# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5402 | 0 | 1.0000 | Microbiological Biodiversity of Regional Cow, Goat and Ewe Milk Cheeses Produced in Poland and Antibiotic Resistance of Lactic Acid Bacteria Isolated from Them. (1) Unique sensory values of traditional and regional dairy products made them more and more popular among consumers. Lactic acid bacteria naturally occurring in these products can express antibiotic resistance and be a reservoir of antibiotic resistance genes (ARG) in the environment. The aim of the study was to characterize the microbial diversity of twenty regional cheeses produced from non-pasteurized cow, goat and ewe milk, and investigate the phenotypic and genotypic antibiotic resistance (AR) of lactic acid bacteria isolated from these products. (2) Conventional microbiological methods were applied for the enumeration of lactic acid bacteria (lactobacilli and lactococci) and their isolation, and for the enumeration of Enterococcus, Staphylococcus, Enterobacteriaceae and spores. The disc diffusion method was applied for phenotypic AR. The PCR-based methods were used for strain identification, microbiological diversity of cheeses (PCR-DGGE), and for AR gene detection. (3) Among 79 LAB isolates the most frequent species were L. plantarum (n = 18), Leuc. lactis (n = 17), Lc. lactis (n = 11), Leuc. mesenteroides (n = 9) and L. pentosus (n = 8). Additionally, by using the PCR-DGGE method, DNA of L. casei was found in nine products. Lactobacilli (5.63-8.46 log cfu/g) and lactococci (6.15-8.41 log cfu/g) predominated over Enterococcus (max. 4.89 log cfu/g), Staphylococcus (max. 4.18 log cfu/g), and Enterobacteriaceae (mostly up to 4.88 log cfu/g). Analysis of phenotypic resistance to tetracycline (30 µg), erythromycin (15 µg), and chloramphenicol (30 µg) showed that 29% of LAB isolates were resistant to one antibiotic, 8%-to two, and 12%-to all tested antibiotics. Antibiotic resistance genes (AGR) for tetracycline (tet(M), tet(L), tet(W)), erythromycin (erm(B)) and chloramphenicol (cat-TC) were detected in 30 (38%), 29 (36.7%) and 33 (43.4%) LAB isolates, respectively. Among 31 LAB isolates phenotypically susceptible to all tested antibiotics, only 5 (16%) had no ARGs. (4) The results obtained in our work shed light on the potential threat posed by the widespread presence of ARGs in LAB present in regional cheeses. | 2022 | 36611776 |
| 5398 | 1 | 0.9998 | Characterization and transfer of antimicrobial resistance in lactic acid bacteria from fermented dairy products in China. INTRODUCTION: Lactic acid bacteria (LAB) are commonly found in foods and are also natural intestinal inhabitants in humans and most animals. However, information regarding antimicrobial resistance and the transfer of resistance genes of LAB from fermented dairy products in China is limited. METHODOLOGY: In this study, LAB isolates (n = 82) of Lactobacillus (n = 43) and Streptococcus thermophilus (n = 39) were isolated from 51 commercial fermented food samples in China. All isolates were subjected to pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility, detecting resistance genes, as well as investigating the transferability of resistance genes. RESULTS: The 43 Lactobacillus isolates yielded 24 PFGE patterns and the 34 isolates of S. thermophilus generated 32 different PFGE patterns. Among the 43 Lactobacillus strains, the most commonly observed resistance was that to streptomycin (83.7%) and gentamycin (83.7%). Among the 39 S. thermophilus strains, the most frequently observed resistance was that to streptomycin (92.3%), gentamycin (87.2%), ciprofloxacin (79.5%), and chloramphenicol (71.8%), whereas the lowest level of resistance was that against erythromycin (7.7%). Antimicrobial resistance genes for erythromycin (emrB), gentamycin (aac(6')-aph(2")), streptomycin (ant(6)), sulfamethoxazole (sulI and sulII), tetracycline (tetM and tetS) were detected in the 18 resistance LAB strains. Conjugation experiments showed that tetM from L. delbrueckii subsp. bulgaricus R6 and tetS from L. plantarum R41 were successfully transferred to L. monocytogenes by filter mating. CONCLUSIONS: LAB strains could potentially act as reservoirs of resistance genes and play an active role in the transfer of resistance to humans via the food chain. | 2019 | 32036349 |
| 5401 | 2 | 0.9998 | Safety and Growth Optimization of Lactic Acid Bacteria Isolated From Feedlot Cattle for Probiotic Formula Design. In order to eliminate the widespread use of antibiotics in livestock production, the research for alternatives has increased lately. This study examined the safety of 40 lactic acid bacteria (LAB) isolated from bovine feedlot environment and previously selected as potential probiotics. A high sensitivity prevalence to ampicillin (AMP, 100%), gentamicin (GEN, 96.3%), kanamycin (KAN, 96.3%), clindamycin (CLI, 85.2%), chloramphenicol (CHL, 92.6%) and streptomycin (STR, 88.9%) while moderate and high resistance against erythromycin (ERY, 48%) and tetracycline (TET, 79%) respectively, were determined. Feedlot enterococci and pediococci displayed high resistance to CLI, ERY, GEN and TET (73, 100, 54.5, and 73%, respectively). Among fifteen resistance genes investigated, seven were identified in lactobacilli; their presence not always was correlated with phenotypic resistance. STR resistance genes, aadA and ant(6) were observed in 7.4 and 3.7% of isolates, respectively; genes responsible for aminoglycosides resistance, such as bla (7.4%), and aph(3")-III (3.7%) were also recognized. In addition, resistance cat and tetS genes (3.7 and 7.4%, respectively) were harbored by feedlot lactobacilli strains. The presence of ermB gene in 22.3% of isolates, including two of the six strains phenotypically resistant to ERY, exhibited the highest prevalence among the assessed antibiotics. None of the feedlot lactobacilli harbored virulence factors genes, while positive PCR amplification for ace, agg, fsrA, and atpA genes was found for enterococci. With the objective of producing large cell biomass for probiotic delivery, growth media without peptone but containing glucose and skim milk powder (Mgl and Mlac) were selected as optimal. Lactobacillus acidophilus CRL2074, L. amylovorus CRL2115, L. mucosae CRL2069, and L. rhamnosus CRL2084 were strains selected as free of antibiotic resistance and virulence determinants, able to reach high cell numbers in non-expensive culture media and being compatible among them. | 2018 | 30323790 |
| 2425 | 3 | 0.9997 | Phenotypic and genotypic characterization of antimicrobial resistances reveals the effect of the production chain in reducing resistant lactic acid bacteria in an artisanal raw ewe milk PDO cheese. Antimicrobial resistance (AMR) is a significant public health threat, with the food production chain, and, specifically, fermented products, as a potential vehicle for dissemination. However, information about dairy products, especially raw ewe milk cheeses, is limited. The present study analysed, for the first time, the occurrence of AMRs related to lactic acid bacteria (LAB) along a raw ewe milk cheese production chain for the most common antimicrobial agents used on farms (dihydrostreptomycin, benzylpenicillin, amoxicillin and polymyxin B). More than 200 LAB isolates were obtained and identified by Sanger sequencing (V1-V3 16S rRNA regions); these isolates included 8 LAB genera and 21 species. Significant differences in LAB composition were observed throughout the production chain (P ≤ 0.001), with Enterococcus (e.g., E. hirae and E. faecalis) and Bacillus (e.g., B. thuringiensis and B. cereus) predominating in ovine faeces and raw ewe milk, respectively, along with Lactococcus (L. lactis) in whey and fresh cheeses, while Lactobacillus and Lacticaseibacillus species (e.g., Lactobacillus sp. and L. paracasei) prevailed in ripened cheeses. Phenotypically, by broth microdilution, Lactococcus, Enterococcus and Bacillus species presented the greatest resistance rates (on average, 78.2 %, 56.8 % and 53.4 %, respectively), specifically against polymyxin B, and were more susceptible to dihydrostreptomycin. Conversely, Lacticaseibacillus and Lactobacillus were more susceptible to all antimicrobials tested (31.4 % and 39.1 %, respectively). Thus, resistance patterns and multidrug resistance were reduced along the production chain (P ≤ 0.05). Genotypically, through HT-qPCR, 31 antimicrobial resistance genes (ARGs) and 6 mobile genetic elements (MGEs) were detected, predominating Str, StrB and aadA-01, related to aminoglycoside resistance, and the transposons tnpA-02 and tnpA-01. In general, a significant reduction in ARGs and MGEs abundances was also observed throughout the production chain (P ≤ 0.001). The current findings indicate that LAB dynamics throughout the raw ewe milk cheese production chain facilitated a reduction in AMRs, which has not been reported to date. | 2024 | 38763625 |
| 2388 | 4 | 0.9997 | Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. A total of 244 lactic acid bacteria (LAB) strains were isolated from 180 dairy and pharmaceutical products that were collected from different areas in Minia governorate, Egypt. LAB were identified phenotypically on basis of morphological, physiological and biochemical characteristics. Lactobacillus isolates were further confirmed using PCR-based assay. By combination of phenotypic with molecular identification Lactobacillus spp. were found to be the dominant genus (138, 76.7%) followed by Streptococcus spp. (65, 36.1%) and Lactococcus spp. (27, 15%). Some contaminant organisms such as (Staphylococcus spp., Escherichia coli, Salmonella spp., mould and yeast) were isolated from the collected dairy samples but pharmaceutical products were free of such contaminants. Susceptibility of LAB isolates to antibiotics representing all major classes was tested by agar dilution method. Generally, LAB were highly susceptible to Beta-lactams except penicillin. Lactobacilli were resistant to vancomycin, however lactococci and streptococci proved to be very susceptible. Most strains were susceptible to tetracycline and showed a wide range of streptomycin MICs. The MICs of erythromycin and clindamycin for most of the LAB were within the normal range of susceptibility. Sixteen Lactobacillus, 8 Lactococcus and 8 Streptococcus isolates including all tetracycline and/or erythromycin resistant strains were tested for the presence of tetracycline and/or erythromycin resistant genes [tet(M) and/or erm(B)]. PCR assays shows that some resistant strains harbor tet(M) and/or erm(B) resistance genes. | 2014 | 24948910 |
| 2908 | 5 | 0.9997 | Detection of tetracycline and macrolide resistance determinants in Enterococci of animal and environmental origin using multiplex PCR. An occurrence of resistance to tetracycline (TET) and erythromycin (ERY) was ascertained in 82 isolates of Enterococcus spp. of animal and environmental origin. Using E test, 33 isolates were resistant to TET and three isolates to ERY. Using polymerase chain reaction (PCR; single and multiplex), the TET determinants tet(M) and tet(L) were detected in 35 and 13 isolates, respectively. Twelve isolates carried both tet(M) and tet(L) genes. Eight isolates possessed ermB gene associated with ERY resistance. Multiplex PCR was shown to be a suitable method for simultaneous determination of all three resistance determinants that occurred most frequently in bacteria isolated from poultry. This study also demonstrates that gastrointestinal tract of broilers may be a reservoir of enterococci with acquired resistance to both TET and ERY that can be transferred to humans via food chain. | 2011 | 21656006 |
| 2671 | 6 | 0.9997 | Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. The present study was designed to understand the presence of antimicrobial resistance among the prevalent toxinotypes of Clostridium perfringens recovered from different animals of Tamil Nadu, India. A total of 75 (10.76%) C. perfringens were isolated from 697 multi-species fecal and intestinal content samples. C. perfringens type A (90.67%), type C (2.67%), type D (4%) and type F (2.67%) were recovered. Maximum number of isolates were recovered from dog (n = 20, 24.10%) followed by chicken (n = 19, 5.88%). Recovered isolates were resistant to gentamicin (44.00%), erythromycin (40.00%), bacitracin (40.00%), and tetracycline (26.67%), phenotypically and most of the isolates were found to be resistant to multiple antimicrobials. Genotypic characterization revealed that tetracycline (41.33%), erythromycin (34.66%) and bacitracin (17.33%) resistant genes were present individually or in combination among the isolates. Combined results of phenotypic and genotypic characterization showed the highest percentage of erythromycin resistance (26.66%) among the isolates. None of the isolates showed amplification for lincomycin resistance genes. The correlation matrix analysis of genotypic resistance showed a weak positive relationship between the tetracycline and bacitracin resistance while a weak negative relationship between the tetracycline and erythromycin resistance. The present study thus reports the presence of multiple-resistance genes among C. perfringens isolates that may be involved in the dissemination of resistance to other bacteria present across species. Further insights into the genome can help to understand the mechanism involved in gene transfer so that measures can be taken to prevent the AMR spread. | 2021 | 33220406 |
| 1359 | 7 | 0.9997 | Assessment of Bacterial Contamination and Antimicrobial Resistance of Escherichia coli Isolates from Slovak Dairy Farms. The conditions in livestock housing are suitable for the survival of airborne microorganisms, mainly due to high temperatures, humidity, and the presence of organic material. The total count of airborne bacteria concentrations in cattle farms ranged from 3.01 log(10) CFU/mL to 6.90 log(10) CFU/mL; for coliform bacteria, they were from 2.18 log(10) CFU/mL to 3.34 log(10) CFU/mL; and for molds, they ranged from 3.00 log(10) CFU/mL to 4.57 log(10) CFU/mL. Bacteria resistant to antimicrobial substances and resistance genes can be spread on animal farms. Antimicrobial resistance in ubiquitous Escherichia coli isolated from cattle feces was investigated. Minimum inhibitory concentration (MIC) testing was utilized to identify phenotypic resistance profiles, and the PCR method was employed to detect the presence of resistant genes. A higher percentage of resistance was found to amikacin (65%), tetracycline (61%), streptomycin (56%), ampicillin (55%), and nalidixic acid (45%). Multidrug resistance was determined in up to 64.3% of the isolates studied. The most widespread resistance genes were bla(TEM) (85.7%), sul2 (66.7%), tetB (52.38%), and sul1 (47.6%). We found that 4.8% of the E. coli isolates had the bla(CMY) gene. We found that, despite phenotypic resistance, E. coli isolates do not necessarily carry genes conferring resistance to that particular antimicrobial agent. | 2024 | 39518818 |
| 2719 | 8 | 0.9997 | Antimicrobial resistance and virulence signatures of Listeria and Aeromonas species recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. BACKGROUND: Treated wastewater effluent has been found to contain high levels of contaminants, including disease-causing bacteria such as Listeria and Aeromonas species. The aim of this study was to evaluate the antimicrobial resistance and virulence signatures of Listeria and Aeromonas spp. recovered from treated effluents of two wastewater treatment plants and receiving rivers in Durban, South Africa. METHODS: A total of 100 Aeromonas spp. and 78 Listeria spp. were positively identified based on biochemical tests and PCR detection of DNA region conserved in these genera. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disc diffusion assay. The presence of important virulence genes were detected via PCR, while other virulence determinants; protease, gelatinase and haemolysin were detected using standard assays. RESULTS: Highest resistance was observed against penicillin, erythromycin and nalidixic acid, with all 78 (100%) tested Listeria spp displaying resistance, followed by ampicillin (83.33%), trimethoprim (67.95%), nitrofurantoin (64.10%) and cephalosporin (60.26%). Among Aeromonas spp., the highest resistance (100%) was observed against ampicillin, penicillin, vancomycin, clindamycin and fusidic acid, followed by cephalosporin (82%), and erythromycin (58%), with 56% of the isolates found to be resistant to naladixic acid and trimethoprim. Among Listeria spp., 26.92% were found to contain virulence genes, with 14.10, 5.12 and 21% harbouring the actA, plcA and iap genes, respectively. Of the 100 tested Aeromonas spp., 52% harboured the aerolysin (aer) virulence associated gene, while lipase (lip) virulence associated gene was also detected in 68% of the tested Aeromonas spp. CONCLUSIONS: The presence of these organisms in effluents samples following conventional wastewater treatment is worrisome as this could lead to major environmental and human health problems. This emphasizes the need for constant evaluation of the wastewater treatment effluents to ensure compliance to set guidelines. | 2015 | 26498595 |
| 5403 | 9 | 0.9997 | Distribution of antimicrobial-resistant lactic acid bacteria in natural cheese in Japan. To determine and compare the extent of contamination caused by antimicrobial-resistant lactic acid bacteria (LAB) in imported and domestic natural cheeses on the Japanese market, LAB were isolated using deMan, Rogosa and Sharpe (MRS) agar and MRS agar supplemented with six antimicrobials. From 38 imported and 24 Japanese cheeses, 409 LAB isolates were obtained and their antimicrobial resistance was tested. The percentage of LAB resistant to dihydrostreptomycin, erythromycin, and/or oxytetracycline isolated from imported cheeses (42.1%) was significantly higher than that of LAB resistant to dihydrostreptomycin or oxytetracycline from cheeses produced in Japan (16.7%; P=0.04). Antimicrobial resistance genes were detected in Enterococcus faecalis (tetL, tetM, and ermB; tetL and ermB; tetM) E. faecium (tetM), Lactococcus lactis (tetS), Lactobacillus (Lb.), casei/paracasei (tetM or tetW), and Lb. rhamnosus (ermB) isolated from seven imported cheeses. Moreover, these E. faecalis isolates were able to transfer antimicrobial resistance gene(s). Although antimicrobial resistance genes were not detected in any LAB isolates from Japanese cheeses, Lb. casei/paracasei and Lb. coryniformis isolates from a Japanese farm-made cheese were resistant to oxytetracycline (minimal inhibitory concentration [MIC], 32 µg/mL). Leuconostoc isolates from three Japanese farm-made cheeses were also resistant to dihydrostreptomycin (MIC, 32 to >512 µg/mL). In conclusion, the present study demonstrated contamination with antimicrobial-resistant LAB in imported and Japanese farm-made cheeses on the Japanese market, but not in Japanese commercial cheeses. | 2013 | 23930694 |
| 2387 | 10 | 0.9997 | Phenotypic and genotypic antimicrobial resistance profiles of fecal lactobacilli from domesticated pigeons in Poland. Lactobacillus species play an important role in the host and although they are non-pathogenic, they could act as reservoirs for antibiotic resistance genes, with the potential risk of transfer to other bacteria inhabiting the gastrointestinal tract. The aim of this study was to identify Lactobacillus species derived from feces of domesticated pigeons and to characterize their phenotypic and genotypic antimicrobial resistance (AMR) profiles. A total of 57 Lactobacillus isolates were classified into six species using the MALDI-TOF technique and 16S rDNA restriction analysis. Strains of L. ingluviei (31%), L. salivarius (28%) and L. agilis (23%) were the dominant species isolated. Determination of antimicrobial susceptibility by the microdilution broth method showed widespread resistance to kanamycin (89%), tetracycline (84%), streptomycin (63%), and enrofloxacin (37%). Less than 30% of the isolates were resistant to erythromycin, lincosamides, gentamycin, chloramphenicol and vancomycin. Over half (51%) of the lactobacilli were classified as multidrug resistant. Tet genes were detected in 79% of isolates; the lnuA, cat, ermB, ermC, ant(6)-Ia, ant(4')-Ia, and int-Tn genes were found at a lower frequency. Sequence analysis of the quinolone resistance-determining region (QRDR)of the gyrA gene showed that fluoroquinolone resistance in lactobacilli was the result of a mutation that lead to a change in the amino acid sequence (Ser83→Tyr/Leu/Phe). Domesticated pigeons could be a reservoir for AMR Lactobacillus strains and AMR genes. | 2020 | 32781109 |
| 2705 | 11 | 0.9997 | Antibiogram and molecular characterization of methicillin-resistant Staphylococcus aureus recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. Municipal wastewater treatment plants (WWTPs) may serve as a reservoir for potentially pathogenic and antibiotic resistant bacteria. The discharge of improperly treated wastewater effluent may lead to the spread of these bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) which is responsible for causing pneumonia, septicaemia and skin and soft tissue infections, into the receiving surface waters. This study aimed to determine the antibiogram and virulence gene profiles of MRSA isolates recovered from treated wastewater effluent and receiving surface waters. Genetic fingerprinting of the isolates was also carried out to determine the phylogenetic relationship between the isolates and selected antibiogram profiles. Eighty MRSA isolates were obtained from treated effluent and receiving rivers of two WWTPs in Durban, KwaZulu-Natal. Antibiotic resistance was observed towards lincomycin (100%), oxacillin (98.75%), cefoxitin and penicillin (97.50%), and ampicillin (96.25%). In addition, 72.50%, 66.25%, 52.50%, 40% and 33.75% of isolates showed resistance against cefozolin, azithromycin, amoxicillin/clavulanic acid, erythromycin and vancomycin, respectively. Antibiotic resistance genes detected in the isolates tested in this study: aac(6')/aph(2″) (56.25%), ermC (62.50%), msrA (22.50%), and blaZ and tetK (70%). The frequency of virulence genes: hla and sea was 57.50%, hld was 1.25%, while lukS P/V was 0%. Pulse Field Gel Electrophoresis analysis generated 13 pulsotypes (designated A-M) showing a correlation to their respective antibiograms. Findings from this study showed the presence of potentially pathogenic, multi-drug resistant MRSA in the treated effluent and receiving surface waters. This may have detrimental effects on the health of individuals who come into contact with these water resources. | 2019 | 31463610 |
| 2916 | 12 | 0.9997 | The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group. In order to investigate whether resistance genes present in bacteria in manure could transfer to indigenous soil bacteria, resistant isolates belonging to the Bacillus cereus group (Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis) were isolated from farm soil (72 isolates) and manure (12 isolates) samples. These isolates were screened for tetracycline resistance genes (tet(K), tet(L), tet(M), tet(O), tet(S) and tet(T)). Of 88 isolates examined, three (3.4%) isolates carried both tet(M) and tet(L) genes, while four (4.5%) isolates carried the tet(L) gene. Eighty-one (92.1%) isolates did not contain any of the tested genes. All tet(M) positive isolates carried transposon Tn916 and could transfer this mobile DNA element to other Gram-positive bacteria. | 2002 | 12351239 |
| 5404 | 13 | 0.9997 | Characterization of tetracycline resistance lactobacilli isolated from swine intestines at western area of Taiwan. To investigate the frequency of tetracycline resistance (Tet-R) lactobacilli in pig intestines, a total of 256 pig colons were analyzed and found to contain typical colonies of Tet-R lactic acid bacteria in every sample, ranging from 3.2 × 10(3) to 6.6 × 10(5) CFU/cm(2). From these samples, a total of 159 isolates of Tet-R lactobacilli were obtained and identified as belonging to 11 species, including Lactobacillus reuteri, Lactobacillus amylovorus, Lactobacillus salivarius, Lactobacillus plantarum, Lactobacillus ruminis, Lactobacillus kefiri, Lactobacillus fermentum, Lactobacillus sakei, Lactobacillus coryniformis, Lactobacillus parabuchneri and Lactobacillus letivazi. Based on the EFSA (2008) breakpoints, all isolates, after MIC analysis, were qualified as Tet-R, from which the significant high Tet-R MIC(50) and MIC(90) values indicated an ecological distribution of Tet-R lactobacilli mostly with high resistance potency in pig colons. PCR-detection identified 5 tet genes in these isolates, the most predominant one being tet (W), followed by tet (M), (L), (K), and (Q). Their detection rates were 82.0%, 22.5%, 14.4%, 8.1% and 0.9%, respectively. Noteworthily, isolates of the same species carrying identical tet gene(s) usually had a wide different MIC values. Furthermore, strain-subtyping of these isolates by REP-PCR demonstrated a notable genotypic biodiversity % (average = 62%). | 2011 | 21906691 |
| 2709 | 14 | 0.9997 | Isolation, genotyping and antibiotic resistance analysis in Salmonella species isolated from turkey meat in Isfahan, Iran. Salmonella is one of the mainzoonotic bacteria in the poultry industry.The knowledge about biological characteristics and antibiotic resistance pattern can help medication in poultry and human. This research aimed to study Salmonella spp contamination and its antibiotic resistance in turkey meat in Isfahan province, Iran.400 samples were collected from the turkey meat in slaughter line (May 2021 to May 2022). The conventional microbiological and biochemical tests were applied for isolation and typing of Salmonella spp. The polymerase chain reaction (PCR) was utilized for detection and typing of Salmonella strains. The antibiotic sensitivity test was achieved and all strains were evaluated for resistance genes of Act (3)-IV, Sul1 and qnrA. In microbiological examination, 32 Salmonella strains (8 %) were identified. All tested strains were positive for invA gene. By amplifying the FlicC and Prot6E genes, 28 and 4 strains had genes related to enteritidis and typhimurium, respectively. In disc diffusion test, the highest antibiotic resistance was to oxytetracycline (50 %) and the lowest was to gentamicin, amoxiclavulanic acid, cefotaxime and ceftriaxone. The results showed that 6 (18.75 %) and 10 (31.25 %) of the Salmonella spp were able to amplify Sul1 and qnrA genes, respectively. No Salmonella strain could amplify Act (3)-IV gene. 100 % of the strains carried the Sul1 and qnrA genes were resistant to sulfonamide, and enrofloxacin. Furthermore, 3 sulfonamide resistant strains (75 %) and 5 enrofloxacin resistant strains (83.33 %) were harbored Sul1 and qnrA genes, respectively. The prevalence and antibiotic resistance of Salmonella spp in turkey meat can induce health risk concern. However, the wide spectrum antibiotic resistance complicates the proper treatment of Salmonella infection in human. | 2025 | 39944349 |
| 1284 | 15 | 0.9997 | Research Note: Molecular characterization of antimicrobial resistance and virulence gene analysis of Enterococcus faecalis in poultry in Tai'an, China. Enterococcus faecalis (E. faecalis) is a zoonotic pathogen that causes severe economic losses in the poultry-breeding industry. In our study, cecal samples from broilers with cecal enlargement at slaughterhouses in Tai'an, China, were analyzed. The results revealed that the 61 E. faecalis strains had drug resistance rates ranging from 96.72 to 8.20% against 11 antibiotics in 5 classes, of which erythromycin (96.72%) and tetracycline (96.72%) had the highest rates and vancomycin (8.20%) the lowest. The highest detection rate of multiple drug-resistant strains in 61 isolates was 72.13%. The results of polymerase chain reaction showed that, of the 12 virulence genes, ccf had the highest detection rate (80.33%), followed by asal and cob (both 78.69%), whereas hyl had the lowest (6.56%). Among 15 drug resistance genes, ermB had the highest detection rate (95.08%), followed by tetM (91.80%) and tetL (90.16%), whereas tetK (0.00%) and vanB (0.00%) remained undetected. Of the 34 sequence types found with multilocus sequence typing, the most predominant were ST631 (13.11%, 8/61) and ST634 (8.2%, 5/61). Our results provide a theoretical basis for guiding the rational use of antibiotics and preventing the spread of drug-resistant bacteria, along with epidemiological data for the risk analysis of food-borne bacteria and antimicrobial resistance in poultry farms in Shandong Province. | 2022 | 35263706 |
| 2918 | 16 | 0.9997 | Antibiotic resistance genes in multidrug-resistant Enterococcus spp. and Streptococcus spp. recovered from the indoor air of a large-scale swine-feeding operation. AIMS: In this study, multidrug-resistant bacteria previously recovered from the indoor air of a large-scale swine-feeding operation were tested for the presence of five macrolide, lincosamide and streptogramin (MLS) resistance genes and five tetracycline (tet) resistance genes. METHODS AND RESULTS: Enterococcus spp. (n = 16) and Streptococcus spp. (n =16) were analysed using DNA-DNA hybridization, polymerase chain reaction (PCR) and oligoprobing of PCR products. All isolates carried multiple MLS resistance genes, while 50% of the Enterococcus spp. and 44% of the Streptococcus spp. also carried multiple tet resistance genes. All Enterococcus spp. carried erm(A) and erm(B), 69% carried erm(F), 44% carried mef(A), 75% carried tet(M), 69% carried tet(L) and 19% carried tet(K). All Streptococcus spp. carried erm(B), 94% carried erm(F), 75% carried erm(A), 38% carried mef(A), 50% carried tet(M), 81% carried tet(L) and 13% carried tet(K). CONCLUSIONS: Multidrug resistance among airborne bacteria recovered from a swine operation is encoded by multiple MLS and tet resistance genes. These are the first data regarding resistance gene carriage among airborne bacteria from swine-feeding operations. SIGNIFICANCE AND IMPACT OF THE STUDY: The high prevalence of multiple resistance genes reported here suggests that airborne Gram-positive bacteria from swine operations may be important contributors to environmental reservoirs of resistance genes. | 2006 | 17032228 |
| 2711 | 17 | 0.9997 | Antibiotic-resistant Escherichia coli and Salmonella spp. associated with dairy cattle and farm environment having public health significance. AIM: The present study was carried out to determine load of total bacteria, Escherichia coli and Salmonella spp. in dairy farm and its environmental components. In addition, the antibiogram profile of the isolated bacteria having public health impact was also determined along with identification of virulence and resistance genes by polymerase chain reaction (PCR) under a one-health approach. MATERIALS AND METHODS: A total of 240 samples of six types (cow dung - 15, milk - 10, milkers' hand wash - 10, soil - 10 water - 5, and vegetables - 10) were collected from four dairy farms. For enumeration, the samples were cultured onto plate count agar, eosin methylene blue, and xylose-lysine deoxycholate agar and the isolation and identification of the E. coli and Salmonella spp. were performed based on morphology, cultural, staining, and biochemical properties followed by PCR.The pathogenic strains of E. coli stx1, stx2, and rfbO157 were also identified through PCR. The isolates were subjected to antimicrobial susceptibility test against 12 commonly used antibiotics by disk diffusion method. Detection of antibiotic resistance genes ereA, tetA, tetB, and SHV were performed by PCR. RESULTS: The mean total bacterial count, E. coli and Salmonella spp. count in the samples ranged from 4.54±0.05 to 8.65±0.06, 3.62±0.07 to 7.04±0.48, and 2.52±0.08 to 5.87±0.05 log colony-forming unit/g or ml, respectively. Out of 240 samples, 180 (75%) isolates of E. coli and 136 (56.67%) isolates of Salmonella spp. were recovered through cultural and molecular tests. Among the 180 E. coli isolates, 47 (26.11%) were found positive for the presence of all the three virulent genes, of which stx1 was the most prevalent (13.33%). Only three isolates were identified as enterohemorrhagic E. coli. Antibiotic sensitivity test revealed that both E. coli and Salmonella spp. were found highly resistant to azithromycin, tetracycline, erythromycin, oxytetracycline, and ertapenem and susceptible to gentamycin, ciprofloxacin, and imipenem. Among the four antibiotic resistance genes, the most observable was tetA (80.51-84.74%) in E. coli and Salmonella spp. and SHV genes were the lowest one (22.06-25%). CONCLUSION: Dairy farm and their environmental components carry antibiotic-resistant pathogenic E. coli and Salmonella spp. that are potential threat for human health which requires a one-health approach to combat the threat. | 2019 | 31528022 |
| 2965 | 18 | 0.9997 | Detection of antimicrobial resistance genes in Lactobacillus spp. from poultry probiotic products and their horizontal transfer among Escherichia coli. The study was conducted to identify the antimicrobial resistance genes (ARGs) in Lactobacillus spp. from poultry probiotic products and their potential to spread among Escherichia coli. Lactobacillus spp. were isolated and identified from 35 poultry probiotic samples based on the cultural, biochemical, and molecular findings. All the isolates (n = 35) were screened for the presence of some ARGs such as β-lactamases encoding genes (blaTEM, blaCTXM-1, and blaCTXM-2), plasmid-mediated quinolone resistance gene (qnrA, qnrB, and qnrS), and tetracycline resistance genes (tetA and tetB). Five Lactobacillus spp. isolates from three brands were positive for one or more ARGs. The qnrS was detected in four isolates. The blaTEM and tetB were detected in two isolates. One isolate contained blaCTX-M-1, blaCTX-M-2, and tetA genes. Brand-wise analysis revealed that one isolate from Brand 4 contained blaTEM, blaCTX-M-1, blaCTX-M-2, qnrS, and tetA genes, one isolate from Brand 2 contained blaTEM gene, and three isolates from Brand 7 harbored qnrS gene. The co-culture of Lactobacillus spp. and E. coli resulted in the transmission of qnrS, CTX-M-1, and tetA from Lactobacillus spp. to E. coli. Results of antimicrobial susceptibility test revealed that the highest resistance was observed to cefepime and cefotaxime followed by penicillin G, oxacillin, cefuroxime, and ofloxacin. The findings of the present study indicate the potential risk of horizontal spread of antimicrobial resistance through probiotic bacteria among the poultry population. Therefore, it is very necessary to check for ARGs along with other attributes of probiotic bacteria to avoid the inclusion of resistant strains in probiotics. | 2023 | 36942055 |
| 2407 | 19 | 0.9997 | Antibiotic resistance genes and identification of staphylococci collected from the production chain of swine meat commodities. Staphylococci harbouring antibiotic resistance (AR) genes may represent a hazard for human health and, as other resistant food-related bacteria, they contribute to the spread of AR. In this study, we isolated resistant staphylococci from an entire swine production chain and investigated the occurrence of 11 genes [aac(6')Ie-aph(2'')Ia, blaZ, mecA, vanA, vanB, ermA, ermB, ermC, tet(M), tet(O) and tet(K)] encoding resistance to some antibiotics largely used in clinical practice. The 66 resistant staphylococcal isolates were identified as Staphylococcus epidermidis (27 isolates), Staphylococcus aureus (12), Staphylococcus xylosus (12), Staphylococcus simulans (5), Staphylococcus pasteuri (4), Staphylococcus carnosus (3), Staphylococcus lentus (2) and Staphylococcus sciuri (1). Specific-PCR detection of AR genes showed the prevalence of the tet(K) gene in most of the isolates (89.4%), followed by tet(M) and ermC (about 75%); mecA was detected in more than half of S. aureus and S. epidermidis isolates. The genes vanA and vanB were not retrieved. It was found that a high proportion of coagulase-positive and -negative isolates are multidrug-resistant and some of them carry up to six AR genes. Our findings show that the swine production chain is a source of antibiotic-resistant staphylococci suggesting the importance of resistance surveillance in the food production environment. | 2008 | 17993395 |