Molecular characteristics of oxazolidinone resistance in enterococci from a multicenter study in China. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
541701.0000Molecular characteristics of oxazolidinone resistance in enterococci from a multicenter study in China. BACKGROUND: Linezolid-resistant enterococci pose great challenges in clinical practice. The aim of this study is to study the mechanisms underlying the resistance and genetic environment of antimicrobial resistance gene of linezolid-resistant enterococci. RESULTS: The linezolid MICs of 16 enterococci were 4 mg/L to 16 mg/L. Four strains belonged to multi-drug resistant (MDR) bacteria. The sequence types (STs) of 13 enterococci strains performed WGS were diverse: 3 ST476, 1 ST86, ST116, ST480, ST59, ST416, ST21, ST67, ST16, ST585 and ST18. None of them carried multi-drug resistance gene cfr. Only one strain had the G2658 T mutation of target 23S rRNA gene. Thirteen (13/16, 81.3%) strains harbored the novel oxazolidinone resistance gene optrA. WGS analysis showed that the optrA gene was flanked by sequence IS1216E insertion in 13 strains, and optrA was adjacent to transposons Tn558 in two strains and Tn554 in one strain. The optrA gene was identified to be co-localized with fexA, the resistance genes mediated florfenicol resistance in 13 strains, and ermA1, the resistance genes mediated erythromycin resistance in 9 strains, indicating that linezolid-resistant strains may be selected due to non-oxazolidinone antibiotics (i.e. macrolides and florfenicol) usage. CONCLUSION: Our findings demonstrate the high diversity of optrA-carrying genetic platforms. The mobile genetic elements (MGEs) may play an important role in the dissemination of optrA into the enterococci isolates of human origin. The genetic evidence of transferable feature and co-selection of optrA should be gave more attention in clinical practice.201931299904
545710.9996Persistence of transferable oxazolidinone resistance genes in enterococcal isolates from a swine farm in China. The appearance of transferable oxazolidinone resistance genes poses a major challenge to public health and environmental safety. These genes not only lead pathogenic bacteria to become resistant to linezolid but also reduce sensitivity to florfenicol, which is widely used in the veterinary field. To verify the dissemination of oxazolidinone resistance genes in enterococcal isolates from pigs at different production stages in a swine farm in China, we collected 355 enterococcal isolates that were resistant to florfenicol from 600 (150 per stage) fresh fecal swabs collected from a swine farm. Through initial PCR screening and whole-genome sequencing, 175 isolates harboring different oxazolidinone resistance genes were identified. All isolates carried the optrA gene. A total of 161 (92%, 161/175) isolates carried only the optrA gene. Three (1.71%, 3/175) isolates carried both the optrA and poxtA genes, and 11 (3.1%, 11/175) isolates contained the optrA gene and poxtA2 and cfr(D) variants. A total of 175 isolates that harbored oxazolidinone resistance genes included 161 E. faecalis, 6 E. faecium, and 8 E. hirae. By sequencing the whole genomes, we found that the 161 isolates of E. faecalis belonged to 28 different STs, including 8 new STs, and the 6 isolates of E. faecium belonged to four different STs, including one new ST. The phylogenetic tree based on SNPs of the core genome showed that both clonal spread and horizontal transfer mediated the diffusion of oxazolidone resistance genes in enterococcal isolates at specific stages in pig farms. Moreover, enterococcal isolates carrying oxazolidone resistance genes could spread from breeding pigs to fattening pigs, while transferable oxazolidone resistance genes in enterococcal isolates could persist on a pig farm throughout all production stages. Representative enterococcal isolates with different oxazolidinone resistance genes were further studied through Nanopore sequencing. We identified a novel plasmid, pM4-80 L4 (15,008 bp), carrying the poxtA2 and cfr(D) genes in enterococcal isolates at different stages. We also found three different plasmids harboring the poxtA gene with high genetic variation, and all poxtA genes were flanked by two copies of IS1216E elements. In addition, four genetically distinct plasmids carrying the optrA gene were identified, and Tn554 was found to mediate chromosome-localized optrA gene transfer. Our study highlighted that transferable oxazolidinone resistance genes in enterococcal isolates could persist throughout all production stages on a pig farm, and the prevalence and dissemination of oxazolidinone resistance genes in enterococcal isolates from animal farms should be continually monitored.202236299730
541920.9996Detection of the optrA Gene Among Polyclonal Linezolid-Susceptible Isolates of Enterococcus faecalis Recovered from Community Patients. Dispersion of transferable oxazolidinone resistance genes among enterococci poses a serious problem to human health. Prompt detection of bacteria carrying these genes is crucial to avoid their spread to multidrug-resistant bacteria. The aim of the study was to describe the presence of optrA-positive isolates among enterococci in a Spanish hospital, and to determine their genetic context and location through whole genome sequencing. All enterococci recovered in a Spanish hospital (Hospital El Bierzo; HEB) from February to December 2018 (n = 443), with minimal inhibitory concentrations (MICs) to linezolid (LZD) ≥4 mg/L, were tested by polymerase chain reaction for the presence of cfr, optrA, and poxtA transferable genes. Only four Enterococcus faecalis isolates (0.9%) had LZD MICs ≥4 mg/L and none of them was positive for cfr or poxtA genes. However, the optrA gene was detected in three isolates collected from urine samples of community patients, whose genomes were sequenced and subjected to bioinformatics analysis. These isolates belonged to different clones: ST7, ST480, and ST585. In these three isolates, the optrA gene was located on plasmids, associated with IS1216 in different arrays. In one isolate, the optrA plasmid coexists with a second plasmid, which carried multiple resistance genes for different classes of antibiotics. Detection of optrA-positive E. faecalis isolates in the community is a matter of concern. The spread of these bacteria into hospital settings, particularly in those, such as the HEB, where vancomycin-resistant enterococci are endemic, should be avoided, to preserve the efficacy of the last-resort oxazolidinones.202235727074
545930.9996Transferable linezolid resistance genes (optrA and poxtA) in enterococci derived from livestock compost at Japanese farms. OBJECTIVES: Linezolid is a last-resort antimicrobial in human clinical settings to treat multidrug-resistant Gram-positive bacterial infections. Mobile linezolid resistance genes (optrA, poxtA, and cfr) have been detected in various sources worldwide. However, the presence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in Japan remains uncertain. Therefore, we clarified the existence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in farm environments in Japan. METHODS: Enterococci isolates from faeces compost collected from 10 pig and 11 cattle farms in Japan in 2021 were tested for antimicrobial susceptibility and possession of mobile linezolid resistance genes. Whole-genome sequencing of optrA and/or poxtA genes positive-enterococci was performed. RESULTS: Of 103 enterococci isolates, 12 from pig farm compost were not-susceptible (2 resistant and 10 intermediate) to linezolid. These 12 isolates carried mobile linezolid resistance genes on plasmids or chromosomes (5 optrA-positive Enterococcus faecalis, 6 poxtA-positive E. hirae or E. thailandicus, and 1 optrA- and poxtA-positive E. faecium). The genetic structures of optrA- and poxA-carrying plasmids were almost identical to those reported in other countries. These plasmids were capable of transferring among E. faecium and E. faecalis strains. The optrA- and poxtA-positive E. faecium belonged to ST324 (clade A2), a high-risk multidrug-resistant clone. The E. faecalis carrying optrA gene on its chromosome was identified as ST593. CONCLUSIONS: Although linezolid is not used in livestock, linezolid-not-susceptible enterococci could be indirectly selected by frequently used antimicrobials, such as phenicols. Moreover, various enterococci species derived from livestock compost may serve as reservoirs of linezolid resistance genes carried on globally disseminated plasmids and multidrug-resistant high-risk clones.202438336229
545640.9996Detection of the enterococcal oxazolidinone/phenicol resistance gene optrA in Campylobacter coli. The transferable optrA gene encodes an ABC-F protein which confers resistance to oxazolidinones and phenicols, and has so far been detected exclusively in Gram-positive bacteria, including enterococci, staphylococci and streptococci. Here, we identified for the first time the presence of optrA in naturally occurring Gram-negative bacteria. Seven optrA-positive Campylobacter coli were identified from 563 Campylobacter isolates of animal origin from Guangdong (n = 1, chicken) and Shandong (n = 6, duck) provinces of China in 2017-2018. The detected optrA genes were functionally active and mediated resistance or elevated minimal inhibitory concentrations of linezolid, florfenicol and chloramphenicol in the respective C. coli isolates. The optrA gene, together with other transferable resistance genes, such as fexA, catA9, tet(O), tet(L), erm(A)-like, spc, or aadE, was located in two different chromosome-borne multidrug resistance genomic islands (MDRGIs). In both MDRGIs, complete or truncated copies of the insertion sequence IS1216E were present in the vicinity of optrA. The IS1216E-bracketed genetic environment of optrA was almost identical to the optrA regions on enterococcal plasmids, suggesting that the optrA in Campylobacter probably originated from Enterococcus spp.. Moreover, the formation of an optrA-carrying translocatable unit by recombination of IS1216E indicated that this IS element may play an important role in the horizontal transfer of optrA in Campylobacter. Although optrA was only found in a small number of C. coli isolates, enhanced surveillance is needed to monitor the distribution and the potential emergence of optrA in Campylobacter.202032605743
542050.9995A high incidence and coexistence of multiresistance genes cfr and optrA among linezolid-resistant enterococci isolated from a teaching hospital in Wenzhou, China. Linezolid is considered as a last-resort antimicrobial agent, the resistance of which is of great concern. The aim of this study was to investigate the mechanisms and transferability of linezolid resistance and molecular epidemiology of linezolid-resistant enterococcal isolates in Wenzhou, China. A collection of 1623 enterococcal strains, including 789 Enterococcus faecalis and 834 Enterococcus faecium, were isolated from our hospital during 2011-2016. Antimicrobial susceptibility testing and clinical data analysis were performed. Molecular mechanisms of linezolid resistance, including the existence of resistance genes cfr and optrA, as well as the mutations in 23S rRNA and ribosomal proteins L3, L4, and L22, were investigated by PCR and sequencing. Conjugation experiments were conducted, and epidemiological characteristics were analyzed by PFGE and MLST. In our study, 31 (3.93%) E. faecalis and 2 (0.24%) E. faecium exhibited resistance to linezolid. Risk factors correlated with linezolid-resistant enterococcal infections included gastrointestinal surgery hospitalization, urogenital disorders, tumor, diabetes, and polymicrobial infections. Among these isolates, 6 (18.18%) harbored cfr, 9 (27.27%) harbored optrA, and 18 (54.55%) co-harbored cfr and optrA. However, mutational mechanisms were not found in this study. Conjugation experiments demonstrated the transferability of cfr and optrA between Gram-positive and Gram-negative bacteria. The clone of these isolates was diverse and scattered. It is noteworthy that cfr and optrA were the main mechanisms of linezolid resistance in this study, posing a potential risk of spread of linezolid resistance. Strikingly, it reported firstly that the two transferable resistance genes cfr and optrA coexisted in the same E. faecalis isolates.201829909468
545560.9995Two novel plasmids harbouring the multiresistance gene cfr in porcine Staphylococcus equorum. BACKGROUND: The emergence and transmission of the multidrug resistance gene cfr have raised public health concerns worldwide. OBJECTIVES: Multidrug-resistant Staphylococcus equorum isolates can pose a threat to public health. In this study, we have characterised the whole-genome of one Staphylococcus equorum isolate harbouring two distinct cfr-carrying plasmids. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution. Genomic DNA was sequenced using both the Illumina HiSeq X Ten and Nanopore MinION platforms. De novo hybrid assembly was performed by Unicycler. Genomic data were assessed by in silico prediction and bioinformatic tools. RESULTS: Staphylococcus equorum isolate SN42 exhibited resistance or high MICs to linezolid, erythromycin, tetracycline, oxacillin, clindamycin, virginiamycin, tiamulin, chloramphenicol and florfenicol. It carried two cfr-harbouring plasmids: the RepA N-family plasmid pSN42-51 K and the Inc18-family plasmid pSN42-50 K. These two plasmids exhibited low structural similarities to the so far reported cfr-carrying plasmids. Both plasmids harboured an arsenic resistance operon, copper and cadmium resistance genes as well as the lincosamide-pleuromutilin-streptogramin A resistance gene lsa(B). In addition, plasmid pSN42-51 K carried two erm(B) genes for macrolide-lincosamide-streptogramin B resistance, the streptomycin resistance gene ant(6)-Ia as well as mercury resistance genes while pSN42-50 K was associated with the heavy metal translocating P-type ATPase gene hmtp. The co-carriage and co-existence of these antimicrobial resistance and heavy metal resistance genes increases the likelihood of co-selection of the cfr-carrying plasmids. CONCLUSION: This is the first report of S. equorum carrying two distinct cfr-carrying plasmids, underscoring the need for ongoing surveillance to address the potential dissemination of multi-drug resistance in bacteria from food-producing animals to ensure food safety and public health.202439362467
295470.9995Prevalence and genetic characterization of linezolid resistance gene reservoirs in hospital sewage from Zhejiang Province, China. Hospital sewage represented important hotspots for the aggregation and dissemination of clinically relevant pathogens and antimicrobial resistance genes. To investigate the prevalence and molecular epidemiology of linezolid resistance genes in hospital sewage, both influent and effluent samples from 11 hospitals in Zhejiang Province, China, were collected and analyzed for linezolid resistance gene carriers. Thirty colonies of putative isolates that grew on the selective media with 10 mg/L florfenicol were randomly picked per sample. A total of 420 Gram-positive isolates, including 330 from 11 influent samples and 90 from three effluent samples, were obtained. Each isolate carried at least one of the linezolid resistance genes, including optrA, poxtA, cfr, and cfr(D), and the optrA gene was highly dominant (388/420). Enterococci displayed predominance among the linezolid resistance gene carriers in the hospital sewage, exhibiting a resistance rate to linezolid of 77.8 %. The wild-type OptrA and OptrA variants KLDP, RDK, and KLDK, all associated with high linezolid MICs, were most frequently detected. Phylogenetic analysis revealed the multispecies and polyclonal distribution of linezolid-resistant bacteria in hospital sewage, while Enterococcus faecalis sequence types (STs) 16 and 179 demonstrated the widest dissemination across different hospitals. Despite generally high genetic diversity, phylogenetic analysis showed that 87 isolates, assigned to ten STs from both sewage and other sources, were genetically related. Moreover, the genetic environment of linezolid resistance genes in isolates from sewage was similar to that from animals, humans, or the environment, with "Tn554-fexA-optrA" as the most common structure. These findings revealed the potential risk of the transmission of linezolid resistance genes through hospital sewage to other environments.202439461535
546380.9995Antibiotic Susceptibility Profiling of Human Pathogenic Staphylococcus aureus Strains Using Whole Genome Sequencing and Genome-Scale Annotation Approaches. Staphylococcus species are major pathogens with increasing importance due to the rise in antibiotic resistance. Whole genome sequencing and genome-scale annotation are promising approaches to study the pathogenicity and dissemination of virulence factors in nosocomial methicillin-resistant and multidrug-resistant bacteria in intensive care units. Draft genome sequences of eight clinical S. aureus strains were assembled and annotated for the prediction of antimicrobial resistance genes, virulence factors, and phylogenetic analysis. Most of the studied S. aureus strains displayed multi-resistance toward the tested drugs, reaching more than seven drugs up to 12 in isolate S22. The mecA gene was detected in three isolates (S14, S21, and S23), mecC was identified in S8 and S9, and blaZ was commonly identified in all isolates except strain S23. Additionally, two complete mobile genomic islands coding for methicillin resistance SCCmec Iva (2B) were identified in strains S21 and S23. Numerous antimicrobial resistance genes (norA, norC, MgrA, tet(45), APH(3')-IIIa, and AAC(6')-APH(2″)) were identified in chromosomes of different strains. Plasmid analysis revealed the presence of blaZ, tetK, and ermC in different plasmid types, located in gene cassettes containing plasmid replicons (rep) and insertion sequences (IS). Additionally, the aminoglycoside-resistant determinants were identified in S1 (APH(3')-IIIa), while AAC(6)-APH(2″) was detected in strains S8 and S14. The trimethoprim (dfrC) resistance gene was detected in S. aureus S21, and the fosfomycin (fosB) resistance gene was detected only in S. aureus S14. We also noted that S. aureus S1 belongs to ST1-t127, which has been reported as one of the most frequent human pathogen types. Additionally, we noted the presence of rare plasmid-mediated mecC-MRSA in some of our isolates.202337317098
164290.9995Characterization of resistance genes and plasmids from sick children caused by Salmonella enterica resistance to azithromycin in Shenzhen, China. INTRODUCTION: Samonella is 1 of 4 key global causes of diarrhoeal diseases, sometimes it can be serious, especially for yong children. Due to the extensive resistance of salmonella serotypes to conventional first-line drugs, macrolides (such as azithromycin) have been designated as the most important antibiotics for the treatment of salmonella. Antimicrobial resistance is a major public health problem in the world, and the mechanism of azithromycin resistance is rarely studied. METHODS: This study determined the azithromycin resistance and plasmids of Salmonella enterica isolates from children attending the Shenzhen Children's Hospital. The susceptibility of ampicillin (AMP), ciprofloxacin (CIP), ceftriaxone (CRO), sulfamethoxazole (SMZ), chloramphenicol (CL), and azithromycin (AZM) were detected and the genes and plasmids from azithromycin-resistant Salmonella were detected by Illumina hi-seq and Nanopore MinIone whole genome sequencing (WGS) using a map-based method, and the genomic background of these factors was evaluated using various bioinformatics tools. RESULTS: In total, 15 strains of nontyphoid Salmonella strains that were isolated (including S. typhimurium, S.London, S. Goldcoast, and S.Stanley) demonstrated resistance to azithromycin (minimum inhibitory concentration,MIC from 32 to >256 µg/mL), and the resistance rate was 3.08% (15/487). The sensitivity test to other antibiotics demonstrated 100% resistance to AMP, and the resistance to SMZ and CL was 86.7% and 80.0%, respectively. Through WGS analysis, all isolates were positive for a plasmid-encoded mphA gene. Plasmid incompatibility typing identified five IncFIB(K), five IncHI2/HI2A/Q1, two IncC, one IncHI2/HI2A/N, one IncR, one IncFII and one IncHI2/HI2A plasmids. Sequence analyses of plasmids revealed extensive homology to various plasmids or transposons in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. CONCLUSION: mphA is the main gene involved in azithromycin, a macrolide, and resistance to Salmonella. It is usually located on plasmids and easily spreads, hence posing a great threat to the current treatment of Salmonella infection. The plasmid sequence similarities suggest that the plasmids acquired resistance genes from a variety of enterica bacteria and underscore the importance of a further understanding of horizontal gene transfer among enterica bacteria.202337065212
5460100.9995Linezolid Resistance Genes in Enterococci Isolated from Sediment and Zooplankton in Two Italian Coastal Areas. Linezolid is a last-resort antibiotic for the treatment of severe infections caused by multidrug-resistant Gram-positive organisms; although linezolid resistance remains uncommon, the number of linezolid-resistant enterococci has increased in recent years due to worldwide spread of acquired resistance genes (cfr, optrA, and poxtA) in clinical, animal, and environmental settings. In this study, we investigated the occurrence of linezolid-resistant enterococci in marine samples from two coastal areas in Italy. Isolates grown on florfenicol-supplemented Slanetz-Bartley agar plates were investigated for their carriage of optrA, poxtA, and cfr genes; optrA was found in one Enterococcus faecalis isolate, poxtA was found in three Enterococcus faecium isolates and two Enterococcus hirae isolates, and cfr was not found. Two of the three poxtA-carrying E. faecium isolates and the two E. hirae isolates showed related pulsed-field gel electrophoresis (PFGE) profiles. Two E. faecium isolates belonged to the new sequence type 1710, which clustered in clonal complex 94, encompassing nosocomial strains. S1 PFGE/hybridization assays showed a double (chromosome and plasmid) location of poxtA and a plasmid location of optrA Whole-genome sequencing revealed that poxtA was contained in a Tn6657-like element carried by two plasmids (pEfm-EF3 and pEh-GE2) of similar size, found in different species, and that poxtA was flanked by two copies of IS1216 in both plasmids. In mating experiments, all but one strain (E. faecalis EN3) were able to transfer the poxtA gene to E. faecium 64/3. The occurrence of linezolid resistance genes in enterococci from marine samples is of great concern and highlights the need to improve practices aimed at limiting the transmission of linezolid-resistant strains to humans from environmental reservoirs.IMPORTANCE Linezolid is one of the few antimicrobials available to treat severe infections due to drug-resistant Gram-positive bacteria; therefore, the emergence of linezolid-resistant enterococci carrying transferable resistance determinants is of great concern for public health. Linezolid resistance genes (cfr, optrA, and poxtA), often plasmid located, can be transmitted via horizontal gene transfer and have the potential to spread globally. This study highlights the detection of enterococci carrying linezolid resistance genes from sediment and zooplankton samples from two coastal urban areas in Italy. The presence of clinically relevant resistant bacteria, such as linezolid-resistant enterococci, in marine environments could reflect their spillover from human and/or animal reservoirs and could indicate that coastal seawaters also might represent a source of these resistance genes.202133608287
5418110.9995Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters. OBJECTIVES: Oxazolidinone resistance is a serious limitation in the treatment of MDR Enterococcus infections. Plasmid-mediated oxazolidinone resistance has been strongly linked to animals where the use of phenicols might co-select resistance to both antibiotic families. Our goal was to assess the diversity of genes conferring phenicol/oxazolidinone resistance among diverse enterococci and to characterize the optrA genetic environment. METHODS: Chloramphenicol-resistant isolates (>16 mg/L, n = 245) from different sources (hospitals/healthy humans/wastewaters/animals) in Portugal, Angola and Tunisia (1996-2016) were selected. Phenicol (eight cat variants, fexA, fexB) or phenicol + oxazolidinone [cfr, cfr(B), optrA] resistance genes were searched for by PCR. Susceptibility (disc diffusion/microdilution), filter mating, stability of antibiotic resistance (500 bacterial generations), plasmid typing (S1-PFGE/hybridization), MLST and WGS (Illumina-HiSeq) were performed for optrA-positive isolates. RESULTS: Resistance to phenicols (n = 181, 74%) and phenicols + oxazolidinones (n = 2, 1%) was associated with the presence of cat(A-8) (40%, predominant in hospitals and swine), cat(A-7) (29%, predominant in poultry and healthy humans), cat(A-9) (2%), fexB (2%) and fexA + optrA (1%). fexA and optrA genes were co-located in a transferable plasmid (pAF379, 72 918 bp) of two ST86 MDR Tunisian Enterococcus faecalis (wastewaters) carrying several putative virulence genes. MICs of chloramphenicol, linezolid and tedizolid were stably maintained at 64, 4 and 1 mg/L, respectively. The chimeric pAF379 comprised relics of genetic elements from different Gram-positive bacteria and origins (human/porcine). CONCLUSIONS: To the best of our knowledge, we report the first detection of optrA in an African country (Tunisia) within a transferable mosaic plasmid of different origins. Its identification in isolates from environmental sources is worrisome and alerts for the need of a concerted global surveillance on the occurrence and spread of optrA.201729029072
5421120.9995Florfenicol Resistance in Enterobacteriaceae and Whole-Genome Sequence Analysis of Florfenicol-Resistant Leclercia adecarboxylata Strain R25. Due to inappropriate use, florfenicol resistance is becoming increasingly serious among animal respiratory tract and gut bacteria. To detect the florfenicol resistance mechanism among Enterobacteriaceae bacteria, 292 isolates from animal feces were examined. The agar dilution method was conducted to determine the minimum inhibitory concentration (MIC) for florfenicol, and polymerase chain reaction (PCR) was performed to detect florfenicol resistance genes. To further explore the molecular mechanism of florfenicol resistance, the whole-genome Leclercia adecarboxylata R25 was sequenced. Of the strains tested, 61.6% (180/292) were resistant to florfenicol, 64.4% (188/292) were positive for floR, and 1.0% (3/292) for cfr. The whole-genome sequence analysis of L. adecarboxylata R25 revealed that the floR gene is carried by a transposon and located on a plasmid (pLA-64). Seven other resistance genes are also encoded on pLA-64, all of which were found to be related to mobile genetic elements. The sequences sharing the greatest similarities to pLA-64 are the plasmids p02085-tetA of Citrobacter freundii and p234 and p388, both from Enterobacter cloacae. The resistance gene-related mobile genetic elements also share homologous sequences from different species or genera of bacteria. These findings indicate that floR mainly contributes to the high rate of florfenicol resistance among Enterobacteriaceae. The resistance gene-related mobile genetic elements encoded by pLA-64 may be transferred among bacteria of different species or genera, resulting in resistance dissemination.201931662959
5479130.9995Novel linezolid resistance plasmids in Enterococcus from food animals in the USA. OBJECTIVES: To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme. METHODS: Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible. RESULTS: Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3')-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant. CONCLUSIONS: To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus.201830272180
5422140.9995Analysis of Resistance to Florfenicol and the Related Mechanism of Dissemination in Different Animal-Derived Bacteria. Bacterial resistance to antibiotics has become an important concern for public health. This study was aimed to investigate the characteristics and the distribution of the florfenicol-related resistance genes in bacteria isolated from four farms. A total of 106 florfenicol-resistant Gram-negative bacilli were examined for florfenicol-related resistance genes, and the positive isolates were further characterized. The antimicrobial sensitivity results showed that most of them (100, 94.33%) belonged to multidrug resistance Enterobacteriaceae. About 91.51% of the strains carried floR gene, while 4.72% carried cfr gene. According to the pulsed-field gel electrophoresis results, 34 Escherichia coli were subdivided into 22 profiles, the genetic similarity coefficient of which ranged from 80.3 to 98.0%. The multilocus sequence typing (MLST) results revealed 17 sequence types (STs), with ST10 being the most prevalent. The genome sequencing result showed that the Proteus vulgaris G32 genome consists of a 4.06-Mb chromosome, a 177,911-bp plasmid (pG32-177), and a 51,686-bp plasmid (pG32-51). A floR located in a drug-resistant region on the chromosome of P. vulgaris G32 was with IS91 family transposase, and the other floR gene on the plasmid pG32-177 was with an ISCR2 insertion sequence. The cfr gene was located on the pG32-51 flanked by IS26 element and TnpA26. This study suggested that the mobile genetic elements played an important role in the replication of resistance genes and the horizontal resistance gene transfer.202032903722
5405150.9994Characterization of florfenicol resistance genes in the coagulase-negative Staphylococcus (CoNS) isolates and genomic features of a multidrug-resistant Staphylococcus lentus strain H29. BACKGROUND: With the wide use of florfenicol to prevent and treat the bacterial infection of domestic animals, the emergence of the florfenicol resistance bacteria is increasingly serious. It is very important to elucidate the molecular mechanism of the bacteria's resistance to florfenicol. METHODS: The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method, and polymerase chain reaction was conducted to analyze the distribution of florfenicol resistance genes in 39 CoNS strains isolated from poultry and livestock animals and seafood. The whole genome sequence of one multidrug resistant strain, Staphylococcus lentus H29, was characterized, and comparative genomics analysis of the resistance gene-related sequences was also performed. RESULTS: As a result, the isolates from the animals showed a higher resistance rate (23/28, 82.1%) and much higher MIC levels to florfenicol than those from seafood. Twenty-seven animal isolates carried 37 florfenicol resistance genes (including 26 fexA, 6 cfr and 5 fexB genes) with one carrying a cfr gene, 16 each harboring a fexA gene, 5 with both a fexA gene and a fexB gene and the other 5 with both a fexA gene and a cfr gene. On the other hand, all 11 isolates from seafood were sensitive to florfenicol, and only 3 carried a fexA gene each. The whole genome sequence of S. lentus H29 was composed of a chromosome and two plasmids (pH29-46, pH29-26) and harbored 11 resistance genes, including 6 genes [cfr, fexA, ant(6)-Ia, aacA-aphD, mecA and mph(C)] encoded on the chromosome, 4 genes [cfr, fexA, aacA-aphD and tcaA] on pH29-46 and 1 gene (fosD) on pH29-26. We found that the S. lentus H29 genome carried two identical copies of the gene arrays of radC-tnpABC-hp-fexA (5671 bp) and IS256-cfr (2690 bp), of which one copy of the two gene arrays was encoded on plasmid pH29-46, while the other was encoded on the chromosome. CONCLUSIONS: The current study revealed the wide distribution of florfenicol resistance genes (cfr, fexA and fexB) in animal bacteria, and to the best of our knowledge, this is the first report that one S. lentus strain carried two identical copies of florfenicol resistance-related gene arrays.202133413633
2035160.9994In Vitro Susceptibility and Florfenicol Resistance in Citrobacter Isolates and Whole-Genome Analysis of Multidrug-Resistant Citrobacter freundii. The genus Citrobacter is an opportunistic pathogen causing infections in animals, and the published data for its resistance to florfenicol are scarce. In this study, we investigated the antimicrobial susceptibility and molecular characteristics of florfenicol resistance genes among Citrobacter isolates from animal and relevant environmental samples and conducted a comparative analysis of a multidrug-resistant Citrobacter freundii strain isolated from a rabbit. Among 20 Citrobacter strains isolated from animal samples, resistance was most commonly observed to ampicillin (100%), tetracycline (75%), streptomycin (65%), florfenicol (60%), chloramphenicol (60%), and aztreonam (50%), while all the strains found in environmental samples were resistant to few antibiotics. The florfenicol resistance gene floR was detected in 12 isolates (48%, 12/25) from animal samples, and all of the floR-positive isolates were resistant to florfenicol with minimum inhibitory concentration (MIC) values ≥256 μg/mL. Sequencing and comparative analysis of the plasmids from a multidrug-resistant C. freundii isolate named R47 showed that the floR-containing region in the plasmid pR47-54 was a truncated transposon-like structure and could be found on both plasmids and chromosomes of bacteria of either animal or human origin. Furthermore, a range of antimicrobial and metal resistance genes associated with mobile genetic elements could be identified in pR47-54 and the other plasmid pR47-309 of C. freundii R47. These results provide in-depth views into the phenotypic and molecular characteristics of Citrobacter isolates recovered from animal and relevant environmental samples, as well as highlight the role horizontal gene transfer plays in the dissemination of plasmid-encoded resistance genes.201931828082
5458170.9994Detection of an Enterococcus faecium Carrying a Double Copy of the PoxtA Gene from Freshwater River, Italy. Oxazolidinones are valuable antimicrobials that are used to treat severe infections due to multidrug-resistant (MDR) Gram-positive bacteria. However, in recent years, a significant spread of clinically relevant linezolid-resistant human bacteria that is also present in animal and environmental settings has been detected and is a cause for concern. This study aimed to investigate the presence, genetic environments, and transferability of oxazolidinone resistance genes in enterococci from freshwater samples. A total of 10 samples were collected from a river in Central Italy. Florfenicol-resistant enterococci were screened for the presence of oxazolidinone resistance genes by PCR. Enterococcus faecium M1 was positive for the poxtA gene. The poxtA transfer (filter mating and aquaria microcosm assays), localization (S1-PFGE/hybridization), genetic context, and clonality of the isolate (WGS) were analyzed. Two poxtA copies were located on the 30,877-bp pEfM1, showing high-level identity and synteny to the pEfm-Ef3 from an E. faecium collected from an Italian coastal area. The isolate was able to transfer the poxtA to enterococcal recipients both in filter mating and aquaria microcosm assays. This is-to the best of our knowledge-the first detection of an enterococcus carrying a linezolid resistance gene from freshwater in Italy.202236421262
5945180.9994Mechanisms of linezolid resistance among coagulase-negative staphylococci determined by whole-genome sequencing. Linezolid resistance is uncommon among staphylococci, but approximately 2% of clinical isolates of coagulase-negative staphylococci (CoNS) may exhibit resistance to linezolid (MIC, ≥8 µg/ml). We performed whole-genome sequencing (WGS) to characterize the resistance mechanisms and genetic backgrounds of 28 linezolid-resistant CoNS (21 Staphylococcus epidermidis isolates and 7 Staphylococcus haemolyticus isolates) obtained from blood cultures at a large teaching health system in California between 2007 and 2012. The following well-characterized mutations associated with linezolid resistance were identified in the 23S rRNA: G2576U, G2447U, and U2504A, along with the mutation C2534U. Mutations in the L3 and L4 riboproteins, at sites previously associated with linezolid resistance, were also identified in 20 isolates. The majority of isolates harbored more than one mutation in the 23S rRNA and L3 and L4 genes. In addition, the cfr methylase gene was found in almost half (48%) of S. epidermidis isolates. cfr had been only rarely identified in staphylococci in the United States prior to this study. Isolates of the same sequence type were identified with unique mutations associated with linezolid resistance, suggesting independent acquisition of linezolid resistance in each isolate. IMPORTANCE: Linezolid is one of a limited number of antimicrobials available to treat drug-resistant Gram-positive bacteria, but resistance has begun to emerge. We evaluated the genomes of 28 linezolid-resistant staphylococci isolated from patients. Multiple mutations in the rRNA and associated proteins previously associated with linezolid resistance were found in the isolates investigated, underscoring the multifocal nature of resistance to linezolid in Staphylococcus. Importantly, almost half the S. epidermidis isolates studied harbored a plasmid-borne cfr RNA methylase gene, suggesting that the incidence of cfr may be higher in the United States than previously documented. This finding has important implications for infection control practices in the United States. Further, cfr is commonly detected in bacteria isolated from livestock, where the use of phenicols, lincosamides, and pleuromutilins in veterinary medicine may provide selective pressure and lead to maintenance of this gene in animal bacteria.201424915435
5423190.9994Characterization of mobile genetic elements in multidrug-resistant Bacteroides fragilis isolates from different hospitals in the Netherlands. OBJECTIVES: Five human clinical multidrug-resistant (MDR) Bacteroides fragilis isolates, including resistance to meropenem and metronidazole, were recovered at different hospitals in the Netherlands between 2014 and 2020 and sent to the anaerobic reference laboratory for full characterization. METHODS: Isolates were recovered from a variety of clinical specimens from patients with unrelated backgrounds. Long- and short-read sequencing was performed, followed by a hybrid assembly to study the presence of mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs). RESULTS: A cfxA gene was present on a transposon (Tn) similar to Tn4555 in two isolates. In two isolates a novel Tn was present with the cfxA gene. Four isolates harbored a nimE gene, located on a pBFS01_2 plasmid. One isolate contained a novel plasmid carrying a nimA gene with IS1168. The tetQ gene was present on novel conjugative transposons (CTns) belonging to the CTnDOT family. Two isolates harbored a novel plasmid with tetQ. Other ARGs in these isolates, but not on an MGE, were: cfiA, ermF, mef(EN2), and sul2. ARGs harboured differed between isolates and corresponded with the observed phenotypic resistance. CONCLUSIONS: Novel CTns, Tns, and plasmids were encountered in the five MDR B. fragilis isolates, complementing our knowledge on MDR and horizontal gene transfer in anaerobic bacteria.202337001724