A role of ygfZ in the Escherichia coli response to plumbagin challenge. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
53901.0000A role of ygfZ in the Escherichia coli response to plumbagin challenge. Plumbagin is found in many herbal plants and inhibits the growth of various bacteria. Escherichia coli strains are relatively resistant to this drug. The mechanism of resistance is not clear. Previous findings showed that plumbagin treatment triggered up-regulation of many genes in E. coli including ahpC, mdaB, nfnB, nfo, sodA, yggX and ygfZ. By analyzing minimal inhibition concentration and inhibition zones of plumbagin in various gene-disruption mutants, ygfZ and sodA were found critical for the bacteria to resist plumbagin toxicity. We also found that the roles of YgfZ and SodA in detoxifying plumbagin are independent of each other. This is because of the fact that ectopically expressed SodA reduced the superoxide stress but not restore the resistance of bacteria when encountering plumbagin at the absence of ygfZ. On the other hand, an ectopically expressed YgfZ was unable to complement and failed to rescue the plumbagin resistance when sodA was perturbed. Furthermore, mutagenesis analysis showed that residue Cys228 within YgfZ fingerprint region was critical for the resistance of E. coli to plumbagin. By solvent extraction and HPLC analysis to follow the fate of the chemical, it was found that plumbagin vanished apparently from the culture of YgfZ-expressing E. coli. A less toxic form, methylated plumbagin, which may represent one of the YgfZ-dependent metabolites, was found in the culture supernatant of the wild type E. coli but not in the ΔygfZ mutant. Our results showed that the presence of ygfZ is not only critical for the E coli resistance to plumbagin but also facilitates the plumbagin degradation.201021059273
887710.9974Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. While in transit within and between hosts, uropathogenic Escherichia coli (UPEC) encounters multiple stresses, including substantial levels of nitric oxide and reactive nitrogen intermediates. Here we show that UPEC, the primary cause of urinary tract infections, can be conditioned to grow at higher rates in the presence of acidified sodium nitrite (ASN), a model system used to generate nitrosative stress. When inoculated into the bladder of a mouse, ASN-conditioned UPEC bacteria are far more likely to establish an infection than nonconditioned bacteria. Microarray analysis of ASN-conditioned bacteria suggests that several NsrR-regulated genes and other stress- and polyamine-responsive factors may be partially responsible for this effect. Compared to K-12 reference strains, most UPEC isolates have increased resistance to ASN, and this resistance can be substantially enhanced by addition of the polyamine cadaverine. Nitrosative stress, as generated by ASN, can stimulate cadaverine synthesis by UPEC, and growth of UPEC in cadaverine-supplemented broth in the absence of ASN can also promote UPEC colonization of the bladder. These results suggest that UPEC interactions with polyamines or stresses such as reactive nitrogen intermediates can in effect reprogram the bacteria, enabling them to better colonize the host.200919255192
34020.9974Study of MFD-type repair in locus determining resistance of Escherichia coli to streptomycin. The yield of induced mutations to streptomycin resistance (Str) in E. coli, UV-irradiated and temporarily incubated in liquid medium not permitting protein synthesis, depends upon the conditions of preirradiation growth and preirradiation treatment of the bacteria, i.e. on their physiological state at the moment of irradiation. This fact is not readily reconciled with a model postulating mutation production in the structural genes of E. coli during excision repair. A preferred explanation is offered, based on the assumption that the efficiency of mutagenesis at the rpsL (strA) locus is determined by interference of antimutagenic (generalized excision repair and MFD) and promutagenic (mutation fixation of excision repair) events. The participation of macromolecular syntheses in Str mutation fixation is suggested.19863537780
894130.9973Salicylate reduces the antimicrobial activity of ciprofloxacin against extracellular Salmonella enterica serovar Typhimurium, but not against Salmonella in macrophages. OBJECTIVES: Salicylate, a potent inducer of the MarA activator in Salmonella enterica, is the principal metabolite of aspirin, which is often consumed for medicinal and cosmetic uses. Our research was aimed at testing if salicylate activates the mar regulon in macrophage-associated Salmonella (intracellular bacteria), and investigating its effects on bacterial susceptibility to ciprofloxacin extracellularly and intracellularly. METHODS: J774 macrophages were infected with S. enterica serovar Typhimurium (wild-type and marA null mutant), treated with ciprofloxacin with and without pre-exposure to salicylate, and the surviving bacteria were counted. Similar experiments were conducted with bacteria in broth (extracellular bacteria). Phe-Arg-beta-naphthylamide (PAbetaN) was added to investigate the role of efflux pumps in resistance. The transcriptional regulation of marRAB, acrAB and micF in extracellular and intracellular Salmonella Typhimurium with and without salicylate and ciprofloxacin was investigated using green fluorescent protein as a marker protein and quantitative real time PCR. RESULTS: Pre-exposure of Salmonella to salicylate increased the resistance of extracellular but not intracellular bacteria to ciprofloxacin, although salicylate stimulated the expression of mar genes in intracellular and extracellular bacteria. Using marA mutants and the inhibitor PAbetaN, we showed that the improved resistance in extracellular bacteria is derived from the induction of acrAB by salicylate, which is mediated by MarA. CONCLUSIONS: In intracellular bacteria, the expression of acrAB is already higher when compared with extracellular cells; therefore, salicylate does not result in significant acrAB induction intracellularly and subsequent resistance enhancement. Results show that conclusions raised from extracellular studies cannot be applied to intracellular bacteria, although the systems have similar functions.201020237076
890440.9972Induction and inhibition of ciprofloxacin resistance-conferring mutations in hypermutator bacteria. The emergence of drug-resistant bacteria poses a serious threat to human health. Bacteria often acquire resistance from a mutation of chromosomal genes during therapy. We have recently shown that the evolution of resistance to ciprofloxacin in vivo and in vitro requires the induction of a mutation that is mediated by the cleavage of the SOS repressor LexA and the associated derepression of three specialized DNA polymerases (polymerase II [Pol II], Pol IV, and Pol V). These results led us to suggest that it may be possible to design drugs to inhibit these proteins and that such drugs might be coadministered with antibiotics to prevent mutation and the evolution of resistance. For the approach to be feasible, there must not be any mechanisms through which bacteria can induce mutations and acquire antibiotic resistance that are independent of LexA and its repressed polymerases. Perhaps the most commonly cited mechanism to elevate bacterial mutation rates is the inactivation of methyl-directed mismatch repair (MMR). However, it is unclear whether this represents a LexA-independent mechanism or if the mutations that arise in MMR-deficient hypermutator strains are also dependent on LexA cleavage and polymerase derepression. In this work, we show that LexA cleavage and polymerase derepression are required for the evolution of clinically significant resistance in MMR-defective Escherichia coli. Thus, drugs that inhibit the proteins responsible for induced mutations are expected to efficiently prevent the evolution of resistance, even in MMR-deficient hypermutator strains.200616377689
893650.9972Modulation of Iron Import and Metronidazole Resistance in Bacteroides fragilis Harboring a nimA Gene. Bacteroides fragilis is a commensal of the human gut but can also cause severe infections when reaching other body sites, especially after surgery or intestinal trauma. Bacteroides fragilis is an anaerobe innately susceptible to metronidazole, a 5-nitroimidazole drug that is prescribed against the majority of infections caused by anaerobic bacteria. In most of the cases, metronidazole treatment is effective but a fraction of B. fragilis is resistant to even very high doses of metronidazole. Metronidazole resistance is still poorly understood, but the so-called nim genes have been described as resistance determinants. They have been suggested to encode nitroreductases which reduce the nitro group of metronidazole to a non-toxic aminoimidazole. More recent research, however, showed that expression levels of nim genes are widely independent of the degree of resistance observed. In the search for an alternative model for nim-mediated metronidazole resistance, we screened a strain carrying an episomal nimA gene and its parental strain 638R without a nim gene for physiological differences. Indeed, the 638R daughter strain with the nimA gene had a far higher pyruvate-ferredoxin oxidoreductase (PFOR) activity than the parental strain. High PFOR activity was also observed in metronidazole-resistant clinical isolates, either with or without a nim gene. Moreover, the strain carrying a nimA gene fully retained PFOR activity and other enzyme activities such as thioredoxin reductase (TrxR) after resistance had been induced. In the parental strain 638R, these were lost or very strongly downregulated during the development of resistance. Further, after induction of high-level metronidazole resistance, parental strain 638R was highly susceptible to oxygen whereas the daughter strain with a nimA gene was hardly affected. Ensuing RT-qPCR measurements showed that a pathway for iron import via hemin uptake is downregulated in 638R with induced resistance but not in the resistant nimA daughter strain. We propose that nimA primes B. fragilis toward an alternative pathway of metronidazole resistance by enabling the preservation of normal iron levels in the cell.202235756037
64460.9972The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. BACKGROUND: The marR gene of Escherichia coli encodes a repressor of the marRAB operon, a regulatory locus controlling multiple antibiotic resistance in this organism. Inactivation of marR results in increased expression of marA, which acts at several target genes in the cell leading to reduced antibiotic accumulation. Exposure of E. coli to sodium salicylate (SAL) induces marRAB operon transcription and antibiotic resistance. The mechanism by which SAL antagonizes MarR repressor activity is unclear. MATERIALS AND METHODS: Recombinant plasmid libraries were introduced into a reporter strain designed to identify cloned genes encoding MarR repressor activity. Computer analysis of sequence databases was also used to search for proteins related to MarR. RESULTS: A second E. coli gene, MprA, that exhibits MarR repressor activity was identified. Subsequent database searching revealed a family of 10 proteins from a variety of bacteria that share significant amino acid sequence similarity to MarR and MprA. At least four of these proteins are transcriptional repressors whose activity is antagonized by SAL or by phenolic agents structurally related to SAL. CONCLUSIONS: The MarR family is identified as a group of regulatory factors whose activity is modulated in response to environmental signals in the form of phenolic compounds. Many of these agents are plant derived. Some of the MarR homologs appear more likely to control systems expressed in animal hosts, suggesting that phenolic sensing by bacteria is important in a variety of environments and in the regulation of numerous processes.19958521301
893770.9972Proteomic analysis of metronidazole resistance in the human facultative pathogen Bacteroides fragilis. The anaerobic gut bacteria and opportunistic pathogen Bacteroides fragilis can cause life-threatening infections when leaving its niche and reaching body sites outside of the gut. The antimicrobial metronidazole is a mainstay in the treatment of anaerobic infections and also highly effective against Bacteroides spp. Although resistance rates have remained low in general, metronidazole resistance does occur in B. fragilis and can favor fatal disease outcomes. Most metronidazole-resistant Bacteroides isolates harbor nim genes, commonly believed to encode for nitroreductases which deactivate metronidazole. Recent research, however, suggests that the mode of resistance mediated by Nim proteins might be more complex than anticipated because they affect the cellular metabolism, e.g., by increasing the activity of pyruvate:ferredoxin oxidoreductase (PFOR). Moreover, although nim genes confer only low-level metronidazole resistance to Bacteroides, high-level resistance can be much easier induced in the laboratory in the presence of a nim gene than without. Due to these observations, we hypothesized that nim genes might induce changes in the B. fragilis proteome and performed comparative mass-spectrometric analyses with B. fragilis 638R, either with or without the nimA gene. Further, we compared protein expression profiles in both strains after induction of high-level metronidazole resistance. Interestingly, only few proteins were repeatedly found to be differentially expressed in strain 638R with the nimA gene, one of them being the flavodiiron protein FprA, an enzyme involved in oxygen scavenging. After induction of metronidazole resistance, a far higher number of proteins were found to be differentially expressed in 638R without nimA than in 638R with nimA. In the former, factors for the import of hemin were strongly downregulated, indicating impaired iron import, whereas in the latter, the observed changes were not only less numerous but also less specific. Both resistant strains, however, displayed a reduced capability of scavenging oxygen. Susceptibility to metronidazole could be widely restored in resistant 638R without nimA by supplementing growth media with ferrous iron sulfate, but not so in resistant 638R with the nimA gene. Finally, based on the results of this study, we present a novel hypothetic model of metronidazole resistance and NimA function.202337065137
64280.9972Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. The histone-like protein H-NS is a major component of the bacterial nucleoid and plays a crucial role in global gene regulation of enteric bacteria. It is known that the expression of a variety of genes is repressed by H-NS, and mutations in hns result in various phenotypes, but the role of H-NS in the drug resistance of Escherichia coli has not been known. Here we present data showing that H-NS contributes to multidrug resistance by regulating the expression of multidrug exporter genes. Deletion of the hns gene from the DeltaacrAB mutant increased levels of resistance against antibiotics, antiseptics, dyes, and detergents. Decreased accumulation of ethidium bromide and rhodamine 6G in the hns mutant compared to that in the parental strain was observed, suggesting the increased expression of some drug exporter(s) in this mutant. The increased drug resistance and decreased drug accumulation caused by the hns deletion were completely suppressed by deletion of the multifunctional outer membrane channel gene tolC. At least eight drug exporter systems require TolC for their functions. Among these, increased expression of acrEF, mdtEF, and emrKY was observed in the Deltahns strain by quantitative real-time reverse transcription-PCR analysis. The Deltahns-mediated multidrug resistance pattern is quite similar to that caused by overproduction of the AcrEF exporter. Deletion of the acrEF gene greatly suppressed the level of Deltahns-mediated multidrug resistance. However, this strain still retained resistance to some compounds. The remainder of the multidrug resistance pattern was similar to that conferred by overproduction of the MdtEF exporter. Double deletion of the mdtEF and acrEF genes completely suppressed Deltahns-mediated multidrug resistance, indicating that Deltahns-mediated multidrug resistance is due to derepression of the acrEF and mdtEF drug exporter genes.200414973023
881390.9971Enhancing Escherichia coli abiotic stress resistance through ornithine lipid formation. Escherichia coli is a common host for biotechnology and synthetic biology applications. During growth and fermentation, the microbes are often exposed to stress conditions, such as variations in pH or solvent concentrations. Bacterial membranes play a key role in response to abiotic stresses. Ornithine lipids (OLs) are a group of membrane lipids whose presence and synthesis have been related to stress resistance in bacteria. We wondered if this stress resistance could be transferred to bacteria not encoding the capacity to form OLs in their genome, such as E. coli. In this study, we engineered different E. coli strains to produce unmodified OLs and hydroxylated OLs by expressing the synthetic operon olsFC. Our results showed that OL formation improved pH resistance and increased biomass under phosphate limitation. Transcriptome analysis revealed that OL-forming strains differentially expressed stress- and membrane-related genes. OL-producing strains also showed better growth in the presence of the ionophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP), suggesting reduced proton leakiness in OL-producing strains. Furthermore, our engineered strains showed improved heterologous violacein production at phosphate limitation and also at low pH. Overall, this study demonstrates the potential of engineering the E. coli membrane composition for constructing robust hosts with an increased abiotic stress resistance for biotechnology and synthetic biology applications. KEY POINTS: • Ornithine lipid production in E. coli increases biomass yield under phosphate limitation. • Engineered strains show an enhanced production phenotype under low pH stress. • Transcriptome analysis and CCCP experiments revealed reduced proton leakage.202438587638
718100.9971Roles of rpoS-activating small RNAs in pathways leading to acid resistance of Escherichia coli. Escherichia coli and related enteric bacteria can survive under extreme acid stress condition at least for several hours. RpoS is a key factor for acid stress management in many enterobacteria. Although three rpoS-activating sRNAs, DsrA, RprA, and ArcZ, have been identified in E. coli, it remains unclear how these small RNA molecules participate in pathways leading to acid resistance (AR). Here, we showed that overexpression of ArcZ, DsrA, or RprA enhances AR in a RpoS-dependent manner. Mutant strains with deletion of any of three sRNA genes showed lowered AR, and deleting all three sRNA genes led to more severe defects in protecting against acid stress. Overexpression of any of the three sRNAs fully rescued the acid tolerance defects of the mutant strain lacking all three genes, suggesting that all three sRNAs perform the same function in activating RpoS required for AR. Notably, acid stress led to the induction of DsrA and RprA but not ArcZ.201424319011
8938110.9971Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus. The antipsychotic drug thioridazine is a candidate drug for an alternative treatment of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) in combination with the β-lactam antibiotic oxacillin. The drug has been shown to have the capability to resensitize MRSA to oxacillin. We have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis in response to thioridazine in combination with oxacillin. We observed that the oxacillin-induced expression of genes belonging to the VraSR regulon is reduced by the addition of thioridazine. The exclusion of such key factors involved in cell wall biosynthesis will most likely lead to a weakened cell wall and affect the ability of the bacteria to sustain oxacillin treatment. Furthermore, we found that thioridazine itself reduces the expression level of selected virulence genes and that selected toxin genes are not induced by thioridazine. In the present study, we find indications that the mechanism underlying reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis.201121375577
342120.9971Heat-shock-increased survival to far-UV radiation in Escherichia coli is wavelength dependent. Heat-shock-induced resistance to far-UV (FUV) radiation was studied in Escherichia coli. The induction of FUV resistance was shown to be dependent on the products of the genes uvrA and polA in bacteria irradiated at 254 nm. Heat shock increased the resistance to 280 nm radiation in a uvrA6 recA13 mutant. Heat shock lowered the mutation frequency (reversion to tryptophan proficiency) in wild-type or uvrA strains irradiated at 254 nm. When these strains were irradiated at 280 nm, heat shock did not interfere with the mutation frequency in the wild-type strain, but greatly enhanced mutations in the uvrA mutant. After heat-shock treatment, the wild-type strain irradiated at 254 nm showed increased DNA degradation, indicating enhanced repair activity. However, heat shock did not stimulate SOS repair triggered by FUV. An increased survival of bacteriophages irradiated with FUV and inoculated into heat-shock-treated bacteria was not detected. The possibility that heat shock enhances excision repair activity in a wavelength-dependent manner is discussed.19948176549
720130.9971Escherichia Coli Increases its ATP Concentration in Weakly Acidic Environments Principally through the Glycolytic Pathway. Acid resistance is an intrinsic characteristic of intestinal bacteria in order to survive passage through the stomach. Adenosine triphosphate (ATP), the ubiquitous chemical used to power metabolic reactions, activate signaling cascades, and form precursors of nucleic acids, was also found to be associated with the survival of Escherichia coli (E. coli) in acidic environments. The metabolic pathway responsible for elevating the level of ATP inside these bacteria during acid adaptation has been unclear. E. coli uses several mechanisms of ATP production, including oxidative phosphorylation, glycolysis and the oxidation of organic compounds. To uncover which is primarily used during adaptation to acidic conditions, we broadly analyzed the levels of gene transcription of multiple E. coli metabolic pathway components. Our findings confirmed that the primary producers of ATP in E. coli undergoing mild acidic stress are the glycolytic enzymes Glk, PykF and Pgk, which are also essential for survival under markedly acidic conditions. By contrast, the transcription of genes related to oxidative phosphorylation was downregulated, despite it being the major producer of ATP in neutral pH environments.202032854287
6296140.9971Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants. INTRODUCTION: Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. OBJECTIVE: The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. METHODS: Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. RESULTS: Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. CONCLUSION: It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria.201626432001
722150.9971Evolution of Escherichia coli for maximum HOCl resistance through constitutive expression of the OxyR regulon. Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved Escherichia coli cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins.201424899627
719160.9971Polyamines are critical for the induction of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli. As part of our studies on the biological functions of polyamines, we have used a mutant of Escherichia coli that lacks all the genes for polyamine biosynthesis for a global transcriptional analysis on the effect of added polyamines. The most striking early response to the polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR) that is important for the survival of the bacteria when passing through the acid environment of the stomach. Not only were the two genes for glutamate decarboxylases (gadA and gadB) and the gene for glutamate-γ-aminobutyrate antiporter (gadC) induced by the polyamine addition, but the various genes involved in the regulation of this system were also induced. We confirmed the importance of polyamines for the induction of the GDAR system by direct measurement of glutamate decarboxylase activity and acid survival. The effect of deletions of the regulatory genes on the GDAR system and the effects of overproduction of two of these genes were also studied. Strikingly, overproduction of the alternative σ factor rpoS and of the regulatory gene gadE resulted in very high levels of glutamate decarboxylase and almost complete protection against acid stress even in the absence of any polyamines. Thus, these data show that a major function of polyamines in E. coli is protection against acid stress by increasing the synthesis of glutamate decarboxylase, presumably by increasing the levels of the rpoS and gadE regulators.201324097985
8939170.9971YmdB-mediated down-regulation of sucA inhibits biofilm formation and induces apramycin susceptibility in Escherichia coli. Antibiotic resistance associated with biofilm formation is a major concern when treating bacterial infections with drugs. The genes and pathways involved in biofilm formation have been extensively studied and are also involved in antibiotic resistance. Recent studies show that overexpression of Escherichia coli (E. coli) YmdB protein alters gene expression profiles and inhibits biofilm formation. Therefore, it is expected that YmdB and its regulated genes play a key role in development of biofilm and antibiotic resistance phenotypes. The present study screened antibiotics to identify those whose susceptibility profiles were regulated by YmdB levels. This protocol identified apramycin. Additional screening for genes negatively regulated by inactivation of RNase III activity via YmdB overexpression revealed that a gene associated with the tricarboxylic acid cycle gene, sucA, was necessary for the YmdB-like phenotype. Taken together, these data suggest that regulation of RNase III activity by trans-acting factors may be the key to identifying genes or pathways connecting biofilm and antibiotic resistance phenotypes. This information could be used to reduce the emergence of biofilm-associated multidrug-resistant bacteria.201728034758
8217180.9971Mutagenicity of organophosphorus compounds in bacteria and Drosophila. 140 Organophosphorus compounds (OP's) have been tested for mutagenic activity in bacteria, principally by using two specially constructed sets of tester strains of the bacteria Salmonella typhimurium and Escherichia coli. It was found that 20% gave positive mutagenic responses and that this group of chemicals produce base subsitutions rather than frame-shift mutations. In most cases the DNA repair genes exrA+ and recA+ were required for mutagenic activity. Seven compounds were further tested in Drosophila melanogaster for the ability to induce recessive lethal mutations. In some of these cases the doses administered to the flies had to be very low due to the highly toxic nature of the compounds. To over-come this problem, the accumulation of recessive lethal mutations was measured in populations which were continually exposed to the compounds over a period of some 18 months. During this time the populations developed increased resistance to the compound and so the dose administered could gradually be increased. Six of the compounds were mutagenic. Of the compounds tested in both systems, those showing mutagenic activity in bacteria were also mutagenic in Drosophila, those not mutagenic in bacteria were not mutagenic in Drosophila.1975806014
8946190.9971Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake. Although fosfomycin is an old antibiotic, it has resurfaced with particular interest. The antibiotic is still effective against many pathogens that are resistant to other commonly used antibiotics. We have found that fosfomycin resistance of enterohemorrhagic Escherichia coli (EHEC) O157:H7 is controlled by the bacterial two-component signal transduction system CpxAR. A cpxA mutant lacking its phosphatase activity results in constitutive activation of its cognate response regulator, CpxR, and fosfomycin resistance. We have shown that fosfomycin resistance requires CpxR because deletion of the cpxR gene in the cpxA mutant restores fosfomycin sensitivity. We have also shown that CpxR directly represses the expression of two genes, glpT and uhpT, which encode transporters that cotransport fosfomycin with their native substrates glycerol-3-phosphate and glucose-6-phosphate, and repression of these genes leads to a decrease in fosfomycin transport into the cpxA mutant. However, the cpxA mutant had an impaired growth phenotype when cultured with glycerol-3-phosphate or glucose-6-phosphate as a sole carbon substrate and was outcompeted by the parent strain, even in nutrient-rich medium. This suggests a trade-off between fosfomycin resistance and the biological fitness associated with carbon substrate uptake. We propose a role for the CpxAR system in the reversible control of fosfomycin resistance. This may be a beneficial strategy for bacteria to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin.201424163343