Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
543601.0000Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orfX junction region. The isolate was found to carry a mecB gene previously described for Macrococcus caseolyticus but not for staphylococcal species. The gene is flanked by β-lactam regulatory genes similar to mecR, mecI, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne β-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of β-lactams as a main therapeutic application against staphylococcal infections.201829350135
239210.9993Characterization of the resistome and predominant genetic lineages of Gram-positive bacteria causing keratitis. Bacterial keratitis is a vision-threatening infection mainly caused by Gram-positive bacteria (GPB). Antimicrobial therapy is commonly empirical using broad-spectrum agents with efficacy increasingly compromised by the emergence of antimicrobial resistance. We used a combination of phenotypic tests and genome sequencing to identify the predominant lineages of GPB causing keratitis and to characterize their antimicrobial resistance patterns. A total of 161 isolates, including Staphylococcus aureus (n = 86), coagulase-negative staphylococci (CoNS; n = 34), Streptococcus spp. (n = 34), and Enterococcus faecalis (n = 7), were included. The population of S. aureus isolates consisted mainly of clonal complex 5 (CC5) (30.2%). Similarly, the population of Staphylococcus epidermidis was homogenous with most of them belonging to CC2 (78.3%). Conversely, the genetic population of Streptococcus pneumoniae was highly diverse. Resistance to first-line antibiotics was common among staphylococci, especially among CC5 S. aureus. Methicillin-resistant S. aureus was commonly resistant to fluoroquinolones and azithromycin (78.6%) and tobramycin (57%). One-third of the CoNS were resistant to fluoroquinolones and 53% to azithromycin. Macrolide resistance was commonly caused by erm genes in S. aureus, mphC and msrA in CoNS, and mefA and msr(D) in streptococci. Aminoglycoside resistance in staphylococci was mainly associated with genes commonly found in mobile genetic elements and that encode for nucleotidyltransferases like ant(4')-Ib and ant(9)-Ia. Fluroquinolone-resistant staphylococci carried from 1 to 4 quinolone resistance-determining region mutations, mainly in the gyrA and parC genes. We found that GPB causing keratitis are associated with strains commonly resistant to first-line topical therapies, especially staphylococcal isolates that are frequently multidrug-resistant and associated with major hospital-adapted epidemic lineages.202438289077
541320.9992First detection of the staphylococcal trimethoprim resistance gene dfrK and the dfrK-carrying transposon Tn559 in enterococci. The trimethoprim resistance gene dfrK has been recently described in Staphylococcus aureus, but so far has not been found in other bacteria. A total of 166 enterococci of different species (E. faecium, E. faecalis, E. hirae, E. durans, E. gallinarum, and E. casseliflavus) and origins (food, clinical diseases in humans, healthy humans or animals, and sewage) were studied for their susceptibility to trimethoprim as determined by agar dilution (European Committee on Antimicrobial Susceptibility Testing) and the presence of (a) the dfrK gene and its genetic environment and (b) other dfr genes. The dfrK gene was detected in 49% of the enterococci (64% and 42% of isolates with minimum inhibitory concentrations of ≥2 mg/L or ≤1 mg/L, respectively). The tet(L)-dfrK linkage was detected in 21% of dfrK-positive enterococci. The chromosomal location of the dfrK gene was identified in one E. faecium isolate in which the dfrK was not linked to tet(L) gene but was part of a Tn559 element, which was integrated in the chromosomal radC gene. This Tn559 element was also found in 14 additional isolates. All combinations of dfr genes were detected among the isolates tested (dfrK, dfrG, dfrF, dfrK+dfrG, dfrK+dfrF, dfrF+dfrG, and dfrF+dfrG+dfrK). The gene dfrK gene was found together with other dfr genes in 58% of the tested enterococci. This study suggested an exchange of the trimethoprim resistance gene dfrK between enterococci and staphylococci, as previously observed for the trimethoprim resistance gene dfrG.201221718151
244030.9992Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus hominis strains isolated from clinical specimens. Coagulase-negative staphylococci (CoNS) are the most frequently isolated bacteria from the blood and the predominant cause of nosocomial infections. Macrolides, lincosamides and streptogramin B (MLSB) antibiotics, especially erythromycin and clindamycin, are important therapeutic agents in the treatment of methicillin-resistant staphylococci infections. Among CoNS, Staphylococcus hominis represents the third most common organism. In spite of its clinical significance, very little is known about its mechanisms of resistance to antibiotics, especially MLSB. Fifty-five S. hominis isolates from the blood and the surgical wounds of hospitalized patients were studied. The erm(C) gene was predominant in erythromycin-resistant S. hominis isolates. The methylase genes, erm(A) and erm(B), were present in 15 and 25% of clinical isolates, respectively. A combination of various erythromycin resistance methylase (erm) genes was detected in 15% S. hominis isolates. The efflux gene msr(A) was detected in 18% of isolates, alone in four isolates, and in different combinations in a further six. The lnu(A) gene, responsible for enzymatic inactivation of lincosamides was carried by 31% of the isolates. No erythromycin resistance that could not be attributed to the genes erm(A), erm(B), erm(C) and msr(A) was detected. In S. hominis, 75 and 84%, respectively, were erythromycin resistant and clindamycin susceptible. Among erythromycin-resistant S. hominis isolates, 68% of these strains showed the inducible MLSB phenotype. Four isolates harbouring the msr(A) genes alone displayed the MSB phenotype. These studies indicated that resistance to MLSB in S. hominis is mostly based on the ribosomal target modification mechanism mediated by erm genes, mainly the erm(C), and enzymatic drug inactivation mediated by lnu(A).201626253583
584940.9992Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance determinant from Staphylococcus epidermidis. A total of 110 staphylococcal isolates from human skin were found to express a novel type of erythromycin resistance. The bacteria were resistant to 14-membered ring macrolides (MIC 32-128 mg/l) but were sensitive to 16-membered ring macrolides and lincosamides. Resistance to type B streptogramins was inducible by erythromycin. A similar phenotype, designated MS resistance, was previously described in clinical isolates of coagulase-negative staphylococci from the USA. In the UK, MS resistance is widely distributed in coagulase-negative staphylococci but was not detected in 100 erythromycin resistant clinical isolates of Staphylococcus aureus. Tests for susceptibility to a further 16 antibiotics failed to reveal any other selectable marker associated with the MS phenotype. Plasmid pattern analysis of 48 MS isolates showed considerable variability between strains and no common locus for the resistance determinant. In one strain of S. epidermidis co-resistance to tetracycline, penicillin and erythromycin (MS) was associated with a 31.5 kb plasmid, pUL5050 which replicated and expressed all three resistances when transformed into S. aureus RN4220. The MS resistance determinant was localised to a 1.9 kb fragment which was cloned on to the high-copy-number vector, pSK265. A constitutive mutant of S. aureus RN4220 containing the 1.9 kb fragment remained sensitive to clindamycin. This observation, together with the concentration-dependent induction (optimum 5 mg/l of erythromycin) of virginiamycin S resistance suggests that the MS phenotype is not due to altered expression of MLS resistance determinants (erm genes) but probably occurs via a different mechanism.19892559912
594650.9992Plasmid-encoded fosfomycin resistance in bacteria isolated from the urinary tract in a multicentre survey. Sixty out of 219 fosfomycin-resistant bacteria selected from more than 7400 urinary pathogens in an epidemiological multicentre survey performed in Italy were screened for plasmid genes fosA and fosB conferring fosfomycin resistance. Only five strains, three enterobacteria and two staphylococci, carried plasmids harbouring, respectively, fosA and fosB genes. Fosfomycin resistance in the other isolates was caused by an alteration of the chromosomally encoded GlpT transport system. One strain, Morganella morganii 279, incorporated alpha-glycerolphosphate and its mechanism of fosfomycin resistance needs to be further investigated. Our study showed that PCR amplification is the most accurate, simple and rapid method for epidemiological studies of plasmid-encoded fosfomycin resistance, and that fosfomycin resistance conferred by plasmid genes (both fosA and fosB) accounts for only a low percentage of the fosfomycin-resistant strains.19979338493
585360.9991Identification of the tet(B) resistance gene in Streptococcus suis. The tetracycline resistance gene, tet(B), has been described previously in gram negative bacteria. In this study tet(B) was detected in plasmid extracts from 17/111 (15%) Streptococcus suis isolates from diseased pigs, representing the first report of this resistance gene in gram positive bacteria.201120696603
548070.9991Small Antimicrobial Resistance Plasmids in Livestock-Associated Methicillin-Resistant Staphylococcus aureus CC398. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of the clonal complex 398 are often resistant to a number of antimicrobial agents. Studies on the genetic basis of antimicrobial resistance in these bacteria identified SCCmec cassettes, various transposons and plasmids of different sizes that harbor antimicrobial resistance genes. While large plasmids that carry multiple antimicrobial resistance genes - occasionally together with heavy metal resistance genes and/or virulence genes - are frequently seen in LA-MRSA ST398, certain resistance genes are also associated with small plasmids of up to 15 kb in size. These small resistance plasmids usually carry only one, but in rare cases also two or three antimicrobial resistance genes. In the current review, we focus on small plasmids that carry the macrolide-lincosamide-streptogramin B resistance genes erm(C) or erm(T), the lincosamide resistance gene lnu(A), the pleuromutilin-lincosamide-streptogramin A resistance genes vga(A) or vga(C), the spectinomycin resistance gene spd, the apramycin resistance gene apmA, or the trimethoprim resistance gene dfrK. The detailed analysis of the structure of these plasmids allows comparisons with similar plasmids found in other staphylococci and underlines in many cases an exchange of such plasmids between LA-MRSA ST398 and other staphylococci including also coagulase-negative staphylococci.201830283407
243980.9991Differences in distribution of MLS antibiotics resistance genes in clinical isolates of staphylococci belonging to species: S. epidermidis, S. hominis, S. haemolyticus, S. simulans and S. warneri. BACKGROUND: Macrolides and lincosamides are two leading types of antibiotics commonly used in therapies. The study examines the differences in resistance to these antibiotics and their molecular bases in S. epidermidis as well as in rarely isolated species of coagulase-negative staphylococci such as S. hominis, S. haemolyticus, S. warneri and S. simulans. The isolates were tested for the presence of the erm(A), erm(B), erm(C), lnu(A), msr(A), msr(B), mph(C), ere(A) and ere(B) genes. Phenotypic resistance to methicillin and mecA presence were also determined. RESULTS: The MLS(B) resistance mechanism was phenotypically found in isolates of species included in the study. The most prevalent MLS(B) resistance mechanism was observed in S. hominis, S. haemolyticus and S. epidermidis isolates mainly of the MLS(B) resistance constitutive type. Macrolide, lincosamide and streptogramin B resistance genes were rarely detected in isolates individually. The erm(B), ere(A) and ere(B) genes were not found in any of the strains. The erm(A) gene was determined only in four strains of S. epidermidis and S. hominis while lnu(A) was seen in eight strains (mainly in S. hominis). The erm(C) gene was present in most of S. epidermidis strains and predominant in S. hominis and S. simulans isolates. The examined species clearly differed between one another in the repertoire of accumulated genes. CONCLUSIONS: The presence of genes encoding the MLS(B) resistance among CoNS strains demonstrates these genes' widespread prevalence and accumulation in opportunistic pathogens that might become gene reservoir for bacteria with superior pathogenic potential.201931182020
239390.9991Detection of a mecC-positive Staphylococcus saprophyticus from bovine mastitis in Argentina. INTRODUCTION: Bovine mastitis causes important economic losses in the dairy industry. Coagulase-negative staphylococci (CNS) are a group of bacteria commonly isolated from bovine mastitis and can display resistance to a wide range of antimicrobial agents. OBJECTIVES: The objective of this study was to determine staphylococcal resistance towards β-lactam, macrolide and lincosamide antimicrobials in quarters previously treated with third-generation cephalosporin and after lincosamide intramammary therapy. METHODS: Sick quarters of eighteen cows from Villaguay, Entre Ríos (Argentina) with clinical mastitis were studied. All staphylococcal isolates were tested by disk diffusion for their antimicrobial susceptibilities. Cefoxitin resistance was investigated by PCR and sequencing for both the mecA and mecC genes. RESULTS: Resistances to penicillin, oxacillin and cefoxitin were observed, whereas no resistance to macrolide and lincosamide was detected. A cefoxitin-resistant Staphylococcus saprophyticus was found to be mecA-negative but mecC-positive. CONCLUSIONS: This study reports for the first time the mecC gene from a CNS in bovine mastitis in South America. Because CNS may act as reservoirs of antimicrobial resistance genes, they can be seen as a potential public health threat with respect to antimicrobial resistance and the development of multiple resistance. Also, the emergence of methicillin-resistant phenotypes will limit therapeutic options.201728732791
2406100.9991Prevalence of antibiotic resistance genes in staphylococci isolated from ready-to-eat meat products. Prevalence of mecA, blaZ, tetO/K/M, ermA/B/C, aph, and vanA/B/C/D genes conferring resistance to oxacillin, penicillin, tetracycline, erythromycin, gentamicin, and vancomycin was investigated in 65 staphylococcal isolates belonging to twelve species obtained from ready-to-eat porcine, bovine, and chicken products. All coagulase negative staphylococci (CNS) and S. aureus isolates harbored at least one antibiotic resistance gene. None of the S. aureus possessed more than three genes, while 25% of the CNS isolates harbored at least four genes encoding resistance to clinically used antibiotics. In 15 CNS isolates the mecA gene was detected, while all S. aureus isolates were mecA-negative. We demonstrate that in ready-to-eat food the frequency of CNS harboring multiple antibiotic resistance genes is higher than that of multiple resistant S. aureus, meaning that food can be considered a reservoir of bacteria containing genes potentially contributing to the evolution of antibiotic resistance in staphylococci.201222844699
5947110.9991Fluoroquinolone-resistant Streptococcus agalactiae: epidemiology and mechanism of resistance. Quinolone-resistant Streptococcus agalactiae bacteria were recovered from single-patient isolates and found to contain mutations in the gyrase and topoisomerase IV genes. Pulsed-field gel electrophoresis demonstrated that four isolates from the same long-term care facility were closely related; in seven cases, quinolone-resistant Haemophilus influenzae and S. agalactiae bacteria were isolated from the same patient.200515917553
5902120.9991Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain. The objective of this work was to investigate the antimicrobial resistance in Listeria spp. isolated from food of animal origin. A total of 50 Listeria strains isolated from meat and dairy products, consisting of 7 Listeria monocytogenes and 43 Listeria innocua strains, were characterized for antimicrobial susceptibility against nine antimicrobials. The strains were screened by real-time PCR for the presence of antimicrobial resistance genes: tet M, tet L, mef A, msr A, erm A, erm B, lnu A, and lnu B. Multidrug resistance was identified in 27 Listeria strains, 4 belonging to L. monocytogenes. Resistance to clindamycin was the most common resistance phenotype and was identified in 45 Listeria strains; the mechanisms of resistance are still unknown. A medium prevalence of resistance to tetracycline (15 and 9 resistant and intermediate strains) and ciprofloxacin (13 resistant strains) was also found. Tet M was detected in Listeria strains with reduced susceptibility to tetracycline, providing evidence that both L. innocua and L. monocytogenes displayed acquired resistance. The presence of antimicrobial resistance genes in L. innocua and L. monocytogenes indicates that these genes may be transferred to commensal and pathogenic bacteria via the food chain; besides this, antibiotic resistance in L. monocytogenes could compromise the effective treatment of listeriosis in humans.201728355096
5503130.9991Molecular characterization of multi-drug resistant coagulase negative cocci in non-hospital environment. Antibiotic resistance crisis occasioned by sporadic appearance of multi-drug resistance (MDR) in human pathogens to clinically applied antimicrobials is a serious threat to global health. In this study, we investigated the drug resistant phenotype of Gram-positive cocci isolates from environment. Staphylococcus capitis and Staphylococcus haemolyticus colonies were isolated on mannitol-salt agar plates supplemented with tetracycline. Antibiotic susceptibility profile of the isolates via minimum inhibitory concentration (MIC) determination was examined. Isolates showed decreased sensitivity to clinically applied antimicrobial agents: tetracycline, kanamycin, erythromycin, norfloxacin, teicoplanin, and ampicillin. Genomic analysis demonstrated the presence of multiple antibiotic resistant genes in these bacteria, suggesting the origin of the multiple antimicrobials resistant phenotype. Tetracycline resistance of these isolates was transduced to Staphylococcus aureus-RN4220 strain. These findings indicate the presence of multiple antimicrobials resistant S. capitis and S. haemolyticus strain in a non-hospital setting. Moreover, the presence of plethora of genes responsible for MDR suggest that these strains could present potential threat to human health by serving as reservoir for lateral transference of antimicrobial resistance conferring foreign genetic elements to other clinically relevant pathogens.201931231110
5807140.9991ST8-t008-SCC (mec) IV methicillin-resistant Staphylococcus aureus in retail fresh cheese. This study reports the finding of 3 ST8-t008-SCC (mec) IVa (2B) methicillin-resistant Staphylococcus aureus (MRSA) strains in fresh cheese purchased within a single market in Costa Rica. In line with the finding of the resistance genes mecA, blaZ, mph(C), and msr(A) in their genomes, these bacteria showed phenotypic resistance to multiple β-lactams and erythromycin. In addition, they carry genes for acquired resistance to aminoglycosides (aph(3')-III) and fosfomycin (fosD), and genes for a myriad of virulence factors, including adhesins, hemolysins, and exotoxins. Our strains share multiple genomic features with MRSA from the USA300 lineage, which is a widely distributed and highly virulent strain implicated in community infections. As a result, consuming these or similar products could lead to multidrug infections in susceptible individuals. These results highlight safety deficiencies in cheese production practices and emphasize the risk of foodborne transmission of hard-to-treat ST8 MRSA strains.202439650008
5945150.9991Mechanisms of linezolid resistance among coagulase-negative staphylococci determined by whole-genome sequencing. Linezolid resistance is uncommon among staphylococci, but approximately 2% of clinical isolates of coagulase-negative staphylococci (CoNS) may exhibit resistance to linezolid (MIC, ≥8 µg/ml). We performed whole-genome sequencing (WGS) to characterize the resistance mechanisms and genetic backgrounds of 28 linezolid-resistant CoNS (21 Staphylococcus epidermidis isolates and 7 Staphylococcus haemolyticus isolates) obtained from blood cultures at a large teaching health system in California between 2007 and 2012. The following well-characterized mutations associated with linezolid resistance were identified in the 23S rRNA: G2576U, G2447U, and U2504A, along with the mutation C2534U. Mutations in the L3 and L4 riboproteins, at sites previously associated with linezolid resistance, were also identified in 20 isolates. The majority of isolates harbored more than one mutation in the 23S rRNA and L3 and L4 genes. In addition, the cfr methylase gene was found in almost half (48%) of S. epidermidis isolates. cfr had been only rarely identified in staphylococci in the United States prior to this study. Isolates of the same sequence type were identified with unique mutations associated with linezolid resistance, suggesting independent acquisition of linezolid resistance in each isolate. IMPORTANCE: Linezolid is one of a limited number of antimicrobials available to treat drug-resistant Gram-positive bacteria, but resistance has begun to emerge. We evaluated the genomes of 28 linezolid-resistant staphylococci isolated from patients. Multiple mutations in the rRNA and associated proteins previously associated with linezolid resistance were found in the isolates investigated, underscoring the multifocal nature of resistance to linezolid in Staphylococcus. Importantly, almost half the S. epidermidis isolates studied harbored a plasmid-borne cfr RNA methylase gene, suggesting that the incidence of cfr may be higher in the United States than previously documented. This finding has important implications for infection control practices in the United States. Further, cfr is commonly detected in bacteria isolated from livestock, where the use of phenicols, lincosamides, and pleuromutilins in veterinary medicine may provide selective pressure and lead to maintenance of this gene in animal bacteria.201424915435
5957160.9991ant(6)-I Genes Encoding Aminoglycoside O-Nucleotidyltransferases Are Widely Spread Among Streptomycin Resistant Strains of Campylobacter jejuni and Campylobacter coli. Thermotolerant Campylobacter species C. jejuni and C. coli are actually recognized as the major bacterial agent responsible for food-transmitted gastroenteritis. The most effective antimicrobials against Campylobacter are macrolides and some, but not all aminoglycosides. Among these, susceptibility to streptomycin is reduced by mutations in the ribosomal RPSL protein or by expression of ANT(6)-I aminoglycoside O-nucleotidyltransferases. The presence of streptomycin resistance genes was evaluated among streptomycin-resistant Campylobacter isolated from humans and animals by using PCR with degenerated primers devised to distinguish ant(6)-Ia, ant(6)-Ib and other ant-like genes. Genes encoding ANT(6)-I enzymes were found in all possible combinations with a major fraction of the isolates carrying a previously described ant-like gene, distantly related and belonging to the new ant(6)-I sub-family ant(6)-Ie. Among Campylobacter isolates, ant(6)-Ie was uniquely found functional in C. coli, as shown by gene transfer and phenotype expression in Escherichia coli, unlike detected coding sequences in C. jejuni that were truncated by an internal frame shift associated to RPSL mutations in streptomycin resistant strains. The genetic relationships of C. coli isolates with ANT(6)-Ie revealed one cluster of strains presented in bovine and humans, suggesting a circulation pathway of Campylobacter strains by consuming contaminated calf meat by bacteria expressing this streptomycin resistance element.201830405573
2400170.9991Antimicrobial susceptibility and distribution of antimicrobial-resistance genes among Enterococcus and coagulase-negative Staphylococcus isolates recovered from poultry litter. Data on the prevalence of antimicrobial resistant enterococci and staphylococci from the poultry production environment are sparse in the United States. This information is needed for science-based risk assessments of antimicrobial use in animal husbandry and potential public-health consequences. In this study, we assessed the susceptibility of staphylococci and enterococci isolated from poultry litter, recovered from 24 farms across Georgia, to several antimicrobials of veterinary and human health importance. Among the 90 Enterococcus isolates recovered, E. hirae (46%) was the most frequently encountered species, followed by E. faecium (27%), E. gallinarum (12%), and E. faecalis (10%). Antimicrobial resistance was most often observed to tetracycline (96%), followed by clindamycin (90%), quinupristin-dalfopristin (62%), penicillin (53%), erythromycin (50%), nitrofurantoin (49%), and clarithromycin (48%). Among the 110 staphylococci isolates recovered, only coagulase-negative staphylococci (CNS) were identified with the predominant Staphylococcus species being S. sciuri (38%), S. lentus (21%), S. xylosus (14%) and S. simulans (12%). Resistance was less-frequently observed among the Staphylococcus isolates for the majority of antimicrobials tested, as compared with Enterococcus isolates, and was primarily limited to clarithromycin (71%), erythromycin (71%), clindamycin (48%), and tetracycline (38%). Multidrug resistance (MDR) phenotypes were prevalent in both Enterococcus and Staphylococcus; however, Enterococcus exhibited a statistically significant difference in the median number of antimicrobials to which resistance was observed (median = 5.0) compared with Staphylococcus species (median = 3.0). Because resistance to several of these antimicrobials in gram-positive bacteria may be attributed to the shuttling of common drug-resistance genes, we also determined which common antimicrobial-resistance genes were present in both enterococci and staphylococci. The antimicrobial resistance genes vat(D) and erm(B) were present in enterococci, vgaB in staphylococci, and mobile genetic elements Tn916 and pheromone-inducible plasmids were only identified in enterococci. These data suggest that the disparity in antimicrobial-resistance phenotypes and genotypes between enterococci and staphylococci isolated from the same environment is, in part, because of barriers preventing exchange of mobile DNA elements.200718251398
5463180.9991Antibiotic Susceptibility Profiling of Human Pathogenic Staphylococcus aureus Strains Using Whole Genome Sequencing and Genome-Scale Annotation Approaches. Staphylococcus species are major pathogens with increasing importance due to the rise in antibiotic resistance. Whole genome sequencing and genome-scale annotation are promising approaches to study the pathogenicity and dissemination of virulence factors in nosocomial methicillin-resistant and multidrug-resistant bacteria in intensive care units. Draft genome sequences of eight clinical S. aureus strains were assembled and annotated for the prediction of antimicrobial resistance genes, virulence factors, and phylogenetic analysis. Most of the studied S. aureus strains displayed multi-resistance toward the tested drugs, reaching more than seven drugs up to 12 in isolate S22. The mecA gene was detected in three isolates (S14, S21, and S23), mecC was identified in S8 and S9, and blaZ was commonly identified in all isolates except strain S23. Additionally, two complete mobile genomic islands coding for methicillin resistance SCCmec Iva (2B) were identified in strains S21 and S23. Numerous antimicrobial resistance genes (norA, norC, MgrA, tet(45), APH(3')-IIIa, and AAC(6')-APH(2″)) were identified in chromosomes of different strains. Plasmid analysis revealed the presence of blaZ, tetK, and ermC in different plasmid types, located in gene cassettes containing plasmid replicons (rep) and insertion sequences (IS). Additionally, the aminoglycoside-resistant determinants were identified in S1 (APH(3')-IIIa), while AAC(6)-APH(2″) was detected in strains S8 and S14. The trimethoprim (dfrC) resistance gene was detected in S. aureus S21, and the fosfomycin (fosB) resistance gene was detected only in S. aureus S14. We also noted that S. aureus S1 belongs to ST1-t127, which has been reported as one of the most frequent human pathogen types. Additionally, we noted the presence of rare plasmid-mediated mecC-MRSA in some of our isolates.202337317098
2407190.9991Antibiotic resistance genes and identification of staphylococci collected from the production chain of swine meat commodities. Staphylococci harbouring antibiotic resistance (AR) genes may represent a hazard for human health and, as other resistant food-related bacteria, they contribute to the spread of AR. In this study, we isolated resistant staphylococci from an entire swine production chain and investigated the occurrence of 11 genes [aac(6')Ie-aph(2'')Ia, blaZ, mecA, vanA, vanB, ermA, ermB, ermC, tet(M), tet(O) and tet(K)] encoding resistance to some antibiotics largely used in clinical practice. The 66 resistant staphylococcal isolates were identified as Staphylococcus epidermidis (27 isolates), Staphylococcus aureus (12), Staphylococcus xylosus (12), Staphylococcus simulans (5), Staphylococcus pasteuri (4), Staphylococcus carnosus (3), Staphylococcus lentus (2) and Staphylococcus sciuri (1). Specific-PCR detection of AR genes showed the prevalence of the tet(K) gene in most of the isolates (89.4%), followed by tet(M) and ermC (about 75%); mecA was detected in more than half of S. aureus and S. epidermidis isolates. The genes vanA and vanB were not retrieved. It was found that a high proportion of coagulase-positive and -negative isolates are multidrug-resistant and some of them carry up to six AR genes. Our findings show that the swine production chain is a source of antibiotic-resistant staphylococci suggesting the importance of resistance surveillance in the food production environment.200817993395