Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
545601.0000Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli. The transferable optrA gene encodes an ABC-F protein which confers resistance to oxazolidinones and phenicols, and has so far been detected exclusively in Gram-positive bacteria, including enterococci, staphylococci and streptococci. Here, we identified for the first time the presence of optrA in naturally occurring Gram-negative bacteria. Seven optrA-positive Campylobacter coli were identified from 563 Campylobacter isolates of animal origin from Guangdong (n = 1, chicken) and Shandong (n = 6, duck) provinces of China in 2017-2018. The detected optrA genes were functionally active and mediated resistance or elevated minimal inhibitory concentrations of linezolid, florfenicol and chloramphenicol in the respective C. coli isolates. The optrA gene, together with other transferable resistance genes, such as fexA, catA9, tet(O), tet(L), erm(A)-like, spc, or aadE, was located in two different chromosome-borne multidrug resistance genomic islands (MDRGIs). In both MDRGIs, complete or truncated copies of the insertion sequence IS1216E were present in the vicinity of optrA. The IS1216E-bracketed genetic environment of optrA was almost identical to the optrA regions on enterococcal plasmids, suggesting that the optrA in Campylobacter probably originated from Enterococcus spp.. Moreover, the formation of an optrA-carrying translocatable unit by recombination of IS1216E indicated that this IS element may play an important role in the horizontal transfer of optrA in Campylobacter. Although optrA was only found in a small number of C. coli isolates, enhanced surveillance is needed to monitor the distribution and the potential emergence of optrA in Campylobacter.202032605743
547910.9998Novel linezolid resistance plasmids in Enterococcus from food animals in the USA. OBJECTIVES: To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme. METHODS: Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible. RESULTS: Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3')-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant. CONCLUSIONS: To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus.201830272180
545920.9997Transferable linezolid resistance genes (optrA and poxtA) in enterococci derived from livestock compost at Japanese farms. OBJECTIVES: Linezolid is a last-resort antimicrobial in human clinical settings to treat multidrug-resistant Gram-positive bacterial infections. Mobile linezolid resistance genes (optrA, poxtA, and cfr) have been detected in various sources worldwide. However, the presence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in Japan remains uncertain. Therefore, we clarified the existence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in farm environments in Japan. METHODS: Enterococci isolates from faeces compost collected from 10 pig and 11 cattle farms in Japan in 2021 were tested for antimicrobial susceptibility and possession of mobile linezolid resistance genes. Whole-genome sequencing of optrA and/or poxtA genes positive-enterococci was performed. RESULTS: Of 103 enterococci isolates, 12 from pig farm compost were not-susceptible (2 resistant and 10 intermediate) to linezolid. These 12 isolates carried mobile linezolid resistance genes on plasmids or chromosomes (5 optrA-positive Enterococcus faecalis, 6 poxtA-positive E. hirae or E. thailandicus, and 1 optrA- and poxtA-positive E. faecium). The genetic structures of optrA- and poxA-carrying plasmids were almost identical to those reported in other countries. These plasmids were capable of transferring among E. faecium and E. faecalis strains. The optrA- and poxtA-positive E. faecium belonged to ST324 (clade A2), a high-risk multidrug-resistant clone. The E. faecalis carrying optrA gene on its chromosome was identified as ST593. CONCLUSIONS: Although linezolid is not used in livestock, linezolid-not-susceptible enterococci could be indirectly selected by frequently used antimicrobials, such as phenicols. Moreover, various enterococci species derived from livestock compost may serve as reservoirs of linezolid resistance genes carried on globally disseminated plasmids and multidrug-resistant high-risk clones.202438336229
545730.9997Persistence of transferable oxazolidinone resistance genes in enterococcal isolates from a swine farm in China. The appearance of transferable oxazolidinone resistance genes poses a major challenge to public health and environmental safety. These genes not only lead pathogenic bacteria to become resistant to linezolid but also reduce sensitivity to florfenicol, which is widely used in the veterinary field. To verify the dissemination of oxazolidinone resistance genes in enterococcal isolates from pigs at different production stages in a swine farm in China, we collected 355 enterococcal isolates that were resistant to florfenicol from 600 (150 per stage) fresh fecal swabs collected from a swine farm. Through initial PCR screening and whole-genome sequencing, 175 isolates harboring different oxazolidinone resistance genes were identified. All isolates carried the optrA gene. A total of 161 (92%, 161/175) isolates carried only the optrA gene. Three (1.71%, 3/175) isolates carried both the optrA and poxtA genes, and 11 (3.1%, 11/175) isolates contained the optrA gene and poxtA2 and cfr(D) variants. A total of 175 isolates that harbored oxazolidinone resistance genes included 161 E. faecalis, 6 E. faecium, and 8 E. hirae. By sequencing the whole genomes, we found that the 161 isolates of E. faecalis belonged to 28 different STs, including 8 new STs, and the 6 isolates of E. faecium belonged to four different STs, including one new ST. The phylogenetic tree based on SNPs of the core genome showed that both clonal spread and horizontal transfer mediated the diffusion of oxazolidone resistance genes in enterococcal isolates at specific stages in pig farms. Moreover, enterococcal isolates carrying oxazolidone resistance genes could spread from breeding pigs to fattening pigs, while transferable oxazolidone resistance genes in enterococcal isolates could persist on a pig farm throughout all production stages. Representative enterococcal isolates with different oxazolidinone resistance genes were further studied through Nanopore sequencing. We identified a novel plasmid, pM4-80 L4 (15,008 bp), carrying the poxtA2 and cfr(D) genes in enterococcal isolates at different stages. We also found three different plasmids harboring the poxtA gene with high genetic variation, and all poxtA genes were flanked by two copies of IS1216E elements. In addition, four genetically distinct plasmids carrying the optrA gene were identified, and Tn554 was found to mediate chromosome-localized optrA gene transfer. Our study highlighted that transferable oxazolidinone resistance genes in enterococcal isolates could persist throughout all production stages on a pig farm, and the prevalence and dissemination of oxazolidinone resistance genes in enterococcal isolates from animal farms should be continually monitored.202236299730
545840.9997Detection of an Enterococcus faecium Carrying a Double Copy of the PoxtA Gene from Freshwater River, Italy. Oxazolidinones are valuable antimicrobials that are used to treat severe infections due to multidrug-resistant (MDR) Gram-positive bacteria. However, in recent years, a significant spread of clinically relevant linezolid-resistant human bacteria that is also present in animal and environmental settings has been detected and is a cause for concern. This study aimed to investigate the presence, genetic environments, and transferability of oxazolidinone resistance genes in enterococci from freshwater samples. A total of 10 samples were collected from a river in Central Italy. Florfenicol-resistant enterococci were screened for the presence of oxazolidinone resistance genes by PCR. Enterococcus faecium M1 was positive for the poxtA gene. The poxtA transfer (filter mating and aquaria microcosm assays), localization (S1-PFGE/hybridization), genetic context, and clonality of the isolate (WGS) were analyzed. Two poxtA copies were located on the 30,877-bp pEfM1, showing high-level identity and synteny to the pEfm-Ef3 from an E. faecium collected from an Italian coastal area. The isolate was able to transfer the poxtA to enterococcal recipients both in filter mating and aquaria microcosm assays. This is-to the best of our knowledge-the first detection of an enterococcus carrying a linezolid resistance gene from freshwater in Italy.202236421262
546050.9997Linezolid Resistance Genes in Enterococci Isolated from Sediment and Zooplankton in Two Italian Coastal Areas. Linezolid is a last-resort antibiotic for the treatment of severe infections caused by multidrug-resistant Gram-positive organisms; although linezolid resistance remains uncommon, the number of linezolid-resistant enterococci has increased in recent years due to worldwide spread of acquired resistance genes (cfr, optrA, and poxtA) in clinical, animal, and environmental settings. In this study, we investigated the occurrence of linezolid-resistant enterococci in marine samples from two coastal areas in Italy. Isolates grown on florfenicol-supplemented Slanetz-Bartley agar plates were investigated for their carriage of optrA, poxtA, and cfr genes; optrA was found in one Enterococcus faecalis isolate, poxtA was found in three Enterococcus faecium isolates and two Enterococcus hirae isolates, and cfr was not found. Two of the three poxtA-carrying E. faecium isolates and the two E. hirae isolates showed related pulsed-field gel electrophoresis (PFGE) profiles. Two E. faecium isolates belonged to the new sequence type 1710, which clustered in clonal complex 94, encompassing nosocomial strains. S1 PFGE/hybridization assays showed a double (chromosome and plasmid) location of poxtA and a plasmid location of optrA Whole-genome sequencing revealed that poxtA was contained in a Tn6657-like element carried by two plasmids (pEfm-EF3 and pEh-GE2) of similar size, found in different species, and that poxtA was flanked by two copies of IS1216 in both plasmids. In mating experiments, all but one strain (E. faecalis EN3) were able to transfer the poxtA gene to E. faecium 64/3. The occurrence of linezolid resistance genes in enterococci from marine samples is of great concern and highlights the need to improve practices aimed at limiting the transmission of linezolid-resistant strains to humans from environmental reservoirs.IMPORTANCE Linezolid is one of the few antimicrobials available to treat severe infections due to drug-resistant Gram-positive bacteria; therefore, the emergence of linezolid-resistant enterococci carrying transferable resistance determinants is of great concern for public health. Linezolid resistance genes (cfr, optrA, and poxtA), often plasmid located, can be transmitted via horizontal gene transfer and have the potential to spread globally. This study highlights the detection of enterococci carrying linezolid resistance genes from sediment and zooplankton samples from two coastal urban areas in Italy. The presence of clinically relevant resistant bacteria, such as linezolid-resistant enterococci, in marine environments could reflect their spillover from human and/or animal reservoirs and could indicate that coastal seawaters also might represent a source of these resistance genes.202133608287
585360.9997Identification of the tet(B) resistance gene in Streptococcus suis. The tetracycline resistance gene, tet(B), has been described previously in gram negative bacteria. In this study tet(B) was detected in plasmid extracts from 17/111 (15%) Streptococcus suis isolates from diseased pigs, representing the first report of this resistance gene in gram positive bacteria.201120696603
197870.9997Antibiotic resistance plasmids in Enterobacteriaceae isolated from fresh produce in northern Germany. In this study, the genomes of 22 Enterobacteriaceae isolates from fresh produce and herbs obtained from retail markets in northern Germany were completely sequenced with MiSeq short-read and MinION long-read sequencing and assembled using a Unicycler hybrid assembly. The data showed that 17 of the strains harbored between one and five plasmids, whereas in five strains, only the circular chromosomal DNA was detected. In total, 38 plasmids were identified. The size of the plasmids detected varied between ca. 2,000 and 326,000 bp, and heavy metal resistance genes were found on seven (18.4%) of the plasmids. Eleven plasmids (28.9%) showed the presence of antibiotic resistance genes. Among large plasmids (>32,000 bp), IncF plasmids (specifically, IncFIB and IncFII) were the most abundant replicon types, while all small plasmids were Col-replicons. Six plasmids harbored unit and composite transposons carrying antibiotic resistance genes, with IS26 identified as the primary insertion sequence. Class 1 integrons carrying antibiotic resistance genes were also detected on chromosomes of two Citrobacter isolates and on four plasmids. Mob-suite analysis revealed that 36.8% of plasmids in this study were found to be conjugative, while 28.9% were identified as mobilizable. Overall, our study showed that Enterobacteriaceae from fresh produce possess antibiotic resistance genes on both chromosome and plasmid, some of which are considered to be transferable. This indicates the potential for Enterobacteriaceae from fresh produce that is usually eaten in the raw state to contribute to the transfer of resistance genes to bacteria of the human gastrointestinal system. IMPORTANCE: This study showed that Enterobacteriaceae from raw vegetables carried plasmids ranging in size from 2,715 to 326,286 bp, of which about less than one-third carried antibiotic resistance genes encoding resistance toward antibiotics such as tetracyclines, aminoglycosides, fosfomycins, sulfonamides, quinolones, and β-lactam antibiotics. Some strains encoded multiple resistances, and some encoded extended-spectrum β-lactamases. The study highlights the potential of produce, which may be eaten raw, as a potential vehicle for the transfer of antibiotic-resistant bacteria.202439287384
207580.9996Identification and Genetic Characterization of Conjugative Plasmids Encoding Coresistance to Ciprofloxacin and Cephalosporin in Foodborne Vibrio spp. Plasmid-mediated quinolone resistance (PMQR) determinants, such as qnrVC genes, have been widely reported in Vibrio spp. while other types of PMQR genes were rarely reported in these bacteria. This study characterized the phenotypic and genotypic features of foodborne Vibrio spp. carrying qnrS, a key PMQR gene in Enterobacteriaceae. Among a total of 1,811 foodborne Vibrio isolates tested, 34 (1.88%) were found to harbor the qnrS gene. The allele qnrS2 was the most prevalent, but coexistence with other qnr alleles was common. Missense mutations in the quinolone resistance-determining region (QRDR) of the gyrA and parC genes were only found in 11 of the 34 qnrS-bearing isolates. Antimicrobial susceptibility tests showed that all 34 qnrS-bearing isolates were resistant to ampicillin and that a high percentage also exhibited resistance to cefotaxime, ceftriaxone, and trimethoprim-sulfamethoxazole. Genetic analysis showed that these phenotypes were attributed to a diverse range of resistance elements that the qnrS-bearing isolates harbored. The qnrS2 gene could be found in both the chromosome and plasmids; the plasmid-borne qnrS2 genes could be found on both conjugative and nonconjugative plasmids. pAQU-type qnrS2-bearing conjugative plasmids were able to mediate expression of phenotypic resistance to both ciprofloxacin and cephalosporins. Transmission of this plasmid among Vibrio spp. would speed up the emergence of multidrug-resistant (MDR) pathogens that are resistant to the most important antibiotics used in treatment of Vibrio infections, suggesting that close monitoring of emergence and dissemination of MDR Vibrio spp. in both food samples and clinical settings is necessary. IMPORTANCE Vibrio spp. used to be very susceptible to antibiotics. However, resistance to clinically important antibiotics, such as cephalosporins and fluoroquinolones, among clinically isolated Vibrio strains is increasingly common. In this study, we found that plasmid-mediated quinolone resistance (PMQR) genes, such as qnrS, that have not been previously reported in Vibrio spp. can now be detected in food isolates. The qnrS2 gene alone could mediate expression of ciprofloxacin resistance in Vibrio spp.; importantly, this gene could be found in both the chromosome and plasmids. The plasmids that harbor the qnrS2 gene could be both conjugative and nonconjugative, among which the pAQU-type qnrS2-bearing conjugative plasmids were able to mediate expression of resistance to both ciprofloxacin and cephalosporins. Transmission of this plasmid among Vibrio spp. would accelerate the emergence of multidrug-resistant pathogens.202337395663
548190.9996Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Oxazolidinones are one of the most important antimicrobials potentially active against glycopeptide- and β-lactam-resistant Gram-positive pathogens. Linezolid-the first oxazolidinone to be approved for clinical use in 2000 by the US Food and Drug Administration-and the newer molecule in the class, tedizolid, inhibit protein synthesis by suppressing the formation of the 70S ribosomal complex in bacteria. Over the past two decades, transferable oxazolidinone resistance genes, in particular cfr and optrA, have been identified in Firmicutes isolated from healthcare-related infections, livestock, and the environment. Our goals in this study were to investigate the genetic contexts and the transferability of the cfr and optrA genes and examine genomic features, such as antimicrobial resistance genes, plasmid incompatibility types, and CRISPR-Cas defenses of a linezolid-resistant Enterococcus faecalis isolated in feces from a healthy pig during an antimicrobial surveillance program for animal production in Brazil. The cfr gene was found to be integrated into a transposon-like structure of 7,759 nt flanked by IS1216E and capable of excising and circularizing, distinguishing it from known genetic contexts for cfr in Enterococcus spp., while optrA was inserted into an Inc18 broad host-range plasmid of >58 kb. Conjugal transfer of cfr and optrA was shown by filter mating. The coexistence of cfr and optrA in an E. faecalis isolated from a healthy nursery pig highlights the need for monitoring the use of antibiotics in the Brazilian swine production system for controlling spread and proliferation of antibiotic resistance.202033102417
5933100.9996Novel macrolide-resistance genes, mef(C) and mph(G), carried by plasmids from Vibrio and Photobacterium isolated from sediment and seawater of a coastal aquaculture site. The aim of this study was to determine whether mef(C) and mph(G), originally found on the transferable multi-drug plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from seawater of a fish farm, are responsible for conferring macrolide resistance. Since these genes are localized head-to-tail on pAQU1 and only four nucleotides exist between them, the single- and combination-effect of these genes was examined. When mph(G) alone was introduced to Escherichia coli, the minimum inhibitory concentrations (MICs) against erythromycin, clarithromycin and azithromycin increased, whereas introduction of mef(C) alone did not influence macrolide susceptibility. Introduction of both mef(C) and mph(G) dramatically increased the MICs to the same three macrolides, i.e. >512 μg ml(-1) , >512 μg ml(-1) and 128 μg ml(-1) respectively. These results suggest that the macrolide phosphotransferase encoded by mph(G) is essential for macrolide resistance, while the efflux pump encoded by mef(C) is required for high-level macrolide resistance. The tandem-pair arrangements of the mef(C) and mph(G) genes were conserved on plasmids ranging in size from 240 to 350 kb of the 22 erythromycin-resistant strains belonging to Vibrio and Photobacterium obtained from the fish farm. Sixteen of 22 plasmids ranged in size from 300 to 350 kb. This is the first report of novel macrolide resistance genes originating from a marine bacterium. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, mef(C) and mph(G) were found to be novel macrolide-resistance genes, and this is the first report of macrolide-resistance genes originating from a marine bacterium. These genes may be responsible for previously reported cases of the emergence of erythromycin-resistant bacteria in aquaculture sites by an unknown mechanism. The introduction of the tandem arrangement of the mef(C) and mph(G) genes in Escherichia coli increased the MICs to erythromycin, clarithromycin and azithromycin, suggesting a novel mechanism conferring high-level macrolide resistance via combined expression of the efflux pump and macrolide phosphotransferase.201525765542
5957110.9996ant(6)-I Genes Encoding Aminoglycoside O-Nucleotidyltransferases Are Widely Spread Among Streptomycin Resistant Strains of Campylobacter jejuni and Campylobacter coli. Thermotolerant Campylobacter species C. jejuni and C. coli are actually recognized as the major bacterial agent responsible for food-transmitted gastroenteritis. The most effective antimicrobials against Campylobacter are macrolides and some, but not all aminoglycosides. Among these, susceptibility to streptomycin is reduced by mutations in the ribosomal RPSL protein or by expression of ANT(6)-I aminoglycoside O-nucleotidyltransferases. The presence of streptomycin resistance genes was evaluated among streptomycin-resistant Campylobacter isolated from humans and animals by using PCR with degenerated primers devised to distinguish ant(6)-Ia, ant(6)-Ib and other ant-like genes. Genes encoding ANT(6)-I enzymes were found in all possible combinations with a major fraction of the isolates carrying a previously described ant-like gene, distantly related and belonging to the new ant(6)-I sub-family ant(6)-Ie. Among Campylobacter isolates, ant(6)-Ie was uniquely found functional in C. coli, as shown by gene transfer and phenotype expression in Escherichia coli, unlike detected coding sequences in C. jejuni that were truncated by an internal frame shift associated to RPSL mutations in streptomycin resistant strains. The genetic relationships of C. coli isolates with ANT(6)-Ie revealed one cluster of strains presented in bovine and humans, suggesting a circulation pathway of Campylobacter strains by consuming contaminated calf meat by bacteria expressing this streptomycin resistance element.201830405573
5476120.9996Bile Carriage of optrA-Positive Enterococcus faecium in a Patient with Choledocholith. We isolated one Enterococcus faecium isolate SZ21B15 from a bile sample of a patient with choledocholith in Shenzhen, China in 2021. It was positive for oxazolidinone resistance gene optrA and was intermediate to linezolid. The whole genome of E. faecium SZ21B15 was sequenced by Illumina Hiseq. It belonged to ST533 within the clonal complex 17. The optrA gene and additional two resistance genes fexA and erm(A) were located within a 25,777-bp multiresistance region, which was inserted into the chromosomal radC gene, being chromosomal intrinsic resistance genes. The chromosomal optrA gene cluster found in E. faecium SZ21B15 was closely related to the corresponding regions of multiple optrA-carrying plasmids or chromosomes from Enterococcus, Listeria, Staphylococcus, and Lactococcus strains. It further highlights the ability of the optrA cluster that transfers between plasmids and chromosomes and evolves by a series of molecular recombination events. IMPORTANCE Oxazolidinone are effective antimicrobial agents for the treatment of infections caused by multidrug-resistant Gram-positive bacteria, including vancomycin-resistant enterococci. The emergence and global spread of transferable oxazolidinone resistance genes such as optrA is worrisome. Enterococcus spp. can become causes of hospital-associated infections and are also widely distributed in the gastrointestinal tracts of animals and the natural environment. In this study, one E. faecium isolate from bile sample carried chromosomal optrA, being intrinsic resistance gene. optrA-positive E. faecium in bile not only makes the treatment of gallstones difficult, but also may become a reservoir of resistance genes in the body.202336976027
2083130.9996A classification system for plasmids from enterococci and other Gram-positive bacteria. A classification system for plasmids isolated from enterococci and other Gram-positive bacteria was developed based on 111 published plasmid sequences from enterococci and other Gram-positive bacteria; mostly staphylococci. Based on PCR amplification of conserved areas of the replication initiating genes (rep), alignment of these sequences and using a cutoff value of 80% identity on both protein and DNA level, 19 replicon families (rep-families) were defined together with several unique sequences. The prevalence of these rep-families was tested on 79 enterococcal isolates from a collection of isolates of animal and human origin. Difference in prevalence of the designed rep-families were detected with rep(9) being most prevalent in Enterococcus faecalis and rep(2) in Enterococcus faecium. In 33% of the tested E. faecium and 32% of the tested E. faecalis no positive amplicons were detected. Furthermore, conjugation experiments were performed obtaining 30 transconjugants when selecting for antimicrobial resistance. Among them 19 gave no positive amplicons indicating presence of rep-families not tested for in this experimental setup.201019879906
5954140.9996Distribution of genes for trimethoprim and gentamicin resistance in bacteria and their plasmids in a general hospital. The incidence of trimethoprim resistance in enterobacteria causing infection in a London hospital increased from 5.6% in 1970 to 16% in 1979. The proportion of gentamicin-resistant aerobic Gram-negative bacilli had risen to 6.5% by 1979. During a 5-month period in 1977, during which no epidemic was recognized, all isolates resistant to either trimethoprim, gentamicin, tobramycin or amikacin were studied. The proportion of enterobacteria resistant to both trimethoprim and gentamicin (3.8% of the total) was significantly higher than expected assuming no correlation between acquisition of resistance characters. The resistance was transferable in 23% of trimethoprim-resistant and 76% of gentamicin-resistant strains. Trimethoprim resistance was carried by plasmids of seven different incompatibility groups and in at least four instances was part of a transposon. Gentamicin resistance was determined by plasmids of three groups - IncC, IncFII and IncW. Transposition of gentamicin resistance was not shown, though this may have been the means of evolution of the gentamicin R plasmids of InW, which determined aminoglycoside acetyltransferase, AAC(3). Some bacterial strains with their plasmids were endemic. There was evidence for these plasmids (i) acquiring new resistance genes by transposition, (ii) losing resistance genes by deletion and (iii) being transferred between bacterial species in the hospital.19807003059
2066150.9996ArmA methyltransferase in a monophasic Salmonella enterica isolate from food. The 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistant Salmonella enterica subspecies I.4,12:i:- isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of the armA gene, together with bla(TEM-1), bla(CMY-2), and bla(CTX-M-3). All of these genes could be transferred en bloc through conjugation into Escherichia coli at a frequency of 10(-5) CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that the armA gene was borne on an ~150-kb broad-host-range IncP plasmid, pB1010. To elucidate how armA had integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform for armA. The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26 was inserted within the mel gene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.201121859937
5953160.9996CAT III chloramphenicol resistance in Pasteurella haemolytica and Pasteurella multocida isolated from calves. Chloramphenicol, which had been used extensively for antimicrobial veterinary therapy, was prohibited in Europe in 1994. Soon after it became available, resistance to this drug was detected, generally conferred by plasmids encoding inactivating enzymes, the chloramphenicol acetyltransferases (CAT), in Gram-negative as well as in Gram-positive bacteria. In the last few years, resistance to antibiotics emerged in Pasteurella strains from breeding herds and this evolution was followed by a national surveillance network. Chloramphenicol-resistance was more recently detected in multiresistant strains. We studied 25 strains of Pasteurella, selected for their resistance to chloramphenicol. Production of a CAT was demonstrated in all these strains. PCR amplification indicated that the CAT produced was of type III for 23 of them. In these strains, chloramphenicol-resistance was mediated by plasmids of about 5.1 kb. Southern blots on restriction fragments suggested a high degree of homology between these 5.1 kb plasmids. In the two other strains, production of a CAT type I was demonstrated, and the corresponding genes were either shown on a plasmid of 17 or 5.5 kb.19968877534
5425170.9996The novel mef(C)-mph(G) macrolide resistance genes are conveyed in the environment on various vectors. BACKGROUND: The novel tandem genes mef(C) and mph(G) have been reported in marine bacteria in Japan. This paper aimed to characterise the extent of environmental distribution of mef(C) and mph(G) as well as their dissemination and persistence in aquatic bacterial communities. METHODS: Erythromycin-resistant bacteria were isolated from Japan, Taiwan and Thailand aquaculture sites. The mef(C)-mph(G) genes were detected by PCR. The size of mobile genetic elements conveying mef(C) and mph(G) was examined by Southern blotting. The conjugation rate was assessed by filter mating. RESULTS: The mef(C)-mph(G) tandem genes were distributed in erythromycin-resistant isolates from aquaculture seawater in Japan and northern Taiwan and in animal farm wastewater in Thailand. A total of 29 bacterial isolates were positive for mef(C)-mph(G). The genes were found on vectors of various sizes. Partial sequencing of the traI relaxase gene revealed homology with a pAQU1-like plasmid, an IncA/C-type plasmid and an SXT/R391 family integrative conjugative element (SRI) as vectors. Thirteen isolates (45%) were positive for traI(pAQU-IncA/C-SRI), whereas the others were negative. The traI(pAQU-IncA/C-SRI)-positive isolates exhibited a higher transfer frequency (10(-4)-10(-5) transconjugants/donor) than traI(pAQU-IncA/C-SRI)-negative isolates (<10(-9)). CONCLUSIONS: These results suggest that mef(C)-mph(G) are coded on various vectors and are distributed among marine and wastewater bacteria in Asian countries. Vectors with traI(pAQU-IncA/C-SRI) play a role in the spread of mef(C)-mph(G).201728689921
5867180.9996Molecular analysis of florfenicol-resistant Pasteurella multocida isolates in Germany. OBJECTIVES: Three florfenicol-resistant Pasteurella multocida isolates from Germany, two from swine and one from a calf, were investigated for the genetics and transferability of florfenicol resistance. METHODS: The isolates were investigated for susceptibility to antimicrobial agents and plasmid content. Florfenicol resistance plasmids carrying the gene floR were identified by transformation and PCR. Plasmids were mapped, and a novel plasmid type was sequenced completely. PFGE served to determine the clonality of the isolates. RESULTS: In one porcine and the bovine P. multocida isolate, florfenicol resistance was associated with the plasmid pCCK381 previously described in a bovine P. multocida isolate from the UK. The remaining porcine isolate harboured a new type of floR-carrying plasmid, the 10 226 bp plasmid pCCK1900. Complete sequence analysis identified an RSF1010-like plasmid backbone with the mobilization genes mobA, mobB and mobC, the plasmid replication genes repA, repB and repC, the sulphonamide resistance gene sul2 and the streptomycin resistance genes strA and strB. The floR gene area was integrated into a region downstream of strB, which exhibited homology to the floR flanking regions found in various bacteria. PFGE revealed that the floR-carrying P. multocida strains from Germany were unrelated and also different from the UK strain. CONCLUSIONS: After the UK and France, floR-mediated florfenicol resistance has now also been identified in target bacteria from Germany. PFGE data and the analysis of plasmids strongly suggested that the spread of florfenicol resistance is due to the horizontal transfer of plasmids rather than the clonal dissemination of a resistant P. multocida isolate.200818786941
1792190.9996Integrative and Conjugative Elements and Prophage DNA as Carriers of Resistance Genes in Erysipelothrix rhusiopathiae Strains from Domestic Geese in Poland. Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.202438731857