# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5462 | 0 | 1.0000 | Whole Genome Sequence and Comparative Genomics Analysis of Multi-drug Resistant Environmental Staphylococcus epidermidis ST59. Staphylococcus epidermidis is a major opportunistic pathogen primarily recovered from device-associated healthcare associated infections (DA-HAIs). Although S. epidermidis and other coagulase-negative staphylococci (CoNS) are less virulent than Staphylococcus aureus, these bacteria are an important reservoir of antimicrobial resistance genes and resistance-associated mobile genetic elements that can be transferred between staphylococcal species. We report a whole genome sequence of a multidrug resistant S. epidermidis (strain G6_2) representing multilocus sequence type (ST) 59 and isolated from an environmental sampling of a hotel room in London, UK. The genome of S. epidermidis G6_2 comprises of a 2408357 bp chromosome and six plasmids, with an average G+C content of 32%. The strain displayed a multi-drug resistance phenotype which was associated with carriage of 7 antibiotic resistance genes (blaZ, mecA, msrA, mphC, fosB, aacA-aphD, tetK) as well as resistance-conferring mutations in fusA and ileS Antibiotic resistance genes were located on plasmids and chromosome. Comparative genomic analysis revealed that antibiotic resistance gene composition found in G6_2 was partly preserved across the ST59 lineage. | 2018 | 29716961 |
| 5463 | 1 | 0.9996 | Antibiotic Susceptibility Profiling of Human Pathogenic Staphylococcus aureus Strains Using Whole Genome Sequencing and Genome-Scale Annotation Approaches. Staphylococcus species are major pathogens with increasing importance due to the rise in antibiotic resistance. Whole genome sequencing and genome-scale annotation are promising approaches to study the pathogenicity and dissemination of virulence factors in nosocomial methicillin-resistant and multidrug-resistant bacteria in intensive care units. Draft genome sequences of eight clinical S. aureus strains were assembled and annotated for the prediction of antimicrobial resistance genes, virulence factors, and phylogenetic analysis. Most of the studied S. aureus strains displayed multi-resistance toward the tested drugs, reaching more than seven drugs up to 12 in isolate S22. The mecA gene was detected in three isolates (S14, S21, and S23), mecC was identified in S8 and S9, and blaZ was commonly identified in all isolates except strain S23. Additionally, two complete mobile genomic islands coding for methicillin resistance SCCmec Iva (2B) were identified in strains S21 and S23. Numerous antimicrobial resistance genes (norA, norC, MgrA, tet(45), APH(3')-IIIa, and AAC(6')-APH(2″)) were identified in chromosomes of different strains. Plasmid analysis revealed the presence of blaZ, tetK, and ermC in different plasmid types, located in gene cassettes containing plasmid replicons (rep) and insertion sequences (IS). Additionally, the aminoglycoside-resistant determinants were identified in S1 (APH(3')-IIIa), while AAC(6)-APH(2″) was detected in strains S8 and S14. The trimethoprim (dfrC) resistance gene was detected in S. aureus S21, and the fosfomycin (fosB) resistance gene was detected only in S. aureus S14. We also noted that S. aureus S1 belongs to ST1-t127, which has been reported as one of the most frequent human pathogen types. Additionally, we noted the presence of rare plasmid-mediated mecC-MRSA in some of our isolates. | 2023 | 37317098 |
| 5504 | 2 | 0.9995 | Whole Genome Sequencing of Staphylococci Isolated From Bovine Milk Samples. Staphylococci are among the commonly isolated bacteria from intramammary infections in bovines, where Staphylococcus aureus is the most studied species. This species carries a variety of virulence genes, contributing to bacterial survival and spread. Less is known about non-aureus staphylococci (NAS) and their range of virulence genes and mechanisms, but they are the most frequently isolated bacteria from bovine milk. Staphylococci can also carry a range of antimicrobial resistance genes, complicating treatment of the infections they cause. We used Illumina sequencing to whole genome sequence 93 staphylococcal isolates selected from a collection of staphylococcal isolates; 45 S. aureus isolates and 48 NAS isolates from 16 different species, determining their content of antimicrobial resistance genes and virulence genes. Antimicrobial resistance genes were frequently observed in the NAS species as a group compared to S. aureus. However, the lincosamide resistance gene lnuA and penicillin resistance gene blaZ were frequently identified in NAS, as well as a small number of S. aureus. The erm genes conferring macrolide resistance were also identified in several NAS isolates and in a small number of S. aureus isolates. In most S. aureus isolates, no antimicrobial resistance genes were detected, but in five S. aureus isolates three to six resistance genes were identified and all five of these carried the mecA gene. Virulence genes were more frequently identified in S. aureus, which contained on average five times more virulence genes compared to NAS. Among the NAS species there were also differences in content of virulence genes, such as S. chromogenes with a higher average number of virulence genes. By determining the content of a large selection of virulence genes and antimicrobial resistance genes in S. aureus and 16 different NAS species our results contribute with knowledge regarding the genetic basis for virulence and antimicrobial resistance in bovine staphylococci, especially the less studied NAS. The results can create a broader basis for further research into the virulence mechanisms of this important group of bacteria in bovine intramammary infections. | 2021 | 34987483 |
| 2439 | 3 | 0.9995 | Differences in distribution of MLS antibiotics resistance genes in clinical isolates of staphylococci belonging to species: S. epidermidis, S. hominis, S. haemolyticus, S. simulans and S. warneri. BACKGROUND: Macrolides and lincosamides are two leading types of antibiotics commonly used in therapies. The study examines the differences in resistance to these antibiotics and their molecular bases in S. epidermidis as well as in rarely isolated species of coagulase-negative staphylococci such as S. hominis, S. haemolyticus, S. warneri and S. simulans. The isolates were tested for the presence of the erm(A), erm(B), erm(C), lnu(A), msr(A), msr(B), mph(C), ere(A) and ere(B) genes. Phenotypic resistance to methicillin and mecA presence were also determined. RESULTS: The MLS(B) resistance mechanism was phenotypically found in isolates of species included in the study. The most prevalent MLS(B) resistance mechanism was observed in S. hominis, S. haemolyticus and S. epidermidis isolates mainly of the MLS(B) resistance constitutive type. Macrolide, lincosamide and streptogramin B resistance genes were rarely detected in isolates individually. The erm(B), ere(A) and ere(B) genes were not found in any of the strains. The erm(A) gene was determined only in four strains of S. epidermidis and S. hominis while lnu(A) was seen in eight strains (mainly in S. hominis). The erm(C) gene was present in most of S. epidermidis strains and predominant in S. hominis and S. simulans isolates. The examined species clearly differed between one another in the repertoire of accumulated genes. CONCLUSIONS: The presence of genes encoding the MLS(B) resistance among CoNS strains demonstrates these genes' widespread prevalence and accumulation in opportunistic pathogens that might become gene reservoir for bacteria with superior pathogenic potential. | 2019 | 31182020 |
| 2392 | 4 | 0.9994 | Characterization of the resistome and predominant genetic lineages of Gram-positive bacteria causing keratitis. Bacterial keratitis is a vision-threatening infection mainly caused by Gram-positive bacteria (GPB). Antimicrobial therapy is commonly empirical using broad-spectrum agents with efficacy increasingly compromised by the emergence of antimicrobial resistance. We used a combination of phenotypic tests and genome sequencing to identify the predominant lineages of GPB causing keratitis and to characterize their antimicrobial resistance patterns. A total of 161 isolates, including Staphylococcus aureus (n = 86), coagulase-negative staphylococci (CoNS; n = 34), Streptococcus spp. (n = 34), and Enterococcus faecalis (n = 7), were included. The population of S. aureus isolates consisted mainly of clonal complex 5 (CC5) (30.2%). Similarly, the population of Staphylococcus epidermidis was homogenous with most of them belonging to CC2 (78.3%). Conversely, the genetic population of Streptococcus pneumoniae was highly diverse. Resistance to first-line antibiotics was common among staphylococci, especially among CC5 S. aureus. Methicillin-resistant S. aureus was commonly resistant to fluoroquinolones and azithromycin (78.6%) and tobramycin (57%). One-third of the CoNS were resistant to fluoroquinolones and 53% to azithromycin. Macrolide resistance was commonly caused by erm genes in S. aureus, mphC and msrA in CoNS, and mefA and msr(D) in streptococci. Aminoglycoside resistance in staphylococci was mainly associated with genes commonly found in mobile genetic elements and that encode for nucleotidyltransferases like ant(4')-Ib and ant(9)-Ia. Fluroquinolone-resistant staphylococci carried from 1 to 4 quinolone resistance-determining region mutations, mainly in the gyrA and parC genes. We found that GPB causing keratitis are associated with strains commonly resistant to first-line topical therapies, especially staphylococcal isolates that are frequently multidrug-resistant and associated with major hospital-adapted epidemic lineages. | 2024 | 38289077 |
| 5505 | 5 | 0.9994 | Concordance between Antimicrobial Resistance Phenotype and Genotype of Staphylococcus pseudintermedius from Healthy Dogs. Staphylococcus pseudintermedius, a common commensal canine bacterium, is the main cause of skin infections in dogs and is a potential zoonotic pathogen. The emergence of methicillin-resistant S. pseudintermedius (MRSP) has compromised the treatment of infections caused by these bacteria. In this study, we compared the phenotypic results obtained by minimum inhibitory concentration (MICs) for 67 S. pseudintermedius isolates from the skin of nine healthy dogs versus the genotypic data obtained with Nanopore sequencing. A total of 17 antibiotic resistance genes (ARGs) were detected among the isolates. A good correlation between phenotype and genotype was observed for some antimicrobial classes, such as ciprofloxacin (fluoroquinolone), macrolides, or tetracycline. However, for oxacillin (beta-lactam) or aminoglycosides the correlation was low. Two antibiotic resistance genes were located on plasmids integrated in the chromosome, and a third one was in a circular plasmid. To our knowledge, this is the first study assessing the correlation between phenotype and genotype regarding antimicrobial resistance of S. pseudintermedius from healthy dogs using Nanopore sequencing technology. | 2022 | 36421269 |
| 5945 | 6 | 0.9994 | Mechanisms of linezolid resistance among coagulase-negative staphylococci determined by whole-genome sequencing. Linezolid resistance is uncommon among staphylococci, but approximately 2% of clinical isolates of coagulase-negative staphylococci (CoNS) may exhibit resistance to linezolid (MIC, ≥8 µg/ml). We performed whole-genome sequencing (WGS) to characterize the resistance mechanisms and genetic backgrounds of 28 linezolid-resistant CoNS (21 Staphylococcus epidermidis isolates and 7 Staphylococcus haemolyticus isolates) obtained from blood cultures at a large teaching health system in California between 2007 and 2012. The following well-characterized mutations associated with linezolid resistance were identified in the 23S rRNA: G2576U, G2447U, and U2504A, along with the mutation C2534U. Mutations in the L3 and L4 riboproteins, at sites previously associated with linezolid resistance, were also identified in 20 isolates. The majority of isolates harbored more than one mutation in the 23S rRNA and L3 and L4 genes. In addition, the cfr methylase gene was found in almost half (48%) of S. epidermidis isolates. cfr had been only rarely identified in staphylococci in the United States prior to this study. Isolates of the same sequence type were identified with unique mutations associated with linezolid resistance, suggesting independent acquisition of linezolid resistance in each isolate. IMPORTANCE: Linezolid is one of a limited number of antimicrobials available to treat drug-resistant Gram-positive bacteria, but resistance has begun to emerge. We evaluated the genomes of 28 linezolid-resistant staphylococci isolated from patients. Multiple mutations in the rRNA and associated proteins previously associated with linezolid resistance were found in the isolates investigated, underscoring the multifocal nature of resistance to linezolid in Staphylococcus. Importantly, almost half the S. epidermidis isolates studied harbored a plasmid-borne cfr RNA methylase gene, suggesting that the incidence of cfr may be higher in the United States than previously documented. This finding has important implications for infection control practices in the United States. Further, cfr is commonly detected in bacteria isolated from livestock, where the use of phenicols, lincosamides, and pleuromutilins in veterinary medicine may provide selective pressure and lead to maintenance of this gene in animal bacteria. | 2014 | 24915435 |
| 2441 | 7 | 0.9994 | Phenotypic and molecular assessment of antimicrobial resistance profile of airborne Staphylococcus spp. isolated from flats in Kraków. Bacteria of the genus Staphylococcus were isolated from air sampled from living spaces in Kraków (Poland). In total, 55 strains belonging to the genus Staphylococcus were isolated from 45 sites, and 13 species of coagulase-negative staphylococci were identified. The species composition of studied airborne microbiota contains Staphylococcus species that are rarely infectious to humans. Most commonly isolated species comprised S. hominis and S. warneri. The disk-diffusion tests showed that the collected isolates were most frequently resistant to erythromycin. The PCR technique was employed to search for genes conferring the resistance in staphylococci to antibiotics from the group of macrolides, lincosamides and streptogramins. The analyzed Staphylococcus isolates possessed simultaneously 4 different resistance genes. The molecular analysis with the use of specific primers allowed to determine the most prevalent gene which is mphC, responsible for the resistance to macrolides and for the enzymatic inactivation of the drug by phosphotransferase. The second most often detected gene was msrA1, which confers the resistance of staphylococci to macrolides and is responsible for active pumping of antimicrobial particles out of bacterial cells. | 2017 | 28955110 |
| 5712 | 8 | 0.9994 | Draft Genome Sequences of Three Multidrug-Resistant Staphylococcus spp. Isolated from Hospital Wastewater in Malaysia. Staphylococcus spp. are Gram-positive bacteria that reside within the normal microbiota of humans and animals but pose a health threat as reservoirs of antimicrobial resistance genes. Here, we present the draft genome sequences of three Staphylococcus sp. strains isolated from hospital wastewater in Malaysia that demonstrated resistance to multiple antibiotics. | 2021 | 33958405 |
| 2440 | 9 | 0.9994 | Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus hominis strains isolated from clinical specimens. Coagulase-negative staphylococci (CoNS) are the most frequently isolated bacteria from the blood and the predominant cause of nosocomial infections. Macrolides, lincosamides and streptogramin B (MLSB) antibiotics, especially erythromycin and clindamycin, are important therapeutic agents in the treatment of methicillin-resistant staphylococci infections. Among CoNS, Staphylococcus hominis represents the third most common organism. In spite of its clinical significance, very little is known about its mechanisms of resistance to antibiotics, especially MLSB. Fifty-five S. hominis isolates from the blood and the surgical wounds of hospitalized patients were studied. The erm(C) gene was predominant in erythromycin-resistant S. hominis isolates. The methylase genes, erm(A) and erm(B), were present in 15 and 25% of clinical isolates, respectively. A combination of various erythromycin resistance methylase (erm) genes was detected in 15% S. hominis isolates. The efflux gene msr(A) was detected in 18% of isolates, alone in four isolates, and in different combinations in a further six. The lnu(A) gene, responsible for enzymatic inactivation of lincosamides was carried by 31% of the isolates. No erythromycin resistance that could not be attributed to the genes erm(A), erm(B), erm(C) and msr(A) was detected. In S. hominis, 75 and 84%, respectively, were erythromycin resistant and clindamycin susceptible. Among erythromycin-resistant S. hominis isolates, 68% of these strains showed the inducible MLSB phenotype. Four isolates harbouring the msr(A) genes alone displayed the MSB phenotype. These studies indicated that resistance to MLSB in S. hominis is mostly based on the ribosomal target modification mechanism mediated by erm genes, mainly the erm(C), and enzymatic drug inactivation mediated by lnu(A). | 2016 | 26253583 |
| 5411 | 10 | 0.9994 | Detection of the aminoglycosidestreptothricin resistance gene cluster ant(6)-sat4-aph(3 ')-III in commensal viridans group streptococci. High-level aminoglycoside resistance was assessed in 190 commensal erythromycin-resistant alpha-hemolytic streptococcal strains. Of these, seven were also aminoglycoside-resistant: one Streptococcus mitis strain was resistant to high levels of kanamycin and carried the aph(3 ')-III gene, four S. mitis strains were resistant to high levels of streptomycin and lacked aminoglycoside-modifying enzymes, and two S. oralis strains that were resistant to high levels of kanamycin and streptomycin harbored both the aph(3 ')-III and the ant(6) genes. The two S. oralis strains also carried the ant(6)-sat4- aph(3 ' ')-III aminoglycoside-streptothricin resistance gene cluster, but it was not contained in a Tn5405-like structure. The presence of this resistance gene cluster in commensal streptococci suggests an exchange of resistance genes between these bacteria and enterococci or staphylococci. | 2007 | 17407061 |
| 5936 | 11 | 0.9994 | Antibiotic Resistance Characterization and Molecular Characteristics of Enterococcus Species Isolated from Combination Probiotic Preparations in China. Enterococci can act as reservoirs for antibiotic-resistant genes that are potentially at risk of being transferred to other bacteria that inhabit in the gastrointestinal tract. The aim of this study was to determine the phenotypic and molecular characteristics of antibiotic-resistant enterococci isolated from probiotic preparations. In total, we isolated 15 suspected Enterococcus species from 5 compound probiotics, which were identified by 16S rDNA as 12 Enterococcus faecium and 3 Enterococcus faecalis. Determination of antimicrobial susceptibility by the microdilution broth method showed widespread resistance to sulfamethoxazole (100%), norfloxacin (99.3%), azithromycin (99.3%), gentamicin (86.7%), and chloramphenicol (20%). Whole genome sequencing of five resistant strains revealed that all had circular DNA chromosomes and that E. faecium J-1-A to J-4-A contained a plasmid, while E. faecalis J-5-A did not. The results of the resistance gene analysis revealed that each strain contained approximately 30 resistance genes, with the antibiotic resistance genes and the multidrug resistance efflux pump genes mdtG, lmrC, and lmrD detected in all strains. The chloramphenicol resistance genes ykkC and ykkD were first identified in E. faecalis. And there were 21, 19, 21, 21, and 29 virulence factors involved in strains, respectively. Further analysis of the gene islands (GIs) revealed that each strain contained more than 10 GIs. The above results confirm the existence of hidden dangers in the safety of probiotics and remind us to carefully select probiotic preparations containing enterococcal strains to avoid the potential spread of resistance and pathogenicity. | 2024 | 37824752 |
| 5500 | 12 | 0.9994 | Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of Enterococcus faecium strains isolated from commercial swine and cattle probiotic products. Enterococcus faecium is one of the more commonly used bacterial species as a probiotic in animals. The organism, a common inhabitant of the gut of animals and humans, is a major nosocomial pathogen responsible for a variety infections in humans and sporadic infections in animals. In swine and cattle, E. faecium-based probiotic products are used for growth promotion and gut functional and health benefits. The objective of this study was to utilize whole genome sequence-based analysis to assess virulence potential, detect antimicrobial resistance genes, and analyze phylogenetic relationships of E. faecium strains from commercial swine and cattle probiotics. Genomic DNA extracted from E. faecium strains, isolated from commercial probiotic products of swine (n = 9) and cattle (n = 13), were sequenced in an Illumina MiSeq platform and analyzed. Seven of the nine swine strains and seven of the 13 cattle strains were identified as Enterococcus lactis, and not as E. faecium. None of the 22 probiotic strains carried major virulence genes required to initiate infections, but many carried genes involved in adhesion to host cells, which may benefit the probiotic strains to colonize and persist in the gut. Strains also carried genes encoding resistance to a few medically important antibiotics, which included aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia], macrolide, lincosamide and streptogramin B (msrC), tetracyclines [tet(L) and tet(M)], and phenicols [cat-(pc194)]. The comparison of the genotypic to phentypic AMR data showed presence of both related and unrelated genes in the probiotic strains. Swine and cattle probiotic E. faecium strains belonged to diverse sequence types. Phylogenetic analysis of the probiotic strains, and strains of human (n = 29), swine (n = 4), and cattle (n = 4) origin, downloaded from GenBank, indicated close clustering of strains belonging to the same species and source, but a few swine and cattle probiotic strains clustered closely with other cattle and human fecal strains. In conclusion, the absence of major virulence genes characteristic of the clinical E. faecium strains suggests that these probiotic strains are unlikely to initiate opportunistic infection. However, the carriage of AMR genes to medically important antibiotics and close clustering of the probiotic strains with other human and cattle fecal strains suggests that probiotic strains may pose risk to serve as a source of transmitting AMR genes to other gut bacteria. | 2022 | 35150575 |
| 5992 | 13 | 0.9993 | Emergence of Enterococcus gallinarum carrying vanA gene cluster displaying atypical phenotypes. Motile enterococci such as Enterococcus gallinarum has the ability to acquire and transfer antibiotic resistance genes to other enterococci. Even though infections caused by E. gallinarum are rare, the discovery of this bacteria in food sources and in clinical environments is disturbing. Here, we report the isolation and identification of E. gallinarum from the wound of a hospital in-patient. The isolate was identified using 16S rDNA sequencing. Isolate 146 harboured the vanA and vanC1 gene clusters, was vancomycin-susceptible, and displayed resistance to ampicillin, penicillin, erythromycin and teicoplanin. This isolate also showed intermediate resistance to linezolid and sequencing of the 23S rRNA peptidyl transferase region did not unveil any known mutations associated to the conferment of linezolid resistance. The presence of vanA did not confer resistance to vancomycin. Structural analyses into the Tn1546 transposon carrying the vanA gene revealed distinct genetic variations in the vanS, vanY and vanS-vanH intergenic region that could be associated to the atypical antibiotic resistance phenotypes of isolate 146. Finding from this study are suggestive of the occurrence of interspecies horizontal gene transfer and that similarities in genotypic characteristic may not necessarily correlate with actual antibiotic resistance pattern of E. gallinarum. | 2016 | 33579083 |
| 2385 | 14 | 0.9993 | Molecular characterization of multi-drug-resistant Staphylococcus aureus in mastitis bovine milk from a dairy farm in Anhui, China. Mastitis is an economically important disease in the dairy industry, which is caused by various infectious pathogens. There is limited information known about the situation of drug resistance and virulence factors of Staphylococcus aureus (S. aureus) in mastitis bovine milk in Anhui. Therefore, a total of 125 fresh milk samples from clinically mastitis-positive bovine animals were collected. The bacteria pathogens were identified via bacterial culture, Gram staining, biochemical analysis, DNA extraction, 16s rRNA amplification, and phylogenetic analysis. Drug resistance analyses were performed through drug-resistant genes and virulence genes amplification. Results showed that a total of 24.8% (31/125) bacterial isolates were isolated and identified as S. aureus by Gram straining, biochemical reactions, and 16 s rRNA genes blasting. Multiple sequence alignment analysis found that the current isolates were highly similar (96.9-100.0%) to previous isolates. Phylogenetic analysis demonstrated that S. aureus was similar with MK809241.1 isolated from food in China and wCP030426.1 isolated from a person in the United States. The bacterial isolates were detected resistant to 11 antibiotics, such as Penicillin G, SXT, Ciprofloxacin, Norfloxacin, Polymyxin B, Levofloxacin, Chloramphenicol, Clindamycin, Clarithromycin, Erythromycin, and Spectinomycin. Drug-resistant genes of blaZ, ermC, rpoB, and ant (4')-la were successfully amplified. Virulence genes of hla, nuc, clfa, and eta were found in S. aureus bacteria. The current study isolated S. aureus from milk samples and revealed its drug-resistant situation, drug-resistant genes, and virulence genes. Hence, regular monitoring of S. aureus in milk samples from dairy cows may contribute to the prevention and treatment of public health concerns causing bacteria in this region. | 2022 | 36072389 |
| 5807 | 15 | 0.9993 | ST8-t008-SCC (mec) IV methicillin-resistant Staphylococcus aureus in retail fresh cheese. This study reports the finding of 3 ST8-t008-SCC (mec) IVa (2B) methicillin-resistant Staphylococcus aureus (MRSA) strains in fresh cheese purchased within a single market in Costa Rica. In line with the finding of the resistance genes mecA, blaZ, mph(C), and msr(A) in their genomes, these bacteria showed phenotypic resistance to multiple β-lactams and erythromycin. In addition, they carry genes for acquired resistance to aminoglycosides (aph(3')-III) and fosfomycin (fosD), and genes for a myriad of virulence factors, including adhesins, hemolysins, and exotoxins. Our strains share multiple genomic features with MRSA from the USA300 lineage, which is a widely distributed and highly virulent strain implicated in community infections. As a result, consuming these or similar products could lead to multidrug infections in susceptible individuals. These results highlight safety deficiencies in cheese production practices and emphasize the risk of foodborne transmission of hard-to-treat ST8 MRSA strains. | 2024 | 39650008 |
| 5498 | 16 | 0.9993 | The prevalence of multidrug resistance in Staphylococcus hominis isolated from clinical materials. The treatment of infections caused by Staphylococcus hominis remains a challenge, mainly due to the increasing resistance of these bacteria to antibiotics. The aim of the study was to determine antibiotic resistance in 62 strains S. hominis isolated from clinical materials, and to identify the molecular basis of resistance to antibiotics. Forty-six strains were both methicillin-resistant and harbored the mecA gene. Twenty-three of these strains had mec complex A and ccr complex AB1. Such a combination of the mec and ccr complexes does not correspond to any cassettes that have been demonstrated so far. However, over 80% of the tested strains were multidrug-resistant, of which as many as 12 were resistant to at least seven antibiotics. More than a half of strains harbored the tetK, acc(6')-Ie aph(2''), and ant(4')-I genes. erm(C) was the most common resistant gene to antibiotics from the MLS group. Two strains had as many as five antibiotic resistance genes from the tested groups (erm(C), msr(A), msr(B), mph(C), lnu(A)). The presence of the vga gene encoding resistance to streptogramins A was detected in one strain. All of strains were sensitive to vancomycin. However, 11 of them had reduced sensitivity to this antibiotic and eight of them were characterized by a heterogeneous resistance profile to this antibiotic. Our results clearly shows increasing threat of S. hominis caused by their multi-resistance. Moreover, these bacteria can constitute a reservoir of resistance genes for more pathogenic bacteria. | 2025 | 39747570 |
| 2442 | 17 | 0.9993 | Macrolide, lincosamide, and streptogramin B resistance in lipophilic Corynebacteria inhabiting healthy human skin. Corynebacteria exist as part of human skin microbiota. However, under some circumstances, they can cause opportunistic infections. The subject of the study was to examine the macrolide-lincosamide-streptogramin B (MLSB) antibiotic resistance in 99 lipophilic strains of Corynebacterium genus isolated from the skin of healthy men. Over 70% of the tested strains were resistant to erythromycin and clindamycin. All of which demonstrated a constitutive type of MLSB resistance mechanism. In all strains, there were being investigated the erm(A), erm(B), erm(C), erm(X), lin(A), msr(A), and mph(C) genes that could be responsible for the different types of resistance to marcolides, lincosamides, and streptogramin B. In all strains with the MLSB resistance phenotype, the erm(X) gene was detected. None of the other tested genes were discovered. Strains harboring the erm(X) gene were identified using a phenotypic method based on numerous biological and biochemical tests. Identification of the chosen strains was compared with the results of API Coryne, MALDI-TOF MS, and 16S rDNA sequencing methods. Only 7 out of the 23 investigated resistant strains provided successful results in all the used methods, showing that identification of this group of bacteria is still a great challenge. The MLSB resistance mechanism was common in most frequently isolated from healthy human skin Corynebacterium tuberculostearicum and Corynebacterium jeikeium strains. This represents a threat as these species are also commonly described as etiological factors of opportunistic infections. | 2014 | 24735183 |
| 1792 | 18 | 0.9993 | Integrative and Conjugative Elements and Prophage DNA as Carriers of Resistance Genes in Erysipelothrix rhusiopathiae Strains from Domestic Geese in Poland. Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae. | 2024 | 38731857 |
| 5499 | 19 | 0.9993 | Antibiotic Resistance/Susceptibility Profiles of Staphylococcus equorum Strains from Cheese, and Genome Analysis for Antibiotic Resistance Genes. In food, bacteria carrying antibiotic resistance genes could play a prominent role in the spread of resistance. Staphylococcus equorum populations can become large in a number of fermented foods, yet the antibiotic resistance properties of this species have been little studied. In this work, the resistance/susceptibility (R/S) profile of S. equorum strains (n = 30) from cheese to 16 antibiotics was determined by broth microdilution. The minimum inhibitory concentration (MIC) for all antibiotics was low in most strains, although higher MICs compatible with acquired genes were also noted. Genome analysis of 13 strains showed the S. equorum resistome to be composed of intrinsic mechanisms, acquired mutations, and acquired genes. As such, a plasmidic cat gene providing resistance to chloramphenicol was found in one strain; this was able to provide resistance to Staphylococcus aureus after electroporation. An msr(A) polymorphic gene was identified in five strains. The Mrs(A) variants were associated with variable resistance to erythromycin. However, the genetic data did not always correlate with the phenotype. As such, all strains harbored a polymorphic fosB/fosD gene, although only one acquired copy was associated with strong resistance to fosfomycin. Similarly, a plasmid-associated blaR1-blaZI operon encoding a penicillinase system was identified in five ampicillin- and penicillin G-susceptible strains. Identified genes not associated with phenotypic resistance further included mph(C) in two strains and norA in all strains. The antibiotic R/S status and gene content of S. equorum strains intended to be employed in food systems should be carefully determined. | 2023 | 37511416 |