An in-house 45-plex array for the detection of antimicrobial resistance genes in Gram-positive bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
547701.0000An in-house 45-plex array for the detection of antimicrobial resistance genes in Gram-positive bacteria. Identifying antimicrobial resistance (AMR) genes and determining their occurrence in Gram-positive bacteria provide useful data to understand how resistance can be acquired and maintained in these bacteria. We describe an in-house bead array targeting AMR genes of Gram-positive bacteria and allowing their rapid detection all at once at a reduced cost. A total of 41 AMR probes were designed to target genes frequently associated with resistance to tetracycline, macrolides, lincosamides, streptogramins, pleuromutilins, phenicols, glycopeptides, aminoglycosides, diaminopyrimidines, oxazolidinones and particularly shared among Enterococcus and Staphylococcus spp. A collection of 124 enterococci and 62 staphylococci isolated from healthy livestock animals through the official Belgian AMR monitoring (2018-2020) was studied with this array from which a subsample was further investigated by whole-genome sequencing. The array detected AMR genes associated with phenotypic resistance for 93.0% and 89.2% of the individual resistant phenotypes in enterococci and staphylococci, respectively. Although linezolid is not used in veterinary medicine, linezolid-resistant isolates were detected. These were characterized by the presence of optrA and poxtA, providing cross-resistance to other antibiotics. Rarer, vancomycin resistance was conferred by the vanA or by the vanL cluster. Numerous resistance genes circulating among Enterococcus and Staphylococcus spp. were detected by this array allowing rapid screening of a large strain collection at an affordable cost. Our data stress the importance of interpreting AMR with caution and the complementarity of both phenotyping and genotyping methods. This array is now available to assess other One-Health AMR reservoirs.202336825880
547910.9998Novel linezolid resistance plasmids in Enterococcus from food animals in the USA. OBJECTIVES: To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme. METHODS: Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible. RESULTS: Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3')-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant. CONCLUSIONS: To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus.201830272180
547820.9998Selection and maintenance of mobile linezolid-resistance genes and plasmids carrying them in the presence of florfenicol, an animal-specific antimicrobial. Mobile linezolid-resistance genes (optrA, poxtA and cfr) that confer resistance to linezolid and florfenicol have been detected globally in various sources. Linezolid is a last-resort antimicrobial used in human clinical settings, and florfenicol is commonly used in veterinary clinical settings. The present study sought to evaluate the potential of florfenicol in veterinary use to select for linezolid-resistant bacteria. The growth and fitness of linezolid-resistant bacteria harbouring mobile linezolid-resistance genes were assessed in the presence and absence of florfenicol using Enterococcus faecalis and Enterococcus faecium, respectively. The bacterial strains harboured wild and cloning plasmids carrying mobile linezolid-resistance genes, which reduced their susceptibility to linezolid and florfenicol. The acquisition of plasmids carrying mobile linezolid-resistance genes improved bacterial growth in the presence of florfenicol and conferred fitness costs in its absence. Florfenicol imposes a selection pressure on bacteria harbouring plasmids carrying mobile linezolid-resistance genes. Hence, the appropriate use of florfenicol in veterinary clinical settings is important to control the dissemination of mobile linezolid-resistance genes and to ensure the sustained effectiveness of linezolid against multidrug-resistant bacteria, including vancomycin-resistant enterococci in human clinical settings.202540698117
556630.9998Resistance to antimicrobial agents used for animal therapy in pathogenic-, zoonotic- and indicator bacteria isolated from different food animals in Denmark: a baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP). This study describes the establishment and first results of a continuous surveillance system of antimicrobial resistance among bacteria isolated from pigs, cattle and broilers in Denmark. The three categories of bacteria tested were: 1) indicator bacteria (Escherichia coli, Enterococcus faecalis, Enterococcus faecium), 2) zoonotic bacteria (Campylobacter coli/jejuni, Salmonella enterica, Yersinia enterocolitica), and 3) animal pathogens (E. coli, Staphylococcus aureus, coagulase-negative staphylococci (CNS), Staphylococcus hyicus, Actinobacillus pleuropneumoniae). A total of 3304 bacterial isolates collected from October 1995 through December 1996 were tested for susceptibility to all major classes of antimicrobial agents used for therapy in Denmark. Bacterial species intrinsically resistant to an antimicrobial were not tested towards that antimicrobial. Acquired resistance to all antimicrobials was found. The occurrence of resistance varied by animal origin and bacterial species. In general, resistance was observed more frequently among isolates from pigs than from cattle and broilers. The association between the occurrence of resistance and the consumption of the antimicrobial is discussed, as is the occurrence of resistance in other countries. The results of this study show the present level of resistance to antimicrobial agents among a number of bacterial species isolated from food animals in Denmark. Thus, the baseline for comparison with future prospective studies has been established, enabling the determination of trends over time.19989744762
550140.9998The oral microbiota of domestic cats harbors a wide variety of Staphylococcus species with zoonotic potential. This study aimed to characterize the species, antimicrobial resistance and dispersion of CRISPR systems in staphylococci isolated from the oropharynx of domestic cats in Brazil. Staphylococcus strains (n=75) were identified by MALDI-TOF and sequencing of rpoB and tuf genes. Antimicrobial susceptibility was assessed by disk diffusion method and PCR to investigate the presence of antimicrobial-resistance genes usually present in mobile genetic elements (plasmids), in addition to plasmid extraction. CRISPR - genetic arrangements that give the bacteria the ability to resist the entry of exogenous DNA - were investigated by the presence of the essential protein Cas1 gene. A great diversity of Staphylococcus species (n=13) was identified. The presence of understudied species, like S. nepalensis and S. pettenkoferi reveals that more than one identification method may be necessary to achieve conclusive results. At least 56% of the strains contain plamids, being 99% resistant to at least one of the eight tested antimicrobials and 12% multidrug resistant. CRISPR were rare among the studied strains, consistent with their putative role as gene reservoirs. Moreover, herein we describe for the first time their existence in Staphylococcus lentus, to which the system must confer additional adaptive advantage. Prevalence of resistance among staphylococci against antimicrobials used in veterinary and human clinical practice and the zoonotic risk highlight the need of better antimicrobial management practices, as staphylococci may transfer resistance genes among themselves, including to virulent species, like S. aureus.201728284599
550050.9998Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of Enterococcus faecium strains isolated from commercial swine and cattle probiotic products. Enterococcus faecium is one of the more commonly used bacterial species as a probiotic in animals. The organism, a common inhabitant of the gut of animals and humans, is a major nosocomial pathogen responsible for a variety infections in humans and sporadic infections in animals. In swine and cattle, E. faecium-based probiotic products are used for growth promotion and gut functional and health benefits. The objective of this study was to utilize whole genome sequence-based analysis to assess virulence potential, detect antimicrobial resistance genes, and analyze phylogenetic relationships of E. faecium strains from commercial swine and cattle probiotics. Genomic DNA extracted from E. faecium strains, isolated from commercial probiotic products of swine (n = 9) and cattle (n = 13), were sequenced in an Illumina MiSeq platform and analyzed. Seven of the nine swine strains and seven of the 13 cattle strains were identified as Enterococcus lactis, and not as E. faecium. None of the 22 probiotic strains carried major virulence genes required to initiate infections, but many carried genes involved in adhesion to host cells, which may benefit the probiotic strains to colonize and persist in the gut. Strains also carried genes encoding resistance to a few medically important antibiotics, which included aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia], macrolide, lincosamide and streptogramin B (msrC), tetracyclines [tet(L) and tet(M)], and phenicols [cat-(pc194)]. The comparison of the genotypic to phentypic AMR data showed presence of both related and unrelated genes in the probiotic strains. Swine and cattle probiotic E. faecium strains belonged to diverse sequence types. Phylogenetic analysis of the probiotic strains, and strains of human (n = 29), swine (n = 4), and cattle (n = 4) origin, downloaded from GenBank, indicated close clustering of strains belonging to the same species and source, but a few swine and cattle probiotic strains clustered closely with other cattle and human fecal strains. In conclusion, the absence of major virulence genes characteristic of the clinical E. faecium strains suggests that these probiotic strains are unlikely to initiate opportunistic infection. However, the carriage of AMR genes to medically important antibiotics and close clustering of the probiotic strains with other human and cattle fecal strains suggests that probiotic strains may pose risk to serve as a source of transmitting AMR genes to other gut bacteria.202235150575
256560.9998Phenotypic and genotypic characterization of antibiotic-resistant bacteria from Swiss ready-to-eat meat products. Antimicrobial resistance is a global health concern, which is partly driven by rising meat consumption, which has led to the intensive farming of livestock that relies on antibiotics. ready-to-eat animal products can carry antibiotic-resistant bacteria, posing risks to humans since they are often consumed without further cooking. While countries such as Switzerland limit antibiotic use in agriculture, contamination of meat with antibiotic-resistant bacteria can still occur during meat processing, and non-antibiotic agents such as heavy metals may contribute to the co-selection of resistance. This study aimed to characterize antibiotic-resistant bacteria in ready-to-eat meat products from various Swiss butcheries. Presumptive resistant bacteria were isolated using selective plating and analyzed phenotypically and genotypically. A total of 53 bacteria-antibiotic resistance combinations were identified, including Enterobacterales resistant to third-generation cephalosporins, vancomycin-resistant Enterococci, and one strain of methicillin-resistant Staphylococcus aureus. Of the 804 products sampled, 177 antibiotic-resistant bacteria were isolated, 148 of which showed multidrug resistance. Notably, these strains remained susceptible to last-resort antibiotics such as carbapenems and colistin. Whole-genome sequencing of 31 selected isolates revealed 164 antibiotic resistance genes spanning 25 classes, confirming resistance to beta-lactams, cephalosporins, and tetracyclines. We also detected genes conferring resistance to metals, suggesting co-selection pressures. Long-read sequencing revealed that the majority of the antibiotic resistance genes were chromosomal, while others were plasmid-encoded, indicating the potential for horizontal gene transfer. This study demonstrates that ready-to-eat meat products are reservoirs of antibiotic and metal resistance genes, as well as antibiotic-resistant bacteria, even at low levels. From a One Health perspective, our results highlight the importance of extending AMR surveillance across the food chain and underscore the need to include non-traditional bacterial indicators.202541001059
568170.9998Molecular Epidemiology of Neonatal-Associated Staphylococcus haemolyticus Reveals Endemic Outbreak. Staphylococcus haemolyticus is a major cause of late-onset sepsis in neonates, and endemic clones are often multidrug-resistant. The bacteria can also act as a genetic reservoir for more pathogenic bacteria. Molecular epidemiology is important in understanding bacterial pathogenicity and preventing infection. To describe the molecular epidemiology of S. haemolyticus isolated from neonatal blood cultures at a Swedish neonatal intensive care unit (NICU) over 4 decades, including antibiotic resistance genes (ARGs), virulence factors, and comparison to international isolates. Isolates were whole-genome sequenced, and single nucleotide polymorphisms in the core genome were used to map the relatedness. The occurrence of previously described ARGs and virulence genes were investigated. Disc diffusion and gradient tests were used to determine phenotypic resistance. The results revealed a clonal outbreak of S. haemolyticus at this NICU during the 1990s. Multidrug resistance was present in 28 (82%) of all isolates and concomitant resistance to aminoglycoside and methicillin occurred in 27 (79%). No isolates were vancomycin resistant. Genes encoding ARGs and virulence factors occurred frequently. The isolates in the outbreak were more homogenous in their genotypic and phenotypic patterns. Genotypic and phenotypic resistance combinations were consistent. Pathogenic traits previously described in S. haemolyticus occurred frequently in the present isolates, perhaps due to the hospital selection pressure resulting in epidemiological success. The clonal outbreak revealed by this study emphasizes the importance of adhering to hygiene procedures in order to prevent future endemic outbreaks. IMPORTANCE This study investigated the relatedness of Staphylococcus haemolyticus isolated from neonatal blood and revealed a clonal outbreak in the 1990s at a Swedish neonatal intensive care unit. The outbreak clone has earlier been isolated in Japan and Norway. Virulence and antibiotic resistance genes previously associated with clinical S. haemolyticus were frequently occuring in the present study as well. The majority of the isolates were multidrug-resistant. These traits should be considered important for S. haemolyticus epidemiological success and are probably caused by the hospital selection pressure. Thus, this study emphasizes the importance of restrictive antibiotic use and following the hygiene procedures, to prevent further antibiotic resistance spread and future endemic outbreaks.202236314976
193580.9998Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related.202134356729
573690.9998Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness.202540872636
5642100.9998Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin. The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the environment.201526385434
4967110.9998Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin. BACKGROUND: Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines. RESULTS: The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types. CONCLUSIONS: The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected.202439434132
5504120.9998Whole Genome Sequencing of Staphylococci Isolated From Bovine Milk Samples. Staphylococci are among the commonly isolated bacteria from intramammary infections in bovines, where Staphylococcus aureus is the most studied species. This species carries a variety of virulence genes, contributing to bacterial survival and spread. Less is known about non-aureus staphylococci (NAS) and their range of virulence genes and mechanisms, but they are the most frequently isolated bacteria from bovine milk. Staphylococci can also carry a range of antimicrobial resistance genes, complicating treatment of the infections they cause. We used Illumina sequencing to whole genome sequence 93 staphylococcal isolates selected from a collection of staphylococcal isolates; 45 S. aureus isolates and 48 NAS isolates from 16 different species, determining their content of antimicrobial resistance genes and virulence genes. Antimicrobial resistance genes were frequently observed in the NAS species as a group compared to S. aureus. However, the lincosamide resistance gene lnuA and penicillin resistance gene blaZ were frequently identified in NAS, as well as a small number of S. aureus. The erm genes conferring macrolide resistance were also identified in several NAS isolates and in a small number of S. aureus isolates. In most S. aureus isolates, no antimicrobial resistance genes were detected, but in five S. aureus isolates three to six resistance genes were identified and all five of these carried the mecA gene. Virulence genes were more frequently identified in S. aureus, which contained on average five times more virulence genes compared to NAS. Among the NAS species there were also differences in content of virulence genes, such as S. chromogenes with a higher average number of virulence genes. By determining the content of a large selection of virulence genes and antimicrobial resistance genes in S. aureus and 16 different NAS species our results contribute with knowledge regarding the genetic basis for virulence and antimicrobial resistance in bovine staphylococci, especially the less studied NAS. The results can create a broader basis for further research into the virulence mechanisms of this important group of bacteria in bovine intramammary infections.202134987483
5712130.9998Draft Genome Sequences of Three Multidrug-Resistant Staphylococcus spp. Isolated from Hospital Wastewater in Malaysia. Staphylococcus spp. are Gram-positive bacteria that reside within the normal microbiota of humans and animals but pose a health threat as reservoirs of antimicrobial resistance genes. Here, we present the draft genome sequences of three Staphylococcus sp. strains isolated from hospital wastewater in Malaysia that demonstrated resistance to multiple antibiotics.202133958405
5676140.9998Fosfomycin Resistance in Bacteria Isolated from Companion Animals (Dogs and Cats). Fosfomycin is an old antibacterial agent, which is currently used mainly in human medicine, in uncomplicated Urinary Tract Infections (UTIs). The purpose of this review is to investigate the presence and the characteristics of Fosfomycin resistance in bacteria isolated from canine or feline samples, estimate the possible causes of the dissemination of associated strains in pets, and underline the requirements of prospective relevant studies. Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines were used for the search of current literature in two databases. A total of 33 articles were finally included in the review. Relevant data were tracked down, assembled, and compared. Referring to the geographical distribution, Northeast Asia was the main area of origin of the studies. E. coli was the predominant species detected, followed by other Enterobacteriaceae, Staphylococci, and Pseudomonas spp. FosA and fosA3 were the more frequently encountered Antimicrobial Resistance Genes (ARGs) in the related Gram-negative isolates, while fosB was regularly encountered in Gram-positive ones. The majority of the strains were multidrug-resistant (MDR) and co-carried resistance genes against several classes of antibiotics and especially β-Lactams, such as bla(CTX-M) and mecA. These results demonstrate the fact that the cause of the spreading of Fosfomycin-resistant bacteria among pets could be the extended use of other antibacterial agents, that promote the prevalence of MDR, epidemic strains among an animal population. Through the circulation of these strains into a community, a public health issue could arise. Further research is essential though, for the comprehensive consideration of the issue, as the current data are limited.202337235420
2558150.9998Antimicrobial resistance in wild game mammals: a glimpse into the contamination of wild habitats in a systematic review and meta-analysis. BACKGROUND: Wild game meat has over the years gained popularity across the globe as it is considered a food source with high protein content, low fat content, and a balanced composition of fatty acids and minerals, which are requirements for a healthy diet. Despite this popularity, there is a concern over its safety as many species of wildlife are reservoirs of zoonotic diseases including those of bacterial origin, more so antibiotic-resistant bacteria. METHODS: This study aimed to describe the prevalence of antibiotic-resistant bacteria in mammalian wild game, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: The overall pooled prevalence of antibiotic resistance was established at 59.8% while the prevalence of multidrug resistance (MDR) was 17.2%. Resistance was reported in 32 wild game species and the meta-analysis revealed the highest prevalence of antibiotic resistance in Yersinia spp. (95.5%; CI: 76.8 - 100%) followed by Enterococcus spp. (71%; CI: 44.1 - 92%), Salmonella spp. (69.9%; CI: 44.3 - 90.0%), Staphylococcus spp. (69.3%; CI: 40.3 - 92.3%), and Escherichia coli (39.5%; CI: 23.9 - 56.4%). Most notably, resistance to highest priority, critically important antimicrobials, was recorded in all genera of bacteria studied. Additionally, a significantly higher prevalence of antibiotic resistance was observed in studies conducted in remote settings than those in the vicinity of anthropogenic activities, pointing to extensive contamination of wild habitats. CONCLUSION: This review shows the presence of antibiotic resistance and the carriage of antimicrobial resistance (AMR) genes by bacteria isolated from mammalian wild game species. This is a cause for concern if critical steps to prevent transmission to humans from meat and meat products are not applied in the wild game meat production chain. The extensive occurrence of antibiotic resistance in the wild calls for expansion and adaptation of future AMR surveillance plans to include areas with various anthropogenic pressures including in sylvatic habitats.202539799360
5505160.9998Concordance between Antimicrobial Resistance Phenotype and Genotype of Staphylococcus pseudintermedius from Healthy Dogs. Staphylococcus pseudintermedius, a common commensal canine bacterium, is the main cause of skin infections in dogs and is a potential zoonotic pathogen. The emergence of methicillin-resistant S. pseudintermedius (MRSP) has compromised the treatment of infections caused by these bacteria. In this study, we compared the phenotypic results obtained by minimum inhibitory concentration (MICs) for 67 S. pseudintermedius isolates from the skin of nine healthy dogs versus the genotypic data obtained with Nanopore sequencing. A total of 17 antibiotic resistance genes (ARGs) were detected among the isolates. A good correlation between phenotype and genotype was observed for some antimicrobial classes, such as ciprofloxacin (fluoroquinolone), macrolides, or tetracycline. However, for oxacillin (beta-lactam) or aminoglycosides the correlation was low. Two antibiotic resistance genes were located on plasmids integrated in the chromosome, and a third one was in a circular plasmid. To our knowledge, this is the first study assessing the correlation between phenotype and genotype regarding antimicrobial resistance of S. pseudintermedius from healthy dogs using Nanopore sequencing technology.202236421269
5502170.9998Short communication: Diversity of species and transmission of antimicrobial resistance among Staphylococcus spp. isolated from goat milk. The increasing production of goat milk and its derivatives is affected by the occurrence of intramammary infections, which are highly associated with the presence of Staphylococcus species, including some with zoonotic potential. Staphylococci in general can exchange mobile genetic elements, a process that may be facilitated by the isolate's capacity of forming biofilms. In this study we identified, to the species level, Staphylococcus isolated from goat milk samples by MALDI-TOF and confirmed the identification by sequencing housekeeping genes (rrs and tuf). Eight species were identified, more than half being either Staphylococcus epidermidis or Staphylococcus lugdunensis. The isolates were shown by pulsed-field gel electrophoresis to be genetically diverse between the studied herds. Resistance to ampicillin and penicillin was widespread, and 2 Staph. epidermidis isolates contained the methicillin-resistance gene mecA. Most of the isolates that were resistant to at least 1 of the 13 antimicrobials tested harbored plasmids, one of which was demonstrated to be conjugative, being transferred from a Staph. epidermidis to a Staphylococcus aureus strain. Biofilm formation was observed in almost every isolate, which may contribute to their capacity of exchanging antimicrobial resistance genes in addition to acting as a physical barrier to the access of drugs. Our results showed that antimicrobial resistance among goat staphylococci may be emerging in a process facilitated by the exchange of mobile genetic elements between the bacteria and the establishment of biofilms, which calls for careful monitoring and more effective control therapies.201930928272
5565180.9998Vancomycin resistance and virulence genes evaluation in Enterococci isolated from pork and wild boar meat. Enterococci are considered valuable sentinel Gram-positive bacteria for monitoring vancomycin antibiotic resistance due to their widespread presence and characteristics. The use of antimicrobials in farming animals has a role in the increasing of Antimicrobial Resistance (AMR) and the anthropogenic transformation of the landscape has forced wildlife into greater contact with humans and their livestock. The transmission of resistant bacteria by their meat products is a significant contributor to AMR development. The present study aimed to assess the prevalence of vancomycin resistant Enterococci spp. In antimicrobial-treated farmed pigs meat and in antimicrobial-free wild boars meat. A total of 341 Enterococci were isolated from 598 pork meat samples (57 %) and 173 Enterococci were isolated from 404 wild boar meat samples (42.8 %). Data found showed that low-resistance was detected more in wild boars meat Enterococci (52.6 %) than in pork meat once (48.4 %). However, the prevalence of resistance genes was at low level (33.9 % in pork meat Enterococci and 4.4 % in wild boar meat ones) and the only gene found was vanC1/C2, related to intrinsic AMR. Normally, Enterococci persist in the normal intestinal flora of animals including humans. However, the presence of resistance genes was frequently linked to the detection of pathogenic genes, mostly gelE in pork meat isolates and asa1 in wild boars meat isolates. Pathogenic bacteria can cause severe infections in human that can become more risky if associated to the presence of AMR. Pathogenic bacteria were characterized and a high presence of E. gallinarum and E. casseliflavus was found. Given the growing interest in wild game meat consumption the monitoring of AMR in these matrices is essential. Further surveillance studies are needed to fully evaluate the emergence and spread of vancomycin-resistant Enterococci (VRE) and pathogenic Enterococci from animal-derived food to humans, including the role of wildlife in this phenomenon. Giving the higher interest in wild animals meat consumption, it is important to better evaluate the spread of AMR phenomenon in the future and intensify hygienic control of wild animals derived food.202439104496
4936190.9998A New Tool for Analyses of Whole Genome Sequences Reveals Dissemination of Specific Strains of Vancomycin-Resistant Enterococcus faecium in a Hospital. A new easy-to-use online bioinformatic tool analyzing whole genome sequences of healthcare associated bacteria was used by a local infection control unit to retrospectively map genetic relationship of isolates of E. faecium carrying resistance genes to vancomycin in a hospital. Three clusters of isolates were detected over a period of 5 years, suggesting transmission between patients. Individual relatedness between isolates within each cluster was established by SNP analyses provided by the system. Genetic antimicrobial resistance mechanisms to antibiotics other than vancomycin were identified. The results suggest that the system is suited for hospital surveillance of E. faecium carrying resistance genes to vancomycin in settings with access to next Generation Sequencing without bioinformatic expertise for interpretation of the genome sequences.202134778297