# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5393 | 0 | 1.0000 | Characterization and Transferability of erm and tet Antibiotic Resistance Genes in Lactobacillus spp. Isolated from Traditional Fermented Milk. Lactobacillus is a widely used bacteria and consumed through various fermented foods and beverages. Strains have been shown to carry resistance genes and mobile genetic elements with their ability to transfer the resistance to sensitive pathogenic strains. To study this, 4 cultures of Lactobacillus were isolated from traditional fermented milk. The isolates were able to grow up to 4% (w/v) NaCl concentration and 45 °C temperature, and showed > 97% 16S rRNA gene similarities with Lactobacillus fermentum. All the isolates were phenotypically screened for the presence of antibiotic resistance. Minimum inhibitory concentration (MIC) as microbiological breakpoints were observed against a varied class of antibiotics. Isolates AKO 94.6, DVM 95.7, and NIFTEM 95.8 were explicitly resistant to ampicillin, ciprofloxacin and vancomycin with MIC well beyond the maximum range of 256 µg/ml in the E-strip test. While isolate SKL1 was sensitive to ampicillin and showed MIC at 0.25 µg/ml but resistant to streptomycin and trimethoprim (MIC > 256 µg/ml). Molecular characterization showed the presence of tet(M) gene in three isolates SKL1, DVM 95.7, and NIFTEM 95.8 which was chromosomally associated resistance determinants while erm(B) resistance gene was detected in isolates DVM 95.7 and NIFTEM 95.8 only which was a plasmid associated gene and could be transferrable conjugally. Gene for Tn916 family (xis) was also observed in isolates DVM 95.7 and NIFTEM 95.8. Transferability of antibiotic resistance to pathogenic recipient strains was examined in isolates DVM 95.7 and NIFTEM 95.8 in different food matrices. The highest conjugation frequency with ~ 10(-1) was obtained in alfalfa seed sprouts. This study reports the presence of acquired gene resistance in Lactobacillus species and dissemination to susceptible strains of bacteria in different food matrices. 16S rRNA gene sequences of isolates were uploaded to the NCBI GenBank database to retrieve the accession number. | 2022 | 36209320 |
| 5398 | 1 | 0.9996 | Characterization and transfer of antimicrobial resistance in lactic acid bacteria from fermented dairy products in China. INTRODUCTION: Lactic acid bacteria (LAB) are commonly found in foods and are also natural intestinal inhabitants in humans and most animals. However, information regarding antimicrobial resistance and the transfer of resistance genes of LAB from fermented dairy products in China is limited. METHODOLOGY: In this study, LAB isolates (n = 82) of Lactobacillus (n = 43) and Streptococcus thermophilus (n = 39) were isolated from 51 commercial fermented food samples in China. All isolates were subjected to pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility, detecting resistance genes, as well as investigating the transferability of resistance genes. RESULTS: The 43 Lactobacillus isolates yielded 24 PFGE patterns and the 34 isolates of S. thermophilus generated 32 different PFGE patterns. Among the 43 Lactobacillus strains, the most commonly observed resistance was that to streptomycin (83.7%) and gentamycin (83.7%). Among the 39 S. thermophilus strains, the most frequently observed resistance was that to streptomycin (92.3%), gentamycin (87.2%), ciprofloxacin (79.5%), and chloramphenicol (71.8%), whereas the lowest level of resistance was that against erythromycin (7.7%). Antimicrobial resistance genes for erythromycin (emrB), gentamycin (aac(6')-aph(2")), streptomycin (ant(6)), sulfamethoxazole (sulI and sulII), tetracycline (tetM and tetS) were detected in the 18 resistance LAB strains. Conjugation experiments showed that tetM from L. delbrueckii subsp. bulgaricus R6 and tetS from L. plantarum R41 were successfully transferred to L. monocytogenes by filter mating. CONCLUSIONS: LAB strains could potentially act as reservoirs of resistance genes and play an active role in the transfer of resistance to humans via the food chain. | 2019 | 32036349 |
| 5399 | 2 | 0.9996 | Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Lactic acid bacteria isolated from Irish pork and beef abattoirs were analysed for their susceptibility to antimicrobials. Thirty-seven isolates (12 enterococci, 10 lactobacilli, 8 streptococci, 3 lactococci, 2 Leuconostoc, and 2 pediococci) were examined for phenotypic resistance using the E-test and their minimum inhibitory concentration to a panel of six antibiotics (ampicillin, chloramphenicol, erythromycin, streptomycin, tetracycline, and vancomycin) was recorded. The corresponding genetic determinants responsible were characterised by PCR. Also, the transferability of these resistance markers was assessed in filter mating assays. Of the 37 isolates, 33 were found to be resistant to one or more antibiotics. All strains were susceptible to ampicillin and chloramphenicol. The erm(B) and msrA/B genes were detected among the 11 erythromycin-resistant strains of enterococci, lactobacilli, and streptococci. Two tetracycline-resistant strains, Lactobacillus plantarum and Leuconostoc mesenteroides spp., contained tet(M) and tet(S) genes respectively. Intrinsic streptomycin resistance was observed in lactobacilli, streptococci, lactococci and Leuconostoc species; none of the common genetic determinants (strA, strB, aadA, aadE) were identified. Four of 10 strains of Enterococcus faecium were resistant to vancomycin; however, no corresponding genetic determinants for this phenotype were identified. Enterococcus faecalis strains were susceptible to vancomycin. L. plantarum, L. mesenteroides and Pediococcus pentosaceus were intrinsically resistant to vancomycin. Transfer of antibiotic resistance determinants was demonstrated in one strain, wherein the tet(M) gene of L. plantarum (23) isolated from a pork abattoir was transferred to Lactococcus lactis BU-2-60 and to E. faecalis JH2-2. This study identified the presence of antibiotic resistance markers in Irish meat isolates and, in one example, resistance was conjugally transferred to other LAB strains. | 2010 | 20074643 |
| 5397 | 3 | 0.9995 | Antimicrobial Resistance of Seventy Lactic Acid Bacteria Isolated from Commercial Probiotics in Korea. In this study, lactic acid bacteria were isolated from 21 top-selling probiotic products on Korean market and their antimicrobial resistance were analyzed. A total 152 strains were claimed to be contained in these products and 70 isolates belonging to three genera (Bifidobacterium, Lactobacillus, and Lactococcus) were obtained from these products. RAPD-PCR showed diversity among isolates of the same species except for two isolates of Lacticaibacillus rhamnosus from two different products. The agar dilution method and the broth dilution method produced different MICs for several antimicrobials. With the agar dilution method, five isolates (three isolates of Bifidobacterium animalis subsp. lactis, one isolate of B. breve, one isolate of B. longum) were susceptible to all nine antimicrobials and 15 isolates were multi-drug resistant. With the broth microdilution method, only two isolates (one isolate of B. breve and one isolate of B. longum) were susceptible while 16 isolates were multi-drug resistant. In this study, only two AMR genes were detected: 1) lnu(A) in one isolate of clindamycin-susceptible and lincomycin-resistant Limosilactobacillus reuteri; and 2) tet(W) in one tetracycline-susceptible isolate of B. longum B1-1 and two tetracycline-susceptible isolates and three tetracycline resistant isolates of B. animalis subsp. lactis. Transfer of these two genes via conjugation with a filter mating technique was not observed. These results suggest a need to monitor antimicrobial resistance in newly registered probiotics as well as probiotics with a long history of use. | 2023 | 36746921 |
| 2387 | 4 | 0.9995 | Phenotypic and genotypic antimicrobial resistance profiles of fecal lactobacilli from domesticated pigeons in Poland. Lactobacillus species play an important role in the host and although they are non-pathogenic, they could act as reservoirs for antibiotic resistance genes, with the potential risk of transfer to other bacteria inhabiting the gastrointestinal tract. The aim of this study was to identify Lactobacillus species derived from feces of domesticated pigeons and to characterize their phenotypic and genotypic antimicrobial resistance (AMR) profiles. A total of 57 Lactobacillus isolates were classified into six species using the MALDI-TOF technique and 16S rDNA restriction analysis. Strains of L. ingluviei (31%), L. salivarius (28%) and L. agilis (23%) were the dominant species isolated. Determination of antimicrobial susceptibility by the microdilution broth method showed widespread resistance to kanamycin (89%), tetracycline (84%), streptomycin (63%), and enrofloxacin (37%). Less than 30% of the isolates were resistant to erythromycin, lincosamides, gentamycin, chloramphenicol and vancomycin. Over half (51%) of the lactobacilli were classified as multidrug resistant. Tet genes were detected in 79% of isolates; the lnuA, cat, ermB, ermC, ant(6)-Ia, ant(4')-Ia, and int-Tn genes were found at a lower frequency. Sequence analysis of the quinolone resistance-determining region (QRDR)of the gyrA gene showed that fluoroquinolone resistance in lactobacilli was the result of a mutation that lead to a change in the amino acid sequence (Ser83→Tyr/Leu/Phe). Domesticated pigeons could be a reservoir for AMR Lactobacillus strains and AMR genes. | 2020 | 32781109 |
| 5392 | 5 | 0.9995 | Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. The study provides phenotypic and molecular analyses of the antibiotic resistance in lactic acid bacteria (LAB) from fermented foods in Xi'an, China. LAB strains (n = 84) belonging to 16 species of Lactobacillus (n = 73), and Streptococcus thermophilus (n = 11) were isolated and identified by sequencing their 16S rRNA gene. All strains were susceptible to ampicillin, bacitracin, and cefsulodin, and intrinsically resistant to nalidixic acid, kanamycin, and vancomycin (except L. bulgaricus, L. acidophilus, and S. thermophilus, which were susceptible to vancomycin). Some strains had acquired resistance for penicillin (n = 2), erythromycin (n = 9), clindamycin (n = 5), and tetracycline (n = 14), while resistance to gentamycin, ciprofloxacin, streptomycin, and chloramphenicol was species dependent. Minimum inhibitory concentrations presented in this study will help to review microbiological breakpoints for some of the species of Lactobacillus. The erm(B) gene was detected from two strains of each of L. fermentum and L. vaginalis, and one strain of each of L. plantarum, L. salivarius, L. acidophilus, L. animalis, and S. thermophilus. The tet genes were identified from 12 strains of lactobacilli from traditional foods. This is the first time, the authors identified tet(S) gene from L. brevis and L. kefiri. The erm(B) gene from L. fermentum NWL24 and L. salivarius NWL33, and tet(M) gene from L. plantarum NWL22 and L. brevis NWL59 were successfully transferred to Enterococcus faecalis 181 by filter mating. It was concluded that acquired antibiotic resistance is well dispersed in fermented food products in Xi'an, China and its transferability to other genera should be monitored closely. | 2011 | 21212956 |
| 2388 | 6 | 0.9995 | Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. A total of 244 lactic acid bacteria (LAB) strains were isolated from 180 dairy and pharmaceutical products that were collected from different areas in Minia governorate, Egypt. LAB were identified phenotypically on basis of morphological, physiological and biochemical characteristics. Lactobacillus isolates were further confirmed using PCR-based assay. By combination of phenotypic with molecular identification Lactobacillus spp. were found to be the dominant genus (138, 76.7%) followed by Streptococcus spp. (65, 36.1%) and Lactococcus spp. (27, 15%). Some contaminant organisms such as (Staphylococcus spp., Escherichia coli, Salmonella spp., mould and yeast) were isolated from the collected dairy samples but pharmaceutical products were free of such contaminants. Susceptibility of LAB isolates to antibiotics representing all major classes was tested by agar dilution method. Generally, LAB were highly susceptible to Beta-lactams except penicillin. Lactobacilli were resistant to vancomycin, however lactococci and streptococci proved to be very susceptible. Most strains were susceptible to tetracycline and showed a wide range of streptomycin MICs. The MICs of erythromycin and clindamycin for most of the LAB were within the normal range of susceptibility. Sixteen Lactobacillus, 8 Lactococcus and 8 Streptococcus isolates including all tetracycline and/or erythromycin resistant strains were tested for the presence of tetracycline and/or erythromycin resistant genes [tet(M) and/or erm(B)]. PCR assays shows that some resistant strains harbor tet(M) and/or erm(B) resistance genes. | 2014 | 24948910 |
| 5396 | 7 | 0.9995 | Antibiotic Resistance of Coagulase-Negative Staphylococci and Lactic Acid Bacteria Isolated from Naturally Fermented Chinese Cured Beef. This study provided phenotypic and molecular analysis of the antibiotic resistance within coagulase-negative staphylococci and lactic acid bacteria isolated from naturally fermented Chinese cured beef. A total of 49 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (37), Lactobacillus plantarum (6), Weissella confusa (4), Lactobacillus sakei (1), and Weissella cibaria (1). All strains were typed by random amplified polymorphic DNA fingerprinting, and their antibiotic resistances profiles to 15 antibiotics were determined as the MIC by using the agar dilution method. All the tested strains were sensitive to ampicillin, and most of them were also sensitive to penicillin, gentamycin, neomycin, norfloxacin, and ciprofloxacin with low MICs. High resistance to streptomycin, vancomycin, erythromycin, roxithromycin, lincomycin, and kanamycin was widely observed, while the resistant levels to tetracycline, oxytetracycline, and chloramphenicol varied. The presence of corresponding resistance genes in resistant isolates was investigated by PCR, with the following genes detected: tet(M) gene in 9 S. carnosus strains and 1 W. confusa strain; erm(F) gene in 10 S. carnosus strains; ere(A) gene in 6 S. carnosus strains; ere(A) gene in 4 S. carnosus strains and 1 L. plantarum strain; and str(A) gene and str(B) gene in 3 S. carnosus strains. The results indicated that multiple antibiotic resistances were common in coagulase-negative staphylococci and lactic acid bacteria strains isolated from naturally fermented Chinese cured beef. Safety analysis and risk assessment should be performed for application in meat products. | 2018 | 30485765 |
| 2916 | 8 | 0.9994 | The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group. In order to investigate whether resistance genes present in bacteria in manure could transfer to indigenous soil bacteria, resistant isolates belonging to the Bacillus cereus group (Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis) were isolated from farm soil (72 isolates) and manure (12 isolates) samples. These isolates were screened for tetracycline resistance genes (tet(K), tet(L), tet(M), tet(O), tet(S) and tet(T)). Of 88 isolates examined, three (3.4%) isolates carried both tet(M) and tet(L) genes, while four (4.5%) isolates carried the tet(L) gene. Eighty-one (92.1%) isolates did not contain any of the tested genes. All tet(M) positive isolates carried transposon Tn916 and could transfer this mobile DNA element to other Gram-positive bacteria. | 2002 | 12351239 |
| 1262 | 9 | 0.9994 | Antibiotic Susceptibility and Virulence Genes in Enterococcus Isolates from Wild Mammals Living in Tuscany, Italy. Drug resistance is of great importance to human and animal health, but wild environments are still poorly understood in terms of their function as reservoirs of dangerous microbes and resistance determinants. The aim of the study was to determine the antibiotic susceptibility and virulence factors of Enterococcus bacteria from wildlife in Tuscany, Italy. Of the 36 mammalian fecal samples, 52 isolates were derived and classified as Enterococcus faecium (46% of isolates), Enterococcus hirae (19%), Enterococcus faecalis (13%), Enterococcus gallinarum (8%), Enterococcus casseliflavus (6%), Enterococcus durans (4%), Enterococcus mundtii (2%), and Enterococcus canintestini (2%) using both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and methods based on analysis of genetic material. The isolates tested showed the most frequent resistance to tetracycline (36.5% isolates), ciprofloxacin (36.5%), and erythromycin (25%). Three isolates showed high level of resistance (minimal inhibitory concentration ≥1,024 μg/mL) to vancomycin and teicoplanin, and 15% of the isolates demonstrated multidrug resistance. No isolate resistant to ampicillin, linezolid, or streptomycin was found. Among resistance genes, aac(6)-Ii (50% isolates), msrA/B (48%), msrC (42%), and tetM (31%) were identified most frequently. All E. faecium and E. faecalis isolates were positive for the efaAfm and efaAfs genes, respectively. Other virulence-associated genes, that is, gelE, cylA, asa1, esp, ace, orf1481, ptsD, and sgrA, were found in the majority of E. faecalis and several E. faecium isolates. Multilocus sequence typing analysis performed for selected isolates revealed three new sequence types. The results obtained indicate that wild mammals might act as reservoirs of resistance and virulence determinants that could be transferred between different ecosystems. | 2020 | 31663834 |
| 5997 | 10 | 0.9994 | Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Probiotic bacteria and starter cultures of Lactobacillus, Weissella and Bifidobacterium of African and European origins were studied and compared for their susceptibility to antimicrobials. The study included, for all isolates, determination of MICs (Minimal Inhibitory Concentration) for 24 antimicrobials, detection of resistance genes by PCR reactions using specific primers and sequencing of positive amplicons. The ability of Lb. reuteri from Africa to transfer the erythromycin resistance gene erm(B) to closely related bacteria was investigated by conjugation. Variations were observed and high levels of intrinsic resistance were found among the tested species. Positive amplicons were obtained for resistance genes encoding aminoglycoside (aph(3')-III, aadA, aadE) and tetracycline (tet(S)) from isolates from Europe and macrolide (erm(B)) from an isolate from Africa. However, only the erm(B) gene found in Lb. reuteri L4: 12002 from Africa contained a homologous sequence to previously published sequences. This gene could be transferred in vitro to enterococci. Higher prevalence of phenotypic resistance for aminoglycoside was found in isolates from Europe. | 2008 | 18063151 |
| 5941 | 11 | 0.9994 | Characterization of macrolide resistance genes in Haemophilus influenzae isolated from children with cystic fibrosis. OBJECTIVES: to determine the mechanism(s) of macrolide resistance in Haemophilus influenzae isolated from cystic fibrosis (CF) patients participating in a randomized placebo-controlled trial of azithromycin. METHODS: macrolide susceptibility, mutations and carriage of the macrolide resistance genes erm(A), erm(B), erm(C), erm(F) and mef(A) were determined using PCR assays and sequencing or hybridization of the PCR products. H. influenzae isolates were used as donors in conjugation studies with H. influenzae and Enterococcus faecalis recipients. Transconjugant susceptibility and the macrolide resistance genes carried were determined. RESULTS: of the 106 H. influenzae isolates, 27 were resistant and 78 intermediate resistant to azithromycin and/or erythromycin. All isolates carried one or more macrolide resistance gene(s), with the mef(A), erm(B) and erm(F) genes found in 74%, 31% and 29% of the isolates, respectively. None of the selected isolates had L4 or L22 mutations. Twenty-five donors, with various macrolide MICs, transferred macrolide resistance genes to H. influenzae Rd (3.5 × 10(-7)-1 × 10(-10)) and/or E. faecalis (1 × 10(-7)-1 × 10(-8)) recipients. The H. influenzae transconjugants were phenotypically resistant or intermediate to both macrolides while E. faecalis transconjugants were erythromycin resistant. CONCLUSIONS: this is the first identification of erm(A), erm(C) and erm(F) genes in H. influenzae or bacteria from CF patients and the first characterization of macrolide gene transfer from H. influenzae donors. The high level of H. influenzae macrolide gene carriage suggests that the use of azithromycin in the CF population may ultimately reduce the effectiveness of continued or repeated macrolide therapy. | 2011 | 21081549 |
| 2389 | 12 | 0.9994 | Antibiotic Resistance of LACTOBACILLUS Strains. The study provides phenotypic and molecular analyses of the antibiotic resistance in 20 Lactobacillus strains including 11 strains newly isolated from fermented plant material. According to the results of disc diffusion method, 90% of tested lactobacilli demonstrated sensitivity to clindamycin and 95% of strains were susceptible to tetracycline, erythromycin, and rifampicin. Ampicillin and chloramphenicol were found to inhibit all bacteria used in this study. The vast majority of tested strains revealed phenotypic resistance to vancomycin, ciprofloxacin, and aminoglycosides. Most of Lactobacillus strains showed high minimum inhibitory concentrations (MICs) of cefotaxime, ceftriaxone, and cefazolin and therefore were considered resistant to cephalosporins. All the strains exhibited multidrug resistance. The occurrence of resistance genes was associated with phenotypic resistance, with the exception of phenotypically susceptible strains that contained genes for tetracycline (tetK, tetL) and erythromycin (ermB, mefA) resistance. The vanX gene for vancomycin resistance was among the most frequently identified among the lactobacilli (75% of strains), but the occurrence of the parC gene for ciprofloxacin resistance was sporadic (20% of strains). Our results mainly evidence the intrinsic nature of the resistance to aminoglycosides in lactobacilli, though genes for enzymatic modification of streptomycin aadA and aadE were found in 20% of tested strains. The occurrence of extended spectrum beta-lactamases (ESBL) was unknown in Lactobacillus, but our results revealed the blaTEM gene in 80% of strains, whereas blaSHV and blaOXA-1 genes were less frequent (20% and 15% of strains, respectively). | 2019 | 31555856 |
| 5395 | 13 | 0.9994 | Assessment of Antibiotic Susceptibility within Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Hunan Smoked Pork, a Naturally Fermented Meat Product in China. The aim of this study was to evaluate the antibiotic susceptibility of lactic acid bacteria (LAB) and coagulase-negative staphylococci (CNS) strains isolated from naturally fermented smoked pork produced in Hunan, China. A total of 48 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (23), Lactobacillus plantarum (12), Lactobacillus brevis (10), Lactobacillus sakei (1), Weissella confusa (1), and Weissella cibaria (1). All strains were typed by RAPD-PCR, and their susceptibility to 15 antibiotics was determined and expressed as the minimum inhibitory concentration (MIC) using agar dilution method. High resistance to penicillin G, streptomycin, gentamycin, vancomycin, chloramphenicol, norfloxacin, ciprofloxacin, kanamycin, and neomycin was found among the isolates. All the strains were sensitive to ampicillin, while the susceptibility to tetracycline, oxytetracycline, erythromycin, lincomycin, and roxithromycin varied. The presence of relevant resistance genes was investigated by PCR and sequencing, with the following genes detected: str(A), str(B), tet(O), tet(M), ere(A), and catA. Eleven strains, including 3 S. carnosus, 6 L. plantarum, and 2 L. brevis, harbored more than 3 antibiotic resistance genes. Overall, multiple antibiotic resistance patterns were widely observed in LAB and S. carnosus strains isolated from Hunan smoked pork. Risk assessment should be carried out with regard to the safe use of LAB and CNS in food production. PRACTICAL APPLICATION: We evaluated the antibiotic resistance of lactic acid bacteria and coagulase-negative staphylococci strains isolated from Chinese naturally fermented smoked pork. Our results may provide important data on establishing breakpoint standards for LAB and CNS and evaluating the safety risk of these strains for commercial use. | 2018 | 29786847 |
| 2906 | 14 | 0.9994 | The mef(A) gene predominates among seven macrolide resistance genes identified in gram-negative strains representing 13 genera, isolated from healthy Portuguese children. Of the 176 randomly selected, commensal, gram-negative bacteria isolated from healthy children with low exposure to antibiotics, 138 (78%) carried one or more of the seven macrolide resistance genes tested in this study. These isolates included 79 (91%) isolates from the oral cavity and 59 (66%) isolates from urine samples. The mef(A) gene, coding for an efflux protein, was found in 73 isolates (41%) and was the most frequently carried gene. The mef(A) gene could be transferred from the donors into a gram-positive E. faecalis recipient and a gram-negative Escherichia coli recipient. The erm(B) gene transferred and was maintained in the E. coli transconjugants but was found in 0 to 100% of the E. faecalis transconjugants tested, while the other five genes could be transferred only into the E. coli recipient. The individual macrolide resistance genes were identified in 3 to 12 new genera. Eight (10%) of the oral isolates and 30 (34%) of the urine isolates for which the MICs were 2 to >500 microg of erythromycin per ml did not hybridize with any of the seven genes and may carry novel macrolide resistance genes. | 2004 | 15328110 |
| 5394 | 15 | 0.9994 | Antibiotic susceptibility of bacteria isolated from pasteurized milk and characterization of macrolide-lincosamide-streptogramin resistance genes. The presence of antibiotic-resistant bacteria in pasteurized milk was detected by plating 18 milk samples on selective media containing beta-lactams, macrolides, or a glycopeptide. Most samples contained gram-positive bacteria that grew on agar plates containing oxacillin, erythromycin, and/or spiramycin. The disk-diffusion method confirmed resistance to erythromycin and/or spiramycin in 86 and 65% of the coryneform bacteria and Micrococcaceae tested, respectively. PCR and sequence analysis revealed the presence of an ermC gene in 2 of the 25 Micrococcaceae strains investigated for their resistance to erythromycin and/or spiramycin. None of the 14 corynebacteria strains resistant to erythromycin and/or spiramycin harbored the erm(X) gene. No gene transfer could be demonstrated between the two erm(C) staphylococcal isolates and recipient strains of Enterococcus faecalis JH2-2 or Staphylococcus aureus 80CR5. | 2005 | 15726980 |
| 2399 | 16 | 0.9994 | Ready-to-eat dairy products as a source of multidrug-resistant Enterococcus strains: Phenotypic and genotypic characteristics. The enterococci are ubiquitous bacteria able to colonize the human and animal gastrointestinal tracts and fresh and fermented food products. Their highly plastic genome allows Enterococcus spp. to gain resistance to multiple antibiotics, making infections with these organisms difficult to treat. Food-borne enterococci could be carriers of antibiotic resistance determinants. The goal of this work was to study the characteristics of Enterococcus spp. in fermented milk products from Poland and their antibiotic resistance gene profiles. A total of 189 strains were isolated from 182 dairy products out of 320 samples tested. The predominant species were Enterococcus faecium (53.4%) and Enterococcus faecalis (34.4%). Isolates were resistant to streptomycin (29.1%), erythromycin (14.3%), tetracycline (11.6%), rifampicin (8.7%), and tigecycline (8.1%). We also detected 2 vancomycin-resistant and 3 linezolid-resistant strains; however, no vanA or vanB genes were identified. A total of 57 high-level aminoglycoside resistance strains (30.2%) were identified, most of which have the ant(6')-Ia gene, followed by the aac(6')-Ie-aph(2″)-Ia and aph(3″)-IIIa genes. Resistance to tetracycline was most often conferred by tetM and tetL genes. Macrolide resistance was most frequently encoded by ermB and ermA genes. Conjugative mobile genetic element (transposon Tn916-Tn1545) was identified in 15.3% of the strains, including 96.3% of strains harboring the tetM gene. This study found that enterococci are widely present in retail ready-to-eat dairy products in Poland. Many isolated strains are antibiotic resistant and carry transferable resistance genes, which represent a potential source of transmission of multidrug-resistant bacteria to humans. | 2020 | 32197843 |
| 2910 | 17 | 0.9994 | Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in strains from humans (35 isolates), chickens (15 isolates), food (21 isolates), soil (16 isolates) and veterinary sources (6 isolates) was determined, and tetracycline-resistance genes were detected. Resistance was most common in strains isolated from chickens, followed by those from soils, clinical samples and foods. The most highly resistant strains were found among clinical and food isolates. tetA(P) was the most common resistance gene, and along with tetB(P) was found in all resistant strains and some sensitive strains. One tetracycline-resistant food isolate had an intact tet(M) gene. However, PCR fragments of 0.4 or 0.8 kb with high degrees of identity to parts of the tet(M) sequences of other bacteria were found, mainly in clinical isolates, and often in isolates with tetB(P). No correlation between level of sensitivity to tetracycline or minocycline and the presence of tetA(P), tetB(P) or part of tet(M) was found. The presence of part of tet(M) in some strains of C. perfringens containing tetB(P) may have occurred by recent gene transfer. | 2010 | 20661548 |
| 2909 | 18 | 0.9994 | Determination of the prevalence of antimicrobial resistance genes in canine Clostridium perfringens isolates. Clostridium perfringens is a well documented cause of a mild self-limiting diarrhea and a potentially fatal acute hemorrhagic diarrheal syndrome in the dog. A recent study documented that 21% of canine C. perfringens isolates had MIC's indicative of resistance to tetracycline, an antimicrobial commonly recommended for treatment of C. perfringens-associated diarrhea. The objective of the present study was to further evaluate the antimicrobial susceptibility profiles of these isolates by determining the prevalence of specific resistance genes, their expression, and ability for transference between bacteria. One hundred and twenty-four canine C. perfringens isolates from 124 dogs were evaluated. Minimum inhibitory concentrations of tetracycline, erythromycin, tylosin, and metronidazole were determined using the CLSI Reference Agar Dilution Method. All isolates were screened for three tetracycline resistance genes: tetA(P), tetB(P) and tetM, and two macrolide resistance genes: ermB and ermQ, via PCR using primer sequences previously described. Ninety-six percent (119/124) of the isolates were positive for the tetA(P) gene, and 41% (51/124) were positive for both the tetA(P) and tetB(P) genes. No isolates were positive for the tetB(P) gene alone. Highly susceptible isolates (MIC< or = 4 microg/ml) were significantly more likely to lack the tetB(P) gene. One isolate (0.8%) was positive for the ermB gene, and one isolate was positive for the ermQ gene. The tetM gene was not found in any of the isolates tested. Two out of 15 tested isolates (13%) demonstrated transfer of tetracycline resistance via bacterial conjugation. Tetracycline should be avoided for the treatment of C. perfringens-associated diarrhea in dogs because of the relatively high prevalence of in vitro resistance, and the potential for conjugative transfer of antimicrobial resistance. | 2006 | 16330169 |
| 2908 | 19 | 0.9994 | Detection of tetracycline and macrolide resistance determinants in Enterococci of animal and environmental origin using multiplex PCR. An occurrence of resistance to tetracycline (TET) and erythromycin (ERY) was ascertained in 82 isolates of Enterococcus spp. of animal and environmental origin. Using E test, 33 isolates were resistant to TET and three isolates to ERY. Using polymerase chain reaction (PCR; single and multiplex), the TET determinants tet(M) and tet(L) were detected in 35 and 13 isolates, respectively. Twelve isolates carried both tet(M) and tet(L) genes. Eight isolates possessed ermB gene associated with ERY resistance. Multiplex PCR was shown to be a suitable method for simultaneous determination of all three resistance determinants that occurred most frequently in bacteria isolated from poultry. This study also demonstrates that gastrointestinal tract of broilers may be a reservoir of enterococci with acquired resistance to both TET and ERY that can be transferred to humans via food chain. | 2011 | 21656006 |