# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5451 | 0 | 1.0000 | Two novel phages, Klebsiella phage GADU21 and Escherichia phage GADU22, from the urine samples of patients with urinary tract infection. Phages are found in a wide variety of places where bacteria exist including body fluids. The aim of the present study was to isolate phages from the urine samples of patients with urinary tract infection. The 10 urine samples were cultured to isolate bacteria and also used as phage sources against the isolated bacteria. From 10 urine samples with positive cultures, 3 phages were isolated (33%) and two of them were further studied. The Klebsiella phage GADU21 and Escherichia phage GADU22 phages infected Klebsiella pneumonia and Escherichia coli, respectively. Among the tested 14 species for host range analysis, the Klebsiella phage GADU21 was able to infect two species which are Klebsiella pneumonia and Proteus mirabilis, and Escherichia phage GADU22 was able to infect four species which are Shigella flexneri, Shigella sonnei and Escherichia coli. Among different isolates of the indicator bacteria for each phage, GADU21 infected half of the tested 20 Klebsiella pneumonia isolates while GADU22 infected 85% of the tested 20 E. coli isolates. The genome sizes and GC ratios were 75,968 bp and 44.4%, and 168,023 bp and 35.3% for GADU21 and GADU22, respectively. GADU21 and GADU22 were both lytic and had no antibiotic resistance and virulence genes. GADU21 was homologue with Klebsiella phage vB_KpP_FBKp27 but only 88% of the genome was covered by this phage. The non-covered parts of the GADU21 genome included genes for tail-fiber-proteins and HNH-endonuclease. GADU22 had 94.8% homology with Escherichia phage vB_Eco_OMNI12 and had genes for immunity proteins. Phylogenetic analysis showed GADU21 and GADU22 were members of Schitoviridae family and Efbeekayvirus genus and Straboviridae family and Tevenvirinae genus, respectively. VIRIDIC analysis classified these phages in new species clusters. Our study demonstrated the possibility to use infected body fluids as phage sources to isolate novel phages. GADU21 is the first reported Klebsiella phage isolated from human body fluid. The absence of virulence and antibiotic resistance genes in their genomes makes the phages a potential therapeutic tool against infections. | 2024 | 38238612 |
| 2369 | 1 | 0.9983 | The Beta-Lactam Resistome Expressed by Aerobic and Anaerobic Bacteria Isolated from Human Feces of Healthy Donors. Antibiotic resistance is a major health problem worldwide, causing more deaths than diabetes and cancer. The dissemination of vertical and horizontal antibiotic resistance genes has been conducted for a selection of pan-resistant bacteria. Here, we test if the aerobic and anaerobic bacteria from human feces samples in health conditions are carriers of beta-lactamases genes. The samples were cultured in a brain-heart infusion medium and subcultured in blood agar in aerobic and anaerobic conditions for 24 h at 37 °C. The grown colonies were identified by their biochemical profiles. The DNA was extracted and purified by bacterial lysis using thermal shock and were used in the endpoint PCR and next generation sequencing to identify beta-lactamase genes expression (OXA, VIM, SHV, TEM, IMP, ROB, KPC, CMY, DHA, P, CFX, LAP, and BIL). The aerobic bacterias Aeromonas hydrophila, Citrobacter freundii, Proteus mirabilis, Providencia rettgeri, Serratia fonticola, Serratia liquefaciens, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Pantoea agglomerans, Enterococcus faecalis, and Enterobacter cloacae, the anaerobic bacteria: Capnocytophaga species, Bacteroides distasonis, Bifidobacterium adolescentis, Bacteroides ovatus, Bacteroides fragilis, Eubacterium species, Eubacterium aerofaciens, Peptostreptococcus anaerobius, Fusobacterium species, Bacteroides species, and Bacteroides vulgatus were isolated and identified. The results showed 49 strains resistant to beta-lactam with the expression of blaSHV (10.2%), blaTEM (100%), blaKPC (10.2%), blaCYM (14.3%), blaP (2%), blaCFX (8.2%), and blaBIL (6.1%). These data support the idea that the human enteric microbiota constitutes an important reservoir of genes for resistance to beta-lactamases and that such genes could be transferred to pathogenic bacteria. | 2021 | 34204872 |
| 1705 | 2 | 0.9983 | Formation ability and drug resistance mechanism of Klebsiella pneumoniae biofilm and capsule for multidrug-resistant. This study was to explore the formation ability of biofilm and capsule and the drug resistance mechanism for multidrug-resistant Klebsiella pneumoniae. firstly, 55 strains of K. pneumoniae were screened out from the body fluid specimens of the laboratory. The strains were drug-resistant, and the characteristics of clinical infections of these strains were analyzed. Secondly, all strains were tested for the presence of biofilms and capsules, and then the deoxyribonucleic acid (DNA) genomes of the strains extracted were detected using polymerase chain reaction (PCR) technology. Finally, the serotype genes and virulence genes of the strains were screened, and the relationship between these two genes and the formation of capsules and biofilms was analyzed and compared. A new generation of sequencing technology was applied to analyze the genome structure of K. pneumoniae, comparative genomics technology was adopted to analyze the drug resistance plasmids, and molecular cloning and other methods were utilized to clone the drug resistance-related genes. of the 55 strains of K. pneumoniae isolated clinically, 61.8% came from blood with a total number of 34 strains; 8 strains were from secretion specimens (accounting for 14.5% of the total); and 7 strains were from drainage fluid (accounting for 12.7% of the total), including 2 strains from pus, bile, and pleural fluid, respectively. The strains were tested by PCR, of which iroN virulence genes were the most (34 strains), accounting for 61.8%, followed by wabG and fimH (33 strains, accounting for 60% of the total), followed by magA, K2, K20, K1, and K57. The positive rates of the two virulence genes (fimH and wabG) were higher in positive strains of biofilm. The drug susceptibility results showed that ampicillin and amoxicillin were more resistant to capsule-positive strains than the capsule-negative strains. K. pneumoniae had been able to form a complete capsule and biofilm, the formation rate of biofilm was higher than that of the capsule, and there was an increasing trend. The two serotype genes (K20 and K2) accounted for relatively high proportions, and K. pneumoniae carried relatively more virulence genes (wabG and fimH), which may be closely related to the capsule production of K. pneumoniae. In addition, resistance-related genes were also transferred horizontally in different strains of bacteria, forming a wide range of drug resistance, which brought great difficulties to clinical work. | 2023 | 37953580 |
| 2334 | 3 | 0.9983 | High Virulence and Multidrug Resistance of Escherichia coli Isolated in Periodontal Disease. Periodontal disease is caused by different gram-negative anaerobic bacteria; however, Escherichia coli has also been isolated from periodontitis and its role in periodontitis is less known. This study aimed to determine the variability in virulence genotype, antibiotic resistance phenotype, biofilm formation, phylogroups, and serotypes in different emerging periodontal strains of Escherichia coli, isolated from patients with periodontal disease and healthy controls. E. coli, virulence genes, and phylogroups, were identified by PCR, antibiotic susceptibility by the Kirby-Bauer method, biofilm formation was quantified using polystyrene microtiter plates, and serotypes were determined by serotyping. Although E. coli was not detected in the controls (n = 70), it was isolated in 14.7% (100/678) of the patients. Most of the strains (n = 81/100) were multidrug-resistance. The most frequent adhesion genes among the strains were fimH and iha, toxin genes were usp and hlyA, iron-acquisition genes were fyuA and irp2, and protectin genes were ompT, and KpsMT. Phylogroup B2 and serotype O25:H4 were the most predominant among the strains. These findings suggest that E. coli may be involved in periodontal disease due to its high virulence, multidrug-resistance, and a wide distribution of phylogroups and serotypes. | 2022 | 36677337 |
| 2078 | 4 | 0.9982 | Characterization of integrons and novel cassette arrays in bacteria from clinical isloates in China, 2000-2014. Rapid dissemination of antibiotic resistance genes among bacterial isolates is an increasing problem in China. Integron, a conserved DNA sequence, which is carried on episomal genetic structures, plays a very important role in development of antibiotic resistance. This systematic analysis was based on MEDLINE and EMBASE databases. We summarized the distribution and proportion of different types of gene cassette arrays of integrons (including class 1, 2, 3 and atypical class 1 integron) from clinical bacteria isolates in China. Fifty-six literatures were included in this study. Most of the strains were Gram-negative bacteria (94.1%, 7,364/7,822) while only 5.9% strains were Gram-positive bacteria. Class 1 integrons were detected in 54.2% (3956/7295) Gram-negative strains. aadA2 was the most popular gene cassette array detected from 60 Gram-positive bacteria while dfrA17-aadA5 were detected in 426 Gram-negative bacteria. This study identified 12 novel gene cassette arrays which have not been previously found in any species. All the novel gene cassette arrays were detected from Gram-negative bacteria. A regional characteristic of distribution of integrons was presented in this study. The results highlight a need for continuous surveillance of integrons and provide a guide for future research on integron-mediated bacteria resistance. | 2016 | 27533938 |
| 5943 | 5 | 0.9982 | Drug Resistance in Bacteria Isolated From a Brazilian Hospital. Bacteria commonly associated with cases of hospital infection were isolated from samples of food, from food handless, and from objects and surfaces from different places of a hospital in Piracicaba, São Paulo, Brazil, and the resistance patterns to antibiotic of these strains of bacteria were evaluated. The resistance patterns of these bacteria showed a large variation, and a high frequency of resistance to ampicillin (60.9%), cephalothin (58.7%) and carbenicillin (52.2%) was observed. The frequency of resistance to cephalosporins of 3rd and 4th-generations was 26.1% and 17.4% of the samples, respectively. Resistance to more than two drugs was observed in 27 samples (56.5%), and in four strains multiple resistance to 17 or more tested drugs was recorded. Five bacteria which were multi-resistant to antibiotics (Enterobacter aerogenes, Escherichia coli, Proteus sp, Pseudomonas sp and Staphylococcus aureus) were studied to determine the chromosomal or plasmidial genetic basis of the resistance, using plasmid curing and agarose gel electrophoresis of plasmidial DNA. It was possible to verify that for the antibiotics chloramphenicol and kanamycin, the resistance seems to be of plasmidial origin. | 1998 | 11103021 |
| 2010 | 6 | 0.9982 | Epidemiological survey of genes encoding aminoglycoside phosphotransferases APH (3') I and APH (3') II using DNA probes. The epidemiological survey of APH (3') I and APH (3') II genes, at a time when the specific antibiotic pressure was very low, was carried out by DNA-DNA hybridization. The sample included 334 aminoglycoside resistant Gram-negative bacteria collected from patients of a General Hospital. Of these, 251 hybridized with the APH (3') I-probe and 19 with the APH (3') II-probe but only 190 strains showed high resistance levels (CIM greater than 64 micrograms/ml) for kanamycin, neomycin and paromomycin. These strains were isolated both from inpatients and outpatients with different infectious diseases. The APH (3') I-gene was dispersed among all the bacterial species and clinical specimens tested but the APH (3') II-gene was not found in Pseudomonas spp, Escherichia coli, Citrobacter freundii and Enterobacter cloacae, nor in infected catheters. Several plasmids of different sizes carrying APH (3') genes were detected among different bacteria. Plasmids along with transposable elements (the probes used in this work were developed from Tn906 and Tn5) and the high consumption of other antibiotics whose resistance is carried by these bacteria might be playing an important role in the maintenance and dispersion of APH (3') genes. | 1992 | 1328557 |
| 1704 | 7 | 0.9982 | Exploring virulence characteristics of Klebsiella pneumoniae isolates recovered from a Greek hospital. The objective of this study was to characterize the virulence characteristics of a collection of Klebsiella pneumoniae isolates collected from different clinical sources. A collection of 60 non-repetitive K. pneumoniae isolates, was studied. In vitro, virulence was analyzed by testing the survival of bacteria in pooled human serum. Isolates were typed by MLST. The genomes of 23 K. pneumoniae isolates, representatives of different STs and virulence profiles, were completely sequenced using the Illumina platform. Of note, 26/60 of K. pneumoniae isolates were resistant to killing by complement. Serum-resistant isolates belonged to distinct STs. Analysis of WGS data with VFDB showed the presence of several virulence genes related various virulence functions. Specifically, serum-resistant isolates carried a higher number of ORFs, which were associated with serum resistance, compared to serum-sensitive isolates. Additionally, analysis of WGS data showed the presence of multiple plasmid replicons that could be involved with the spread and acquisition of resistance and virulence genes. In conclusion, analysis of virulence characteristics showed that an important percentage (31.6%) of K. pneumoniae isolates were in vitro virulent by exhibiting resistance to serum. Thus, the presence of several virulence factors, in combination with the presence of multidrug resistance, could challenge antimicrobial therapy of infections caused by such bacteria. | 2025 | 40415138 |
| 2083 | 8 | 0.9982 | A classification system for plasmids from enterococci and other Gram-positive bacteria. A classification system for plasmids isolated from enterococci and other Gram-positive bacteria was developed based on 111 published plasmid sequences from enterococci and other Gram-positive bacteria; mostly staphylococci. Based on PCR amplification of conserved areas of the replication initiating genes (rep), alignment of these sequences and using a cutoff value of 80% identity on both protein and DNA level, 19 replicon families (rep-families) were defined together with several unique sequences. The prevalence of these rep-families was tested on 79 enterococcal isolates from a collection of isolates of animal and human origin. Difference in prevalence of the designed rep-families were detected with rep(9) being most prevalent in Enterococcus faecalis and rep(2) in Enterococcus faecium. In 33% of the tested E. faecium and 32% of the tested E. faecalis no positive amplicons were detected. Furthermore, conjugation experiments were performed obtaining 30 transconjugants when selecting for antimicrobial resistance. Among them 19 gave no positive amplicons indicating presence of rep-families not tested for in this experimental setup. | 2010 | 19879906 |
| 2081 | 9 | 0.9982 | Distribution of the antiseptic-resistance gene qacE delta 1 in gram-positive bacteria. The distribution of the antiseptic-resistance genes qacE and qacE delta 1, originally isolated from Gram-negative bacteria, was studied in a large number of Gram-positive bacteria by a method that included the polymerase chain reaction. A total of 151 strains of Staphylococcus and Enterococcus, isolated from clinical sources and obtained from the Japanese Collection of Microorganisms, was used in this analysis. We found the qacE delta 1 gene in 36 of 103 strains of Staphylococcus and in nine of 48 strains of Enterococcus. All of the strains in which we detected the qacE delta 1 gene were clinical isolates. The qacE gene was not detected in any of the strains examined in this study. The nucleotide sequences of the qacE delta 1 genes from the strains of Staphylococcus and Enterococcus were identical to that of the gene located on integron InC in Pseudomonas aeruginosa. These results indicate that the antiseptic-resistance gene qacE delta 1 is present in Gram-positive, as well as Gram-negative, bacteria. | 1998 | 9742702 |
| 2282 | 10 | 0.9982 | Cross resistance of quinolone derivatives in gram-negative bacteria. A total of 127 Gram-negative bacteria resistant to nalidixic acid were isolated from as many patients affected by urinary tract infections and hospitalized in the first Clinic of Infectious Diseases, University of Naples. Enterobacteria were identified by Enterotube system (Roche) and API 20 system (Ayerst). Non-fermentative bacteria were identified by OXI/FERM system (Roche). The following bacteria were collected: Escherichia coli 50, Proteus spp. 35, Enterobacter agglomerans 12, Serratia sp. 5, Pseudomonas aeruginosa 25. The in vitro antibacterial activity of nalidixic acid and three other quinoline derivatives (pipemidic acid, oxolinic acid and ciprofloxacin) were studied by determining the MICs by a miniaturized dilution broth method. The MICs were compared to evaluate the eventual cross resistance to the drugs under examination within each bacterial species. The results showed that 23% of bacteria were resistant to nalidixic acid, pipemidic acid and oxolinic acid; 49.6% to nalidixic and pipemidic acid and 0.7% to nalidixic acid and oxolinic acid. On the other hand none of the bacteria were resistant to ciprofloxacin. The last showed very low MICs against all the bacteria under examination, including Pseudomonas and Serratia. The high antibacterial activity of ciprofloxacin even against bacteria highly resistant to the other quinolines could be due to a greater affinity of the target sites or to the better permeability of resistant strains to the newer drug or because it is unaffected until now by mutations of genes responsible for cross resistance. | 1985 | 3159488 |
| 2011 | 11 | 0.9982 | Molecular epidemiology of two genes encoding 3-N-aminoglycoside acetyltransferases AAC(3)I and AAC(3)II among gram-negative bacteria from a Spanish hospital. The molecular epidemiology of the aacC1 and aacC2 genes, encoding 3-N-aminoglycoside acetyltransferases AAC(3)I and AAC(3)II, respectively, was studied by DNA-DNA hybridization. The sample included 315 gentamicin-resistant Gram-negative bacilli collected over a six-month period from patients attending a Spanish Hospital. The aminoglycoside resistance phenotype of these strains was also determined. The aacC1 probe hybridized with 39 strains, the aacC2 probe with 146 strains and both probes hybridized with 26 strains. The aacC1 gene was most frequently detected in Pseudomonas aeruginosa whereas the aacC2 gene was most frequently detected in enterobacteria and Acinetobacter spp. Strains harbouring aacC genes were isolated from both in- and outpatients with different infectious diseases, mainly urinary tract infections. As inferred from the results of Southern hybridization, both genes showed a wide horizontal dispersion among plasmids and bacteria. | 1993 | 8150069 |
| 2044 | 12 | 0.9982 | A DNA microarray for identification of virulence and antimicrobial resistance genes in Salmonella serovars and Escherichia coli. Characterization of antimicrobial resistance and virulence gene profiles provides important information on the potential pathogenicity of bacteria. This information can be used to facilitate prompt and effective treatment of bacterial infections. We developed and tested a PCR-based microarray platform for detecting virulence and antimicrobial resistance genes in Salmonella serovars and Escherichia coli. Twelve Salmonella and seven E. coli isolates were screened for the presence of 25 virulence and 23 antimicrobial resistance genes. All S. Typhimurium DT104 isolates harbored virulence plasmids. E. coli O157:H7 isolates possessed virulence genes typical of enterohemorrhagic E. coli (EHEC), whereas E. coli O126 isolates contained virulence genes characteristic of enteropathogenic E. coli (EPEC) and E. coli O111, O78 and O147 isolates had virulence genes characteristic of enterotoxigenic E. coli (ETEC). Correlation between antimicrobial resistance phenotype and genotype was observed for each isolate. The aadA, tetA, and sulI genes were most commonly detected in bacteria resistant to streptomycin, tetracycline and sulfonamide, respectively. All isolates exhibiting resistance to third generation cephalosporins harbored the bla(CMY-2) and bla(TEM-1) genes. Microarray analysis is an effective method to rapidly screen Salmonella and E. coli for multiple antimicrobial resistance and virulence genes. | 2005 | 15797820 |
| 2232 | 13 | 0.9982 | Comparison of two DNA microarrays for detection of plasmid-mediated antimicrobial resistance and virulence factor genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae. A DNA microarray was developed to detect plasmid-mediated antimicrobial resistance (AR) and virulence factor (VF) genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae. The array was validated with the following bacterial species: Escherichiacoli (n=17); Klebsiellapneumoniae (n=3); Enterobacter spp. (n=6); Acinetobacter genospecies 3 (n=1); Acinetobacterbaumannii (n=1); Pseudomonasaeruginosa (n=2); and Stenotrophomonasmaltophilia (n=2). The AR gene profiles of these isolates were identified by polymerase chain reaction (PCR). The DNA microarray consisted of 155 and 133 AR and VF gene probes, respectively. Results were compared with the commercially available Identibac AMR-ve Array Tube. Hybridisation results indicated that there was excellent correlation between PCR and array results for AR and VF genes. Genes conferring resistance to each antibiotic class were identified by the DNA array. Unusual resistance genes were also identified, such as bla(SHV-5) in a bla(OXA-23)-positive carbapenem-resistant A. baumannii. The phylogenetic group of each E. coli isolate was verified by the array. These data demonstrate that it is possible to screen simultaneously for all important classes of mobile AR and VF genes in Enterobacteriaceae and non-Enterobacteriaceae whilst also assigning a correct phylogenetic group to E. coli isolates. Therefore, it is feasible to test clinical Gram-negative bacteria for all known AR genes and to provide important information regarding pathogenicity simultaneously. | 2010 | 20356716 |
| 2333 | 14 | 0.9982 | Prevalence of USP and hlyA Genes and Association with Drug Resistance in Uropathogenic Escherichia coli Isolated from Patients in a Tertiary Hospital from Southeast China. E. coli was cultured from the urine of patients from the tertiary hospital located in Southeast China from 2017 to 2019. The species were identified, drug sensitivity test was performed, and the presence of the virulence genes USP and hlyA was determined. A total of 483 strains of E. coli were isolated, including 132 from patients with urinary tract infection (UTI). The resistance to ciprofloxacin was more common in non-UTI patients, while resistance to gentamycin was significantly higher in the UTI group. In the UTI group, the proportions of isolated bacteria with the virulence USP (40.15%) and hlyA (8.33%) genes were significantly higher than in the non-UTI group (19.60 and 2.56%, respectively). The rate of resistance of E. coli toward levofloxacin in the USP(+) group was significantly (p<0.05) higher than in the USP- group. Thus, we revealed the differences in the rate of drug resistance and prevalence of USP and hlyA between the UTI and non-UTI groups. Furthermore, the presence of the USP gene was found to be associated with greater resistance to levofloxacin. | 2022 | 36437317 |
| 1577 | 15 | 0.9981 | Clonal Clusters, Molecular Resistance Mechanisms and Virulence Factors of Gram-Negative Bacteria Isolated from Chronic Wounds in Ghana. Wound infections are common medical problems in sub-Saharan Africa but data on the molecular epidemiology are rare. Within this study we assessed the clonal lineages, resistance genes and virulence factors of Gram-negative bacteria isolated from Ghanaian patients with chronic wounds. From a previous study, 49 Pseudomonas aeruginosa, 21 Klebsiellapneumoniae complex members and 12 Escherichia coli were subjected to whole genome sequencing. Sequence analysis indicated high clonal diversity with only nine P. aeruginosa clusters comprising two strains each and one E. coli cluster comprising three strains with high phylogenetic relationship suggesting nosocomial transmission. Acquired beta-lactamase genes were observed in some isolates next to a broad spectrum of additional genetic resistance determinants. Phenotypical expression of extended-spectrum beta-lactamase activity in the Enterobacterales was associated with bla(CTX-M-15) genes, which are frequent in Ghana. Frequently recorded virulence genes comprised genes related to invasion and iron-uptake in E. coli, genes related to adherence, iron-uptake, secretion systems and antiphagocytosis in P. aeruginosa and genes related to adherence, biofilm formation, immune evasion, iron-uptake and secretion systems in K. pneumonia complex. In summary, the study provides a piece in the puzzle of the molecular epidemiology of Gram-negative bacteria in chronic wounds in rural Ghana. | 2021 | 33810142 |
| 962 | 16 | 0.9981 | Transfer of Antimicrobial-Resistant Escherichia coli and Resistance Genes in a Child Care Center. Several reports describe antimicrobial-resistance transfer among children and the community in outbreak situations, but transfer between a child and a care giver has not been examined in child care facilities under normal circumstances. We investigated the transfer of antimicrobial-resistance genes, resistant bacteria, or both among healthy children and teachers. From 2007 to 2009, 104 Escherichia coli isolates were obtained from four teachers and 38 children in a child care center. Twenty-six cephem-resistant isolates were obtained from children in 2007 and 2008. In 2009, cephem-resistant isolates were detected in children as well as a teacher. Nalidixic acid-resistant isolates from the same teacher for 3 years showed low similarity (<50%) to each other. However, an isolate from a teacher in 2007 and another from a child in 2008 showed high similarity (87%). Pulsed-field gel electrophoresis revealed 100% similarity for four isolates in 2007 and one isolate in 2008, and also similarity among seven isolates carrying the virulence gene (CNF1). This study yielded the following findings: (1) a gene for extended-spectrum β-lactamase was transferred from a child to other children and a teacher; (2) a nalidixic acid-resistant isolate was transferred from a teacher to a child; and (3) a virulent bacterium was transferred between children. | 2019 | 30786697 |
| 1670 | 17 | 0.9981 | KPC-2-producing Klebsiella pneumoniae isolated from a Czech patient previously hospitalized in Greece and in vivo selection of colistin resistance. Carbapenemase-producing Gram-negative bacteria peak clinical interest due to their ability to hydrolyze most β-lactams, including carbapenems; moreover, their genes spread through bacterial populations by horizontal transfer. Bacteria with acquired carbapenemase have sporadically been reported in the Czech Republic, so far only in Enterobacteriaceae and Pseudomonas aeruginosa. In this study, we described the first finding of a KPC-2-producing strain of Klebsiella pneumoniae, which was isolated from a surgical wound swab, decubitus ulcer, and urine of a patient previously hospitalized in Greece. The patient underwent various antibiotic therapies including a colistin treatment. However, after approximately 20 days of the colistin therapy, the strain developed a high-level resistance to this drug. All the isolates were indistinguishable by pulsed field gel electrophoretic analysis and belonged to the international clone ST258, which is typical of KPC-producing K. pneumoniae isolates. The bla (KPC-2) gene was located on a Tn4401a transposon variant. The OmpK35 and OmpK36 genes analysis performed due to the high resistance level of the strains to β-lactams exhibited no changes in their sequence or in their expression when compared with carbapenem-susceptible isolates. | 2011 | 21818609 |
| 2080 | 18 | 0.9981 | Distribution of the antiseptic-resistance genes qacE and qacE delta 1 in gram-negative bacteria. The distribution of the antiseptic-resistance genes qacE and qacE delta 1 was studied in a large number of Gram-negative bacteria by a method that included the polymerase chain reaction (PCR). A total of 117 strains of Gram-negative bacteria, isolated from clinical or environmental sources, was used in this analysis. We demonstrated the presence of these genes in 48 of 78 strains of Pseudomonas, in 20 of 26 strains of Vibrio, and in four of 13 strains of other species. These results indicate that the antiseptic-resistance genes are present in a broad range of species of Gram-negative bacteria. | 1998 | 9503610 |
| 2314 | 19 | 0.9981 | Imipenem resistance in aerobic gram-negative bacteria. A prospective study was undertaken to observe the emergence of resistance to imipenem, if any, among aerobic gram-negative bacteria. A total of 736 isolates were tested during 1994-95 and less than 1% of them were resistant to imipenem, whereas the next year ('95-'96) the rate increased to 11 of the 903 isolates tested. The resistant isolates during '94-'95 were all Stenotrophomonas maltophilia whereas the spectrum of resistant bacterial species increased in '95-'96 to include Pseudomonas aeruginosa, Burkholderia cepacia, Acinetobacter calcoaceticus, Enterobacter cloacae, Proteus mirabilis and Morganella morganii with a tendency to an increase in the minimum inhibitory concentration (MIC) in the later part of the year. A majority (72%) of the resistant isolates were from patients with burns, and burn wounds were most frequently infected with such organisms. These data suggest that over a period of time aerobic gram-negative bacteria may develop resistance to imipenem and the pool of such bacteria increases with extensive use of the drug. Non-fermentative aerobic bacteria tend to develop resistance faster with widespread dissemination than Enterobacteriaceae. Hospital Burn Units are a potential source of development of such resistance. | 1998 | 9603633 |