findings reinforce that S. haemolyticus, historically and mistakenly considered as a less important pathogen, is a reservoir of resistance genes which can be transferred to other bacteria, such as S. aureus, emphasizing the necessity of more effective strategies to detect and combat this emergent opportunistic pathogen. | 2016 | 27190144 |
| 4974 | 3 | 0.9991 | Genomic Plasticity of Multidrug-Resistant NDM-1 Positive Clinical Isolate of Providencia rettgeri. We performed a detailed whole-genome sequence analysis of Providencia rettgeri H1736, a multidrug-resistant clinical pathogen isolated in Israel in 2011. The objective was to describe the genomic flexibility of this bacterium that has greatly contributed to its pathogenicity. The genome has a chromosome size of 4,609,352 bp with 40.22% GC content. Five plasmids were predicted, as well as other mobile genetic elements (MGEs) including phages, genomic islands, and integrative and conjugative elements. The resistome consisted of a total of 27 different antibiotic resistance genes including blaNDM-1, mostly located on MGEs. Phenotypically, the bacteria displayed resistance to a total of ten different antimicrobial classes. Various features such as metabolic operons (including a novel carbapenem biosynthesis operon) and virulence genes were also borne on the MGEs, making P. rettgeri H1736 significantly different from other P. rettgeri isolates. A large quantity of the genetic diversity that exists in P. rettgeri H1736 was due to extensive horizontal gene transfer events, leading to an enormous presence of MGEs in its genome. Most of these changes contributed toward the pathogenic evolution of this bacterium. | 2016 | 27386606 |
| 4931 | 4 | 0.9991 | Delineating the Acquired Genetic Diversity and Multidrug Resistance in Alcaligenes from Poultry Farms and Nearby Soil. Alcaligenes faecalis is one of the most important and clinically significant environmental pathogens, increasing in importance due to its isolation from soil and nosocomial environments. The Gram-negative soil bacterium is associated with skin endocarditis, bacteremia, dysentery, meningitis, endophthalmitis, urinary tract infections, and pneumonia in patients. With emerging antibiotic resistance in A. faecalis, it has become crucial to understand the origin of such resistance genes within this clinically significant environmental and gut bacterium. In this research, we studied the impact of antibiotic overuse in poultry and its effect on developing resistance in A. faecalis. We sampled soil and faecal materials from five poultry farms, performed whole genome sequencing & analysis and identified four strains of A. faecalis. Furthermore, we characterized the genes in the genomic islands of A. faecalis isolates. We found four multidrug-resistant A. faecalis strains that showed resistance against vancomycin (MIC >1000 μg/ml), ceftazidime (50 μg/ml), colistin (50 μg/ml) and ciprofloxacin (50 μg/ml). From whole genome comparative analysis, we found more than 180 resistance genes compared to the reference sequence. Parts of our assembled contigs were found to be similar to different bacteria which included pbp1A and pbp2 imparting resistance to amoxicillin originally a part of Helicobacter and Bordetella pertussis. We also found the Mycobacterial insertion element IS6110 in the genomic islands of all four genomes. This prominent insertion element can be transferred and induce resistance to other bacterial genomes. The results thus are crucial in understanding the transfer of resistance genes in the environment and can help in developing regimes for antibiotic use in the food and poultry industry. | 2024 | 38904697 |
| 4964 | 5 | 0.9991 | Distribution of Antimicrobial Resistance and Virulence Genes within the Prophage-Associated Regions in Nosocomial Pathogens. Prophages are often involved in host survival strategies and contribute toward increasing the genetic diversity of the host genome. Prophages also drive horizontal propagation of various genes as vehicles. However, there are few retrospective studies contributing to the propagation of antimicrobial resistance (AMR) and virulence factor (VF) genes by prophage. We extracted the complete genome sequences of seven pathogens, including ESKAPE bacteria and Escherichia coli from a public database, and examined the distribution of both the AMR and VF genes in prophage-like regions. We found that the ratios of AMR and VF genes greatly varied among the seven species. More than 70% of Enterobacter cloacae strains had VF genes, but only 1.2% of Klebsiella pneumoniae strains had VF genes from prophages. AMR and VF genes are unlikely to exist together in the same prophage region except in E. coli and Staphylococcus aureus, and the distribution patterns of prophage types containing AMR genes are distinct from those of VF gene-carrying prophage types. AMR genes in the prophage were located near transposase and/or integrase. The prophage containing class 1 integrase possessed a significantly greater number of AMR genes than did prophages with no class 1 integrase. The results of this study present a comprehensive picture of AMR and VF genes present within, or close to, prophage-like elements and different prophage patterns between AMR- or VF-encoding prophage-like elements. IMPORTANCE Although we believe phages play an important role in horizontal gene transfer in exchanging genetic material, we do not know the distribution of the antimicrobial resistance (AMR) and/or virulence factor (VF) genes in prophages. We collected different prophage elements from the complete genome sequences of seven species-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli-and characterized the distribution of antimicrobial resistance and virulence genes located in the prophage region. While virulence genes in prophage were species specific, antimicrobial resistance genes in prophages were highly conserved in various species. An integron structure was detected within specific prophage regions such as P1-like prophage element. Maximum of 10 antimicrobial resistance genes were found in a single prophage region, suggesting that prophages act as a reservoir for antimicrobial resistance genes. The results of this study show the different characteristic structures between AMR- or VF-encoding prophages. | 2021 | 34232073 |
| 4630 | 6 | 0.9991 | Genome Analysis of the Enterococcus faecium Entfac.YE Prophage. BACKGROUND: Bacteriophages are viruses that infect bacteria. Bacteriophages are widely distributed in various environments. The prevalence of bacteriophages in water sources, especially wastewaters, is naturally high. These viruses affect evolution of most bacterial species. Bacteriophages are able to integrate their genomes into the chromosomes of their hosts as prophages and hence transfer resistance genes to the bacterial genomes. Enterococci are commensal bacteria that show high resistance to common antibiotics. For example, prevalence of vancomycin-resistant enterococci has increased within the last decades. METHODS: Enterococcal isolates were isolated from clinical samples and morphological, phenotypical, biochemical, and molecular methods were used to identify and confirm their identity. Bacteriophages extracted from water sources were then applied to isolated Enterococcus faecium (E. faecium). In the next step, the bacterial genome was completely sequenced and the existing prophage genome in the bacterial genome was analyzed. RESULTS: In this study, E. faecium EntfacYE was isolated from a clinical sample. The EntfacYE genome was analyzed and 88 prophage genes were identified. The prophage content included four housekeeping genes, 29 genes in the group of genes related to replication and regulation, 25 genes in the group of genes related to structure and packaging, and four genes belonging to the group of genes associated with lysis. Moreover, 26 genes were identified with unknown functions. CONCLUSION: In conclusion, genome analysis of prophages can lead to a better understanding of their roles in the rapid evolution of bacteria. | 2022 | 35509366 |
| 4559 | 7 | 0.9991 | Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. Multidrug-resistant bacteria pose a serious health threat, especially in hospitals. Horizontal gene transfer (HGT) of mobile genetic elements (MGEs) facilitates the spread of antibiotic resistance, virulence, and environmental persistence genes between nosocomial pathogens. We screened the genomes of 2173 bacterial isolates from healthcare-associated infections from a single hospital over 18 months, and identified identical nucleotide regions in bacteria belonging to distinct genera. To further resolve these shared sequences, we performed long-read sequencing on a subset of isolates and generated highly contiguous genomes. We then tracked the appearance of ten different plasmids in all 2173 genomes, and found evidence of plasmid transfer independent from bacterial transmission. Finally, we identified two instances of likely plasmid transfer within individual patients, including one plasmid that likely transferred to a second patient. This work expands our understanding of HGT in healthcare settings, and can inform efforts to limit the spread of drug-resistant pathogens in hospitals. | 2020 | 32285801 |
| 5734 | 8 | 0.9991 | Escherichia coli Strains Originating from Raw Sheep Milk, with Special Reference to Their Genomic Characterization, Such as Virulence Factors (VFs) and Antimicrobial Resistance (AMR) Genes, Using Whole-Genome Sequencing (WGS). The objective of this work was to deliver a comprehensive genetic characterization of a collection of E. coli strains isolated from raw sheep milk. To complete our purpose, the technique of whole-genome sequencing, coupled with bioinformatics and phenotypic characterization of antimicrobial resistance, was performed. These Gram-negative, facultative anaerobic bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Shigella spp. and Salmonella spp. Genetic analysis was carried out on all strains (phylogram, sequence types, VFs, AMR genes, and pangenome). The results showed the presence of various genetic traits that are related to virulence factors contributing to their pathogenic potential. In addition, genes conferring resistance to antibiotics were also detected and confirmed using phenotypic tests. Finally, the genome of the E. coli strains was characterized by the presence of several mobile genetic elements, thus facilitating the exchange of various genetic elements, associated with virulence and antimicrobial resistance, within and beyond the species, through horizontal gene transfer. Contaminated raw sheep milk with pathogenic E. coli strains is particularly alarming for cheese production in artisan dairies. | 2025 | 40872695 |
| 4622 | 9 | 0.9991 | CRISPR-Cas System, Antimicrobial Resistance, and Enterococcus Genus-A Complicated Relationship. (1) Background: The rise in antibiotic resistant bacteria poses a significant threat to public health worldwide, necessitating innovative solutions. This study explores the role of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the context of antibiotic resistance among different species from the Enterococcus genus. (2) Methods: The genomes of Enterococcus included in the study were analyzed using CRISPRCasFinder to distinguish between CRISPR-positive (level 4 CRISPR) and CRISPR-negative genomes. Antibiotic resistance genes were identified, and a comparative analysis explored potential associations between CRISPR presence and antibiotic resistance profiles in Enterococcus species. (3) Results: Out of ten antibiotic resistance genes found in Enterococcus species, only one, the efmA gene, showed a strong association with CRISPR-negative isolates, while the others did not significantly differ between CRISPR-positive and CRISPR-negative Enterococcus genomes. (4) Conclusion: These findings indicate that the efmA gene may be more prevalent in CRISPR-negative Enterococcus genomes, and they may contribute to a better understanding of the molecular mechanisms underlying the acquisition of antibiotic resistance genes in Enterococcus species. | 2024 | 39062198 |
| 4621 | 10 | 0.9990 | High Prophage Count in Staphylococcus Periprosthetic Joint Infection Is Associated With an Increase in Antibiotic Resistance Genes. BACKGROUND: Periprosthetic joint infections (PJI) caused by Staphylococcus species present a significant clinical challenge, especially in the context of rising antibiotic resistance. Lysogenic phages (viruses that infect bacteria and can integrate into the bacteria's genome in the form of a prophage) have the potential to contribute to antibiotic resistance and treatment failure through the transport of genetic material between bacteria. We hypothesized that prophage presence may be associated with the presence of antimicrobial resistance genes and phenotypic resistance in Staphylococcus species associated with PJI. METHODS: We examined the relationship between the presence of prophage and antibiotic resistance in Staphylococcus isolates collected from synovial fluid samples from 15 PJI patients. Bacterial isolates were assessed for antibiotic resistance and sequenced to identify prophages and antibiotic resistance genes. RESULTS: We observed that a higher prophage count was associated with a higher number of antibiotic resistance genes, but not with phenotypic antibiotic resistance. In addition, none of the prophages identified were significantly associated with phenotypic resistance. CONCLUSIONS: These findings suggest that prophages may contribute to the spread of antibiotic resistance genes, but the impact on phenotypic resistance may be more complex, highlighting the need for further research to explore prophage profiling in PJI biofilms. | 2025 | 40436077 |
| 4916 | 11 | 0.9990 | A clinical metagenomic study of biopsies from Mexican endophthalmitis patients reveals the presence of complex bacterial communities and a diversity of resistance genes. Infectious endophthalmitis is a severe ophthalmic emergency. This infection can be caused by bacteria and fungi. For efficient treatment, the administration of antimicrobial drugs to which the microbes are susceptible is essential. The aim of this study was to identify micro-organisms in biopsies of Mexican endophthalmitis patients using metagenomic next-generation sequencing and determine which antibiotic resistance genes were present in the biopsy samples. In this prospective case study, 19 endophthalmitis patients were recruited. Samples of vitreous or aqueous humour were extracted for DNA extraction for metagenomic next-generation sequencing. Analysis of the sequencing results revealed the presence of a wide variety of bacteria in the biopsies. Resistome analysis showed that homologues of antibiotic resistance genes were present in several biopsy samples. Genes possibly conferring resistance to ceftazidime and vancomycin were detected in addition to various genes encoding efflux pumps. Our findings contrast with the widespread opinion that only one or a few bacterial strains are present in the infected tissues of endophthalmitis patients. These diverse communities might host many of the resistance genes that were detected, which can further complicate the infections. | 2024 | 39045243 |
| 4936 | 12 | 0.9990 | A New Tool for Analyses of Whole Genome Sequences Reveals Dissemination of Specific Strains of Vancomycin-Resistant Enterococcus faecium in a Hospital. A new easy-to-use online bioinformatic tool analyzing whole genome sequences of healthcare associated bacteria was used by a local infection control unit to retrospectively map genetic relationship of isolates of E. faecium carrying resistance genes to vancomycin in a hospital. Three clusters of isolates were detected over a period of 5 years, suggesting transmission between patients. Individual relatedness between isolates within each cluster was established by SNP analyses provided by the system. Genetic antimicrobial resistance mechanisms to antibiotics other than vancomycin were identified. The results suggest that the system is suited for hospital surveillance of E. faecium carrying resistance genes to vancomycin in settings with access to next Generation Sequencing without bioinformatic expertise for interpretation of the genome sequences. | 2021 | 34778297 |
| 4961 | 13 | 0.9990 | Draft genome of Serratia sp. R1 gives an insight into the antibiotic resistant genes against multiple antibiotics. BACKGROUND: Serratia is a pathogenic bacterium, commonly associated with neonatal intensive care units, and harbors antibiotic-resistant genes against multiple antibiotics e.g., resistance against penams, aminoglycosides, tetracyclines, cephalosporins, and macrolides. In the long-term contaminated habitat, the bacterial communities carry both antibiotic and metal resistance genes. This draft genome sequencing aimed to explore the alarming level of ARGs in the environment, additionally heavy metal-resistant genes were also explored in the draft genome. METHODS: Whole-genome sequencing was used to investigate ARGs in Serratia sp. R1. The bacteria were sequenced using Illumina Nova seq sequencer and subjected to genome annotation. The bacterial genome was explored for antibiotic- and metal-resistant genes. RESULTS: Sequencing resulted in 8.4 Mb genome and a total of 4411 functional genes were characterized in the draft genome. Genes resistant to Beta-lactams, cephalosporins, macrolides, fluoroquinolones, and tetracycline are present in the draft genome. Multiple metal-resistant genes are also present in the sequenced genome. CONCLUSION: The genes and proteins providing heavy metal and antibiotic resistance may be used in the bioremediation of environmental antibiotic residues to prevent the spread of antibiotic resistance. The current study can help us to adopt suitable mitigation measures against the multidrug-resistant Serratia. | 2022 | 35237932 |
| 5712 | 14 | 0.9990 | Draft Genome Sequences of Three Multidrug-Resistant Staphylococcus spp. Isolated from Hospital Wastewater in Malaysia. Staphylococcus spp. are Gram-positive bacteria that reside within the normal microbiota of humans and animals but pose a health threat as reservoirs of antimicrobial resistance genes. Here, we present the draft genome sequences of three Staphylococcus sp. strains isolated from hospital wastewater in Malaysia that demonstrated resistance to multiple antibiotics. | 2021 | 33958405 |
| 5478 | 15 | 0.9990 | Selection and maintenance of mobile linezolid-resistance genes and plasmids carrying them in the presence of florfenicol, an animal-specific antimicrobial. Mobile linezolid-resistance genes (optrA, poxtA and cfr) that confer resistance to linezolid and florfenicol have been detected globally in various sources. Linezolid is a last-resort antimicrobial used in human clinical settings, and florfenicol is commonly used in veterinary clinical settings. The present study sought to evaluate the potential of florfenicol in veterinary use to select for linezolid-resistant bacteria. The growth and fitness of linezolid-resistant bacteria harbouring mobile linezolid-resistance genes were assessed in the presence and absence of florfenicol using Enterococcus faecalis and Enterococcus faecium, respectively. The bacterial strains harboured wild and cloning plasmids carrying mobile linezolid-resistance genes, which reduced their susceptibility to linezolid and florfenicol. The acquisition of plasmids carrying mobile linezolid-resistance genes improved bacterial growth in the presence of florfenicol and conferred fitness costs in its absence. Florfenicol imposes a selection pressure on bacteria harbouring plasmids carrying mobile linezolid-resistance genes. Hence, the appropriate use of florfenicol in veterinary clinical settings is important to control the dissemination of mobile linezolid-resistance genes and to ensure the sustained effectiveness of linezolid against multidrug-resistant bacteria, including vancomycin-resistant enterococci in human clinical settings. | 2025 | 40698117 |
| 5157 | 16 | 0.9990 | Genomic insights and phenotypic characterization of three multidrug resistant Cupriavidus strains from the cystic fibrosis lung. AIMS: We aimed to investigate phenotypic and genomic traits of three Cupriavidus spp. isolates recovered from people with cystic fibrosis (PWCF). These bacteria are recognized as emerging pathogens in PWCF. METHODS AND RESULTS: Using short and long sequencing reads, we assembled three hybrid complete genomes for the genus Cupriavidus, adding to the 45 published currently, describing multipartite genomes and plasmids. The isolates likely represent three different species, and they carry a cumulative total of 30 antibiotic resistance genes with high homology to well-characterized resistance determinants from other bacteria. Multidrug resistance to antibiotics used in CF management was observed in all three isolates. However, two treatments were active across all isolates: cefotaxime and piperacillin/tazobactam. Biofilm formation was only seen at physiological temperatures (37°C) and lost at 20°C and all isolates had low lethality in Galleria mellonella larvae. Isolates demonstrated variable motility, with one non-motile isolate carrying a disrupted flhD transcriptional regulator, abolishing flagella expression. CONCLUSIONS: Our Cupriavidus spp. isolates showed considerable genomic and phenotypic variability that may impact their virulence and treatment in PWCF, where multidrug resistance will negate treatments and biofilm formation and motility play key roles in infection establishment, as seen in CF pathogens like Pseudomonas aeruginosa. More detailed investigation of clinical Cupriavidus isolates is needed for full understanding of the risk they pose to PWCF. | 2025 | 40246707 |
| 5508 | 17 | 0.9990 | Genomic and phenotypic comparison of environmental and patient-derived isolates of Pseudomonas aeruginosa suggest that antimicrobial resistance is rare within the environment. Patient-derived isolates of the opportunistic pathogen Pseudomonas aeruginosa are frequently resistant to antibiotics due to the presence of sequence variants in resistance-associated genes. However, the frequency of antibiotic resistance and of resistance-associated sequence variants in environmental isolates of P. aeruginosa has not been well studied. Antimicrobial susceptibility testing (ciprofloxacin, ceftazidime, meropenem, tobramycin) of environmental (n=50) and cystic fibrosis (n=42) P. aeruginosa isolates was carried out. Following whole genome sequencing of all isolates, 25 resistance-associated genes were analysed for the presence of likely function-altering sequence variants. Environmental isolates were susceptible to all antibiotics with one exception, whereas patient-derived isolates had significant frequencies of resistance to each antibiotic and a greater number of likely resistance-associated genetic variants. These findings indicate that the natural environment does not act as a reservoir of antibiotic-resistant P. aeruginosa, supporting a model in which antibiotic susceptible environmental bacteria infect patients and develop resistance during infection. | 2019 | 31553303 |
| 4955 | 18 | 0.9990 | Evidence of extensive interspecies transfer of integron-mediated antimicrobial resistance genes among multidrug-resistant Enterobacteriaceae in a clinical setting. Multidrug resistance in gram-negative bacteria appears to be primarily the result of the acquisition of resistance genes by horizontal transfer. To what extent horizontal transfer may be responsible for the emergence of multidrug resistance in a clinical setting, however, has rarely been investigated. Therefore, the integron contents of isolates collected during a nosocomial outbreak of genotypically unrelated multidrug-resistant Enterobacteriaceae were characterized. The integron was chosen as a marker of transfer because of its association with multiresistance. Some genotypically identical isolates harbored different integrons. Grouping patients carrying the same integron yielded 6 epidemiologically linked clusters, with each cluster representing a different integron. Several patients carried multiple species harboring the same integron. Conjugation experiments with these strains resulted in the transfer of complete resistance patterns at high frequencies (10(-2) to 10(-4)). These findings provide strong evidence that the horizontal transfer of resistance genes contributed largely to the emergence of multidrug-resistant Enterobacteriaceae in this clinical setting. | 2002 | 12089661 |
| 4611 | 19 | 0.9990 | Bacteriophage-mediated transduction of antibiotic resistance in enterococci. AIMS: Temperate bacteriophages are bacterial viruses that transfer genetic information between bacteria. This phenomenon is known as transduction, and it is important in acquisition of bacterial virulence genes and antimicrobial resistance determinants. The aim of this study was to demonstrate the role of bacteriophages in gene transfer (antibiotic resistance) in enterococci. METHODS AND RESULTS: Three bacteriophages from environmental samples isolated on pig host strains of Enterococcus gallinarum and Enterococcus faecalis were evaluated in transduction experiments. Antibiotic resistance was transferred from Ent. gallinarum to Ent. faecalis (tetracycline resistance) and from Ent. faecalis to Enterococcus faecium, Enterococcus hirae/durans and Enterococcus casseliflavus (gentamicin resistance). CONCLUSIONS: Bacteriophages play a role in transfer of antibiotic resistance determinants in enterococci. SIGNIFICANCE AND IMPACT OF THE STUDY: This study confirms previous suggestions on transduction in enterococci, in particular on interspecies transduction. Interspecies transduction is significant because it widens the range of recipients involved in antimicrobial resistance transfer. | 2011 | 21395627 |