# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5454 | 0 | 1.0000 | Identification of an Enterococcus faecium strain isolated from raw bovine milk co-harbouring the oxazolidinone resistance genes optrA and poxtA in China. Oxazolidinones are potent antimicrobial agents used to treat human infections caused by multidrug-resistant Gram-positive bacteria. The growing resistance to oxazolidinones poses a significant threat to public health. In August 2021, a linezolid-resistant Enterococcus faecium BN83 was isolated from a raw milk sample of cow in Inner Mongolia, China. This isolate exhibited a multidrug resistance phenotype and was resistant to most of drugs tested including linezolid and tedizolid. PCR detection showed that two mobile oxazolidinones resistance genes, optrA and poxtA, were present in this isolate. Whole genome sequencing analysis revealed that the genes optrA and poxtA were located on two different plasmids, designated as pBN83-1 and pBN83-2, belonging to RepA_N and Inc18 families respectively. Genetic context analysis suggested that optrA gene on plasmid pBN83-1 was located in transposon Tn6261 initially found in E. faecalis. Comprehensive analysis revealed that Tn6261 act as an important horizontal transmission vector for the spread of optrA in E. faecium. Additionally, poxtA-bearing pBN83-2 displayed high similarity to numerous plasmids from Enterococcus of different origin and pBN83-2-like plasmid represented a key mobile genetic element involved in movement of poxtA in enterococcal species. The presence of optrA- and poxtA-carrying E. faecium in raw bovine milk represents a public health concern and active surveillance is urgently warranted to investigate the prevalence of oxazolidinone resistance genes in animal-derived food products. | 2024 | 38718528 |
| 5460 | 1 | 0.9997 | Linezolid Resistance Genes in Enterococci Isolated from Sediment and Zooplankton in Two Italian Coastal Areas. Linezolid is a last-resort antibiotic for the treatment of severe infections caused by multidrug-resistant Gram-positive organisms; although linezolid resistance remains uncommon, the number of linezolid-resistant enterococci has increased in recent years due to worldwide spread of acquired resistance genes (cfr, optrA, and poxtA) in clinical, animal, and environmental settings. In this study, we investigated the occurrence of linezolid-resistant enterococci in marine samples from two coastal areas in Italy. Isolates grown on florfenicol-supplemented Slanetz-Bartley agar plates were investigated for their carriage of optrA, poxtA, and cfr genes; optrA was found in one Enterococcus faecalis isolate, poxtA was found in three Enterococcus faecium isolates and two Enterococcus hirae isolates, and cfr was not found. Two of the three poxtA-carrying E. faecium isolates and the two E. hirae isolates showed related pulsed-field gel electrophoresis (PFGE) profiles. Two E. faecium isolates belonged to the new sequence type 1710, which clustered in clonal complex 94, encompassing nosocomial strains. S1 PFGE/hybridization assays showed a double (chromosome and plasmid) location of poxtA and a plasmid location of optrA Whole-genome sequencing revealed that poxtA was contained in a Tn6657-like element carried by two plasmids (pEfm-EF3 and pEh-GE2) of similar size, found in different species, and that poxtA was flanked by two copies of IS1216 in both plasmids. In mating experiments, all but one strain (E. faecalis EN3) were able to transfer the poxtA gene to E. faecium 64/3. The occurrence of linezolid resistance genes in enterococci from marine samples is of great concern and highlights the need to improve practices aimed at limiting the transmission of linezolid-resistant strains to humans from environmental reservoirs.IMPORTANCE Linezolid is one of the few antimicrobials available to treat severe infections due to drug-resistant Gram-positive bacteria; therefore, the emergence of linezolid-resistant enterococci carrying transferable resistance determinants is of great concern for public health. Linezolid resistance genes (cfr, optrA, and poxtA), often plasmid located, can be transmitted via horizontal gene transfer and have the potential to spread globally. This study highlights the detection of enterococci carrying linezolid resistance genes from sediment and zooplankton samples from two coastal urban areas in Italy. The presence of clinically relevant resistant bacteria, such as linezolid-resistant enterococci, in marine environments could reflect their spillover from human and/or animal reservoirs and could indicate that coastal seawaters also might represent a source of these resistance genes. | 2021 | 33608287 |
| 5459 | 2 | 0.9997 | Transferable linezolid resistance genes (optrA and poxtA) in enterococci derived from livestock compost at Japanese farms. OBJECTIVES: Linezolid is a last-resort antimicrobial in human clinical settings to treat multidrug-resistant Gram-positive bacterial infections. Mobile linezolid resistance genes (optrA, poxtA, and cfr) have been detected in various sources worldwide. However, the presence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in Japan remains uncertain. Therefore, we clarified the existence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in farm environments in Japan. METHODS: Enterococci isolates from faeces compost collected from 10 pig and 11 cattle farms in Japan in 2021 were tested for antimicrobial susceptibility and possession of mobile linezolid resistance genes. Whole-genome sequencing of optrA and/or poxtA genes positive-enterococci was performed. RESULTS: Of 103 enterococci isolates, 12 from pig farm compost were not-susceptible (2 resistant and 10 intermediate) to linezolid. These 12 isolates carried mobile linezolid resistance genes on plasmids or chromosomes (5 optrA-positive Enterococcus faecalis, 6 poxtA-positive E. hirae or E. thailandicus, and 1 optrA- and poxtA-positive E. faecium). The genetic structures of optrA- and poxA-carrying plasmids were almost identical to those reported in other countries. These plasmids were capable of transferring among E. faecium and E. faecalis strains. The optrA- and poxtA-positive E. faecium belonged to ST324 (clade A2), a high-risk multidrug-resistant clone. The E. faecalis carrying optrA gene on its chromosome was identified as ST593. CONCLUSIONS: Although linezolid is not used in livestock, linezolid-not-susceptible enterococci could be indirectly selected by frequently used antimicrobials, such as phenicols. Moreover, various enterococci species derived from livestock compost may serve as reservoirs of linezolid resistance genes carried on globally disseminated plasmids and multidrug-resistant high-risk clones. | 2024 | 38336229 |
| 5458 | 3 | 0.9996 | Detection of an Enterococcus faecium Carrying a Double Copy of the PoxtA Gene from Freshwater River, Italy. Oxazolidinones are valuable antimicrobials that are used to treat severe infections due to multidrug-resistant (MDR) Gram-positive bacteria. However, in recent years, a significant spread of clinically relevant linezolid-resistant human bacteria that is also present in animal and environmental settings has been detected and is a cause for concern. This study aimed to investigate the presence, genetic environments, and transferability of oxazolidinone resistance genes in enterococci from freshwater samples. A total of 10 samples were collected from a river in Central Italy. Florfenicol-resistant enterococci were screened for the presence of oxazolidinone resistance genes by PCR. Enterococcus faecium M1 was positive for the poxtA gene. The poxtA transfer (filter mating and aquaria microcosm assays), localization (S1-PFGE/hybridization), genetic context, and clonality of the isolate (WGS) were analyzed. Two poxtA copies were located on the 30,877-bp pEfM1, showing high-level identity and synteny to the pEfm-Ef3 from an E. faecium collected from an Italian coastal area. The isolate was able to transfer the poxtA to enterococcal recipients both in filter mating and aquaria microcosm assays. This is-to the best of our knowledge-the first detection of an enterococcus carrying a linezolid resistance gene from freshwater in Italy. | 2022 | 36421262 |
| 5457 | 4 | 0.9996 | Persistence of transferable oxazolidinone resistance genes in enterococcal isolates from a swine farm in China. The appearance of transferable oxazolidinone resistance genes poses a major challenge to public health and environmental safety. These genes not only lead pathogenic bacteria to become resistant to linezolid but also reduce sensitivity to florfenicol, which is widely used in the veterinary field. To verify the dissemination of oxazolidinone resistance genes in enterococcal isolates from pigs at different production stages in a swine farm in China, we collected 355 enterococcal isolates that were resistant to florfenicol from 600 (150 per stage) fresh fecal swabs collected from a swine farm. Through initial PCR screening and whole-genome sequencing, 175 isolates harboring different oxazolidinone resistance genes were identified. All isolates carried the optrA gene. A total of 161 (92%, 161/175) isolates carried only the optrA gene. Three (1.71%, 3/175) isolates carried both the optrA and poxtA genes, and 11 (3.1%, 11/175) isolates contained the optrA gene and poxtA2 and cfr(D) variants. A total of 175 isolates that harbored oxazolidinone resistance genes included 161 E. faecalis, 6 E. faecium, and 8 E. hirae. By sequencing the whole genomes, we found that the 161 isolates of E. faecalis belonged to 28 different STs, including 8 new STs, and the 6 isolates of E. faecium belonged to four different STs, including one new ST. The phylogenetic tree based on SNPs of the core genome showed that both clonal spread and horizontal transfer mediated the diffusion of oxazolidone resistance genes in enterococcal isolates at specific stages in pig farms. Moreover, enterococcal isolates carrying oxazolidone resistance genes could spread from breeding pigs to fattening pigs, while transferable oxazolidone resistance genes in enterococcal isolates could persist on a pig farm throughout all production stages. Representative enterococcal isolates with different oxazolidinone resistance genes were further studied through Nanopore sequencing. We identified a novel plasmid, pM4-80 L4 (15,008 bp), carrying the poxtA2 and cfr(D) genes in enterococcal isolates at different stages. We also found three different plasmids harboring the poxtA gene with high genetic variation, and all poxtA genes were flanked by two copies of IS1216E elements. In addition, four genetically distinct plasmids carrying the optrA gene were identified, and Tn554 was found to mediate chromosome-localized optrA gene transfer. Our study highlighted that transferable oxazolidinone resistance genes in enterococcal isolates could persist throughout all production stages on a pig farm, and the prevalence and dissemination of oxazolidinone resistance genes in enterococcal isolates from animal farms should be continually monitored. | 2022 | 36299730 |
| 5455 | 5 | 0.9995 | Two novel plasmids harbouring the multiresistance gene cfr in porcine Staphylococcus equorum. BACKGROUND: The emergence and transmission of the multidrug resistance gene cfr have raised public health concerns worldwide. OBJECTIVES: Multidrug-resistant Staphylococcus equorum isolates can pose a threat to public health. In this study, we have characterised the whole-genome of one Staphylococcus equorum isolate harbouring two distinct cfr-carrying plasmids. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution. Genomic DNA was sequenced using both the Illumina HiSeq X Ten and Nanopore MinION platforms. De novo hybrid assembly was performed by Unicycler. Genomic data were assessed by in silico prediction and bioinformatic tools. RESULTS: Staphylococcus equorum isolate SN42 exhibited resistance or high MICs to linezolid, erythromycin, tetracycline, oxacillin, clindamycin, virginiamycin, tiamulin, chloramphenicol and florfenicol. It carried two cfr-harbouring plasmids: the RepA N-family plasmid pSN42-51 K and the Inc18-family plasmid pSN42-50 K. These two plasmids exhibited low structural similarities to the so far reported cfr-carrying plasmids. Both plasmids harboured an arsenic resistance operon, copper and cadmium resistance genes as well as the lincosamide-pleuromutilin-streptogramin A resistance gene lsa(B). In addition, plasmid pSN42-51 K carried two erm(B) genes for macrolide-lincosamide-streptogramin B resistance, the streptomycin resistance gene ant(6)-Ia as well as mercury resistance genes while pSN42-50 K was associated with the heavy metal translocating P-type ATPase gene hmtp. The co-carriage and co-existence of these antimicrobial resistance and heavy metal resistance genes increases the likelihood of co-selection of the cfr-carrying plasmids. CONCLUSION: This is the first report of S. equorum carrying two distinct cfr-carrying plasmids, underscoring the need for ongoing surveillance to address the potential dissemination of multi-drug resistance in bacteria from food-producing animals to ensure food safety and public health. | 2024 | 39362467 |
| 5456 | 6 | 0.9995 | Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli. The transferable optrA gene encodes an ABC-F protein which confers resistance to oxazolidinones and phenicols, and has so far been detected exclusively in Gram-positive bacteria, including enterococci, staphylococci and streptococci. Here, we identified for the first time the presence of optrA in naturally occurring Gram-negative bacteria. Seven optrA-positive Campylobacter coli were identified from 563 Campylobacter isolates of animal origin from Guangdong (n = 1, chicken) and Shandong (n = 6, duck) provinces of China in 2017-2018. The detected optrA genes were functionally active and mediated resistance or elevated minimal inhibitory concentrations of linezolid, florfenicol and chloramphenicol in the respective C. coli isolates. The optrA gene, together with other transferable resistance genes, such as fexA, catA9, tet(O), tet(L), erm(A)-like, spc, or aadE, was located in two different chromosome-borne multidrug resistance genomic islands (MDRGIs). In both MDRGIs, complete or truncated copies of the insertion sequence IS1216E were present in the vicinity of optrA. The IS1216E-bracketed genetic environment of optrA was almost identical to the optrA regions on enterococcal plasmids, suggesting that the optrA in Campylobacter probably originated from Enterococcus spp.. Moreover, the formation of an optrA-carrying translocatable unit by recombination of IS1216E indicated that this IS element may play an important role in the horizontal transfer of optrA in Campylobacter. Although optrA was only found in a small number of C. coli isolates, enhanced surveillance is needed to monitor the distribution and the potential emergence of optrA in Campylobacter. | 2020 | 32605743 |
| 5479 | 7 | 0.9995 | Novel linezolid resistance plasmids in Enterococcus from food animals in the USA. OBJECTIVES: To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme. METHODS: Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible. RESULTS: Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3')-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant. CONCLUSIONS: To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus. | 2018 | 30272180 |
| 1889 | 8 | 0.9995 | Widespread Dissemination of Plasmid-Mediated Tigecycline Resistance Gene tet(X4) in Enterobacterales of Porcine Origin. The emergence of the plasmid-mediated high levels of the tigecycline resistance gene has drawn worldwide attention and has posed a major threat to public health. In this study, we investigated the prevalence of the tet(X4)-positive Enterobacterales isolates collected from a pig slaughterhouse and farms. A total of 101 tigecycline resistance strains were isolated from 353 samples via a medium with tigecycline, of which 33 carried tet(X4) (9.35%, 33/353) and 2 carried tet(X6) (0.57%, 2/353). These strains belong to seven different species, with Escherichia coli being the main host bacteria. Importantly, this report is the first one to demonstrate that tet(X4) was observed in Morganella morganii. Whole-genome sequencing results revealed that tet(X4)-positive bacteria can coexist with other resistance genes, such as bla(NDM-1) and cfr. Additionally, we were the first to report that tet(X4) and bla(NDM-1) coexist in a Klebsiella quasipneumoniae strain. The phylogenetic tree of 533 tet(X4)-positive E. coli strains was constructed using 509 strains from the NCBI genome assembly database and 24 strains from this study, which arose from 8 sources and belonged to 135 sequence types (STs) worldwide. We used Nanopore sequencing to interpret the selected 21 nonclonal and representative strains and observed that 19 tet(X4)-harboring plasmids were classified into 8 replicon types, and 2 tet(X6) genes were located on integrating conjugative elements. A total of 68.42% of plasmids carrying tet(X4) were transferred successfully with a conjugation frequency of 10(-2) to 10(-7). These findings highlight that diverse plasmids drive the widespread dissemination of the tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. IMPORTANCE Tigecycline is considered to be the last resort of defense against diseases caused by broad-spectrum resistant Gram-negative bacteria. In this study, we systematically analyzed the prevalence and genetic environments of the resistance gene tet(X4) in a pig slaughterhouse and farms and the evolutionary relationship of 533 tet(X4)-positive Escherichia coli strains, including 509 tet(X4)-positive E. coli strains selected from the 27,802 assembled genomes of E. coli from the NCBI between 2002 and 2022. The drug resistance of tigecycline is widely prevalent in pig farms where tetracycline is used as a veterinary drug. This prevalence suggests that pigs are a large reservoir of tet(X4) and that tet(X4) can spread horizontally through the food chain via mobile genetic elements. Furthermore, tetracycline resistance may drive tigecycline resistance through some mechanisms. Therefore, it is important to monitor tigecycline resistance, develop effective control measures, and focus on tetracycline use in the pig farms. | 2022 | 36125305 |
| 1887 | 9 | 0.9994 | Complete Genetic Analysis of Plasmids Carrying mcr-1 and Other Resistance Genes in Avian Pathogenic Escherichia coli Isolates from Diseased Chickens in Anhui Province in China. Antimicrobial resistance associated with colistin has emerged as a significant concern worldwide, threatening the use of one of the most important antimicrobials for treating human disease. This study aimed to investigate the prevalence of colistin-resistant avian-pathogenic Escherichia coli (APEC) and shed light on the possibility of transmission of mcr-1 (mobilized colistin resistance)-positive APEC. A total of 72 APEC isolates from Anhui Province in China were collected between March 2017 and December 2018 and screened for the mcr-1 gene. Antimicrobial susceptibility testing was performed using the broth dilution method. Pulsed-field gel electrophoresis, Southern blot analysis, and conjugation assay were performed to determine the location and conjugative ability of the mcr-1 gene. Whole-genome sequencing and analysis were performed using Illumina MiSeq and Nanopore MinION platforms. Three APEC isolates (AH25, AH62, and AH65) were found to be positive for the mcr-1 gene and showed multidrug resistance. The mcr-1 genes were located on IncI2 plasmids, and conjugation assays revealed that these plasmids were transferrable. Notably, strains AH62 and AH65, both belonging to ST1788, were collected from different places but carried the same drug resistance genes and shared highly similar plasmids. This study highlights the potential for a possible epidemic of mcr-1-positive APEC and the urgent need for continuous active monitoring.IMPORTANCE In this study, three plasmids carrying mcr-1 were isolated and characterized from APEC isolates from Anhui Province in China. The mcr-1 genes were located on IncI2 plasmids, and these plasmids were transferrable. These three IncI2 plasmids had high homology with the plasmids harbored by pathogenic bacteria isolated from other species. This finding showed that IncI2 plasmids poses a risk for the exchange of genetic material between different niches. Although colistin has been banned for use in food-producing animals in China, the coexistence of the broad-spectrum β-lactamase and mcr-1 genes on a plasmid can also lead to the stable existence of mcr-1 genes. The findings illustrated the need to improve the monitoring of drug resistance in poultry systems so as to curb the transmission or persistence of multidrug-resistant bacteria. | 2021 | 33853876 |
| 1643 | 10 | 0.9994 | Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates. The foodborne transfer of resistant genes from enterococci to humans and their tolerance to several commonly used antimicrobials are of growing concern worldwide. Linezolid is a last-line drug for managing complicated illnesses resulting from multidrug-resistant Gram-positive bacteria. The optrA gene has been reported in enterococci as one of the acquired linezolid resistance mechanisms. The present study uses whole-genome sequencing analysis to characterize the first reported isolates of linezolid-resistant E. faecium (n = 6) and E. faecalis (n = 10) harboring the optrA gene isolated from samples of supermarket broiler meat (n = 165) in the United Arab Emirates (UAE). The sequenced genomes were used to appraise the study isolates' genetic relatedness, antimicrobial resistance determinants, and virulence traits. All 16 isolates carrying the optrA gene demonstrated multidrug-resistance profiles. Genome-based relatedness classified the isolates into five clusters that were independent of the isolate sources. The most frequently known genotype among the isolates was the sequence type ST476 among E. faecalis (50% (5/10)). The study isolates revealed five novel sequence types. Antimicrobial resistance genes (ranging from 5 to 13) were found among all isolates that conferred resistance against 6 to 11 different classes of antimicrobials. Sixteen different virulence genes were found distributed across the optrA-carrying E. faecalis isolates. The virulence genes in E. faecalis included genes encoding invasion, cell adhesion, sex pheromones, aggregation, toxins production, the formation of biofilms, immunity, antiphagocytic activity, proteases, and the production of cytolysin. This study presented the first description and in-depth genomic characterization of the optrA-gene-carrying linezolid-resistant enterococci from retail broiler meat in the UAE and the Middle East. Our results call for further monitoring of the emergence of linezolid resistance at the retail and farm levels. These findings elaborate on the importance of adopting a One Health surveillance approach involving enterococci as a prospective bacterial indicator for antimicrobial resistance spread at the human-food interface. | 2022 | 37430937 |
| 5481 | 11 | 0.9994 | Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Oxazolidinones are one of the most important antimicrobials potentially active against glycopeptide- and β-lactam-resistant Gram-positive pathogens. Linezolid-the first oxazolidinone to be approved for clinical use in 2000 by the US Food and Drug Administration-and the newer molecule in the class, tedizolid, inhibit protein synthesis by suppressing the formation of the 70S ribosomal complex in bacteria. Over the past two decades, transferable oxazolidinone resistance genes, in particular cfr and optrA, have been identified in Firmicutes isolated from healthcare-related infections, livestock, and the environment. Our goals in this study were to investigate the genetic contexts and the transferability of the cfr and optrA genes and examine genomic features, such as antimicrobial resistance genes, plasmid incompatibility types, and CRISPR-Cas defenses of a linezolid-resistant Enterococcus faecalis isolated in feces from a healthy pig during an antimicrobial surveillance program for animal production in Brazil. The cfr gene was found to be integrated into a transposon-like structure of 7,759 nt flanked by IS1216E and capable of excising and circularizing, distinguishing it from known genetic contexts for cfr in Enterococcus spp., while optrA was inserted into an Inc18 broad host-range plasmid of >58 kb. Conjugal transfer of cfr and optrA was shown by filter mating. The coexistence of cfr and optrA in an E. faecalis isolated from a healthy nursery pig highlights the need for monitoring the use of antibiotics in the Brazilian swine production system for controlling spread and proliferation of antibiotic resistance. | 2020 | 33102417 |
| 5420 | 12 | 0.9994 | A high incidence and coexistence of multiresistance genes cfr and optrA among linezolid-resistant enterococci isolated from a teaching hospital in Wenzhou, China. Linezolid is considered as a last-resort antimicrobial agent, the resistance of which is of great concern. The aim of this study was to investigate the mechanisms and transferability of linezolid resistance and molecular epidemiology of linezolid-resistant enterococcal isolates in Wenzhou, China. A collection of 1623 enterococcal strains, including 789 Enterococcus faecalis and 834 Enterococcus faecium, were isolated from our hospital during 2011-2016. Antimicrobial susceptibility testing and clinical data analysis were performed. Molecular mechanisms of linezolid resistance, including the existence of resistance genes cfr and optrA, as well as the mutations in 23S rRNA and ribosomal proteins L3, L4, and L22, were investigated by PCR and sequencing. Conjugation experiments were conducted, and epidemiological characteristics were analyzed by PFGE and MLST. In our study, 31 (3.93%) E. faecalis and 2 (0.24%) E. faecium exhibited resistance to linezolid. Risk factors correlated with linezolid-resistant enterococcal infections included gastrointestinal surgery hospitalization, urogenital disorders, tumor, diabetes, and polymicrobial infections. Among these isolates, 6 (18.18%) harbored cfr, 9 (27.27%) harbored optrA, and 18 (54.55%) co-harbored cfr and optrA. However, mutational mechanisms were not found in this study. Conjugation experiments demonstrated the transferability of cfr and optrA between Gram-positive and Gram-negative bacteria. The clone of these isolates was diverse and scattered. It is noteworthy that cfr and optrA were the main mechanisms of linezolid resistance in this study, posing a potential risk of spread of linezolid resistance. Strikingly, it reported firstly that the two transferable resistance genes cfr and optrA coexisted in the same E. faecalis isolates. | 2018 | 29909468 |
| 1895 | 13 | 0.9994 | Comparative Genome Analysis of Livestock and Human Colistin-Resistant Escherichia coli Isolates from the Same Household. BACKGROUND: Emergence and dissemination of colistin-resistant bacteria that harbor mobile colistin resistance (mcr) genes pose a dire challenge for the treatment of intractable infections caused by multidrug-resistant bacteria. Current findings on colistin-resistant bacteria in both humans and livestock of the same households highlight the need to identify the dissemination mechanisms of colistin-resistant bacteria. METHODS: In this study, a comparative genome analysis of colistin-resistant Escherichia coli isolates from livestock and humans of the same household was performed to clarify the possible dissemination mechanism of mcr genes among bacteria. Pulsed-field gel electrophoresis and whole-genome sequencing followed by sequence typing of the isolates were performed for assessment of the samples. RESULTS: The study revealed that two colistin-resistant E. coli isolates, one each from a pig and a chicken, were phylogenetically similar but not identical to the human isolates obtained from the same household. The comparative genome analysis revealed that the chicken isolate and a human isolate shared the same IncHl2 plasmid harboring the mcr transposon (mcr-1-PAP2). The pig isolate and the other human isolate retained the mcr-1 transposon on the chromosome, with the pig isolate carrying the complete mcr transposon (ISApl1-mcr-1-PAP2-ISApl1) and the human isolate carrying the incomplete mcr transposon (ISApl1-mcr-1-PAP2). CONCLUSION: The results of the study confirm the distribution of colistin-resistant bacteria and subsequent transmission of the resistance gene-carrying transposon between livestock and humans of the same household. To the best of our knowledge, this is the first report on genomic analysis of colistin-resistant E. coli isolates obtained from livestock and residents of the same household. | 2021 | 33688219 |
| 1979 | 14 | 0.9994 | Diverse Fluoroquinolone Resistance Plasmids From Retail Meat E. coli in the United States. Fluoroquinolones are used to treat serious bacterial infections, including those caused by Escherichia coli and Salmonella enterica. The emergence of plasmid-mediated quinolone resistance (PMQR) represent a new challenge to the successful treatment of Gram-negative infections. As part of a long-term strategy to generate a reference database of closed plasmids from antimicrobial resistant foodborne bacteria, we performed long-read sequencing of 11 E. coli isolates from retail meats that were non-susceptible to ciprofloxacin. Each of the isolates had PMQR genes, including qnrA1, qnrS1, and qnrB19. The four qnrB19 genes were carried on two distinct ColE-type plasmids among isolates from pork chop and ground turkey and were identical to plasmids previously identified in Salmonella. Seven other plasmids differed from any other sequences in GenBank and comprised IncF and IncR plasmids that ranged in size from 48 to 180 kb. These plasmids also contained different combinations of resistance genes, including those conferring resistance to beta-lactams, macrolides, sulfonamides, tetracycline, and heavy metals. Although relatively few isolates have PMQR genes, the identification of diverse plasmids in multiple retail meat sources suggests the potential for further spread of fluoroquinolone resistance, including through co-selection. These results highlight the value of long-read sequencing in characterizing antimicrobial resistance genes of public health concern. | 2019 | 31866986 |
| 1890 | 15 | 0.9994 | Emergence and Characterization of Tigecycline Resistance Gene tet(X4) in ST609 Escherichia coli Isolates from Wastewater in Turkey. Emergence of pathogens harboring tigecycline resistance genes incurs great concerns. Wastewater is recognized as the important reservoir of antimicrobial resistance genes. Here we characterized the phenotypes and genotypes of bacteria carrying tet(X4) from wastewater in Turkey for the first time. Four tet(X4)-positive Escherichia coli isolates were identified and characterized by PCR, Sanger sequencing, antimicrobial susceptibility testing, conjugation assays, Illumina sequencing, nanopore sequencing and bioinformatic analysis. Four tet(X4)-harboring isolates were multidrug-resistant (MDR) bacteria and the tet(X4) gene was nontransferable in four isolates. Genetic analysis revealed that tet(X4) genes in four isolates were located on plasmids co-harboring two replicons IncFIA(HI1) and IncFIB(K). However, none of the four plasmids carried genes associated with horizontal transfer of plasmids. The coexistence of bla(SHV-12)-bearing IncX3-type plasmid and tet(X4)-harboring plasmid was also found in one isolate. These findings indicate that continuous surveillance of the tet(X4)-bearing isolates in different environments worldwide should be strengthened. IMPORTANCE The emergence of tigecycline resistance genes in humans and animals in China seriously threatens the clinical utility of tigecycline, but the molecular epidemiology of tigecycline-resistant bacteria in other countries remained largely unknown. Therefore, it is necessary to learn the prevalence and molecular characteristics of bacteria carrying tigecycline resistance genes, particularly the mobilizable tet(X4), in other countries. In the study, we first described the presence and molecular characteristics of the tet(X4)-positive E. coli isolates from wastewater in Turkey. Four tet(X4)-bearing isolates belonged to ST609, an E. coli clone commonly found from humans, animals and the environment. These findings highlight the importance of monitoring the tet(X4) gene in different settings globally. | 2022 | 35863037 |
| 5422 | 16 | 0.9994 | Analysis of Resistance to Florfenicol and the Related Mechanism of Dissemination in Different Animal-Derived Bacteria. Bacterial resistance to antibiotics has become an important concern for public health. This study was aimed to investigate the characteristics and the distribution of the florfenicol-related resistance genes in bacteria isolated from four farms. A total of 106 florfenicol-resistant Gram-negative bacilli were examined for florfenicol-related resistance genes, and the positive isolates were further characterized. The antimicrobial sensitivity results showed that most of them (100, 94.33%) belonged to multidrug resistance Enterobacteriaceae. About 91.51% of the strains carried floR gene, while 4.72% carried cfr gene. According to the pulsed-field gel electrophoresis results, 34 Escherichia coli were subdivided into 22 profiles, the genetic similarity coefficient of which ranged from 80.3 to 98.0%. The multilocus sequence typing (MLST) results revealed 17 sequence types (STs), with ST10 being the most prevalent. The genome sequencing result showed that the Proteus vulgaris G32 genome consists of a 4.06-Mb chromosome, a 177,911-bp plasmid (pG32-177), and a 51,686-bp plasmid (pG32-51). A floR located in a drug-resistant region on the chromosome of P. vulgaris G32 was with IS91 family transposase, and the other floR gene on the plasmid pG32-177 was with an ISCR2 insertion sequence. The cfr gene was located on the pG32-51 flanked by IS26 element and TnpA26. This study suggested that the mobile genetic elements played an important role in the replication of resistance genes and the horizontal resistance gene transfer. | 2020 | 32903722 |
| 5478 | 17 | 0.9993 | Selection and maintenance of mobile linezolid-resistance genes and plasmids carrying them in the presence of florfenicol, an animal-specific antimicrobial. Mobile linezolid-resistance genes (optrA, poxtA and cfr) that confer resistance to linezolid and florfenicol have been detected globally in various sources. Linezolid is a last-resort antimicrobial used in human clinical settings, and florfenicol is commonly used in veterinary clinical settings. The present study sought to evaluate the potential of florfenicol in veterinary use to select for linezolid-resistant bacteria. The growth and fitness of linezolid-resistant bacteria harbouring mobile linezolid-resistance genes were assessed in the presence and absence of florfenicol using Enterococcus faecalis and Enterococcus faecium, respectively. The bacterial strains harboured wild and cloning plasmids carrying mobile linezolid-resistance genes, which reduced their susceptibility to linezolid and florfenicol. The acquisition of plasmids carrying mobile linezolid-resistance genes improved bacterial growth in the presence of florfenicol and conferred fitness costs in its absence. Florfenicol imposes a selection pressure on bacteria harbouring plasmids carrying mobile linezolid-resistance genes. Hence, the appropriate use of florfenicol in veterinary clinical settings is important to control the dissemination of mobile linezolid-resistance genes and to ensure the sustained effectiveness of linezolid against multidrug-resistant bacteria, including vancomycin-resistant enterococci in human clinical settings. | 2025 | 40698117 |
| 1893 | 18 | 0.9993 | Genetic analysis of the first mcr-1 positive Escherichia coli isolate collected from an outpatient in Chile. Global dissemination of mcr-like genes represents a serious threat to public health since it jeopardizes the effectiveness of colistin, an antibiotic used as a last-resort treatment against highly antibiotic-resistant bacteria. In 2017, a mcr-1-positive isolate of Escherichia coli was found in Chile for the first time. Herein we report the genetic features of this strain (UCO-457) by whole-genome sequencing (WGS) and conjugation experiments. The UCO-457 strain belonged to ST4204 and carried a 285 kb IncI2-type plasmid containing the mcr-1 gene. Moreover, this plasmid was transferred by conjugation to an E. coli J53 strain at high frequency. The isolate harbored the cma, iroN, and iss virulence genes and did carry resistance genes to trimethoprim/sulfamethoxazole and fluoroquinolones. Other antibiotic resistance determinants such as β-lactamases-encoding genes were not detected, making the isolate highly susceptible to these antibiotics. Our results revealed that such susceptible isolates could be acting as platforms to disseminate plasmid-mediated colistin resistance. Based on this evidence, we consider that mcr-like prevalence deserves urgent attention and should be examined not only in highly resistant bacteria but also in susceptible isolates. | 2019 | 31228460 |
| 1886 | 19 | 0.9993 | Comparative genomic analysis of Colistin resistant Escherichia coli isolated from pigs, a human and wastewater on colistin withdrawn pig farm. In this study, genomic and plasmid characteristics of Escherichia coli were determined with the aim of deducing how mcr genes may have spread on a colistin withdrawn pig farm. Whole genome hybrid sequencing was applied to six mcr-positive E. coli (MCRPE) strains isolated from pigs, a farmworker and wastewater collected between 2017 and 2019. Among these, mcr-1.1 genes were identified on IncI2 plasmids from a pig and wastewater, and on IncX4 from the human isolate, whereas mcr-3 genes were found on plasmids IncFII and IncHI2 in two porcine strains. The MCRPE isolates exhibited genotypic and phenotypic multidrug resistance (MDR) traits as well as heavy metal and antiseptic resistance genes. The mcr-1.1-IncI2 and IncX4 plasmids carried only colistin resistance genes. Whereas, the mcr-3.5-IncHI2 plasmid presented MDR region, with several mobile genetic elements. Despite the MCRPE strains belonged to different E. coli lineages, mcr-carrying plasmids with high similarities were found in isolates from pigs and wastewater recovered in different years. This study highlighted that several factors, including the resistomic profile of the host bacteria, co-selection via adjunct antibiotic resistance genes, antiseptics, and/or disinfectants, and plasmid-host fitness adaptation may encourage the maintenance of plasmids carrying mcr genes in E. coli. | 2023 | 36991093 |