In vitro Activity of Contezolid Against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus, and Strains With Linezolid Resistance Genes From China. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
537601.0000In vitro Activity of Contezolid Against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus, and Strains With Linezolid Resistance Genes From China. Contezolid is a novel oxazolidinone, which exhibits potent activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and penicillin-resistant Streptococcus pneumoniae (PRSP). In this study, the in vitro activity of contezolid was compared with linezolid (LZD), tigecycline (TGC), teicoplanin (TEC), vancomycin (VA), daptomycin (DAP), and florfenicol (FFC) against MRSA and VRE strains isolated from China. Contezolid revealed considerable activity against MRSA and VRE isolates with MIC(90) values of 0.5 and 1.0 μg/mL, respectively. For VRE strains with different resistance genotypes, including vanA- and vanM-type strains, contezolid did not exhibit significantly differential antibacterial activity. Furthermore, the antimicrobial activity of contezolid is similar to or slightly better than that of linezolid against MRSA and VRE strains. Subsequently, the activity of contezolid was tested against strains carrying linezolid resistance genes, including Staphylococcus capitis carrying cfr gene and Enterococcus faecalis carrying optrA gene. The results showed that contezolid exhibited similar antimicrobial efficacy to linezolid against strains with linezolid resistance genes. In general, contezolid may have potential benefits to treat the infections caused by MRSA and VRE pathogens.202134489919
234210.9987Correlation Analysis of Staphylococcus aureus Drug Resistance and Virulence Factors with Blood Cell Counts and Coagulation Indexes. OBJECTIVE: The influence of different Staphylococcus aureus variants on blood cells and coagulation system was evaluated by investigating the carrying status of drug resistance genes and virulence genes of methicillin-resistantStaphylococcus aureus (MRSA) and methicillin-sensitiveStaphylococcus aureus (MSSA). METHODS: A total of 105 blood culture-derivedStaphylococcus aureus strains were collected. The carrying status of drug resistance genes mecA and three virulence genes tst, pvl, and sasX was analyzed by polymerase chain reaction (PCR). The changes in routine blood routine counts and coagulation indexes of patients infected with different strains were analyzed. RESULTS: The results showed that the positive rate of mecA was consistent with that of MRSA. Virulence genes tst and sasX were detected only in MRSA. Compared with MSSA, patients infected with MRSA or MSSA patients infected with virulence factor, leukocyte count and neutrophil count in peripheral blood were significantly increased, and the platelet count decreased to a higher degree. Part thromboplastin time increased, D-dimer increased, but fibrinogen content decreased more. The changes of erythrocyte and hemoglobin had no significant correlation with whether Staphylococcus aureus carried virulence genes. CONCLUSION: The detection rate of MRSA in patients with positive Staphylococcus aureus in blood culture had exceeded 20%. The detected MRSA bacteria carried three virulence genes, tst, pvl, and sasX, which were more likely than MSSA. MRSA, which carries two virulence genes, is more likely to cause clotting disorders.202336846497
237520.9987Prevalence of inducible clindamycin resistance in methicillin-resistant Staphylococcus aureus: the first study in Jordan. INTRODUCTION: A high rate of infections with methicillin-resistant Staphylococcus aureus (MRSA) has been documented, in both hospital- (HA-MRSA) and community-acquired (CA-MRSA) diseases in Jordan. Erythromycin and clindamycin are considered treatments of choice. However, resistance to erythromycin with false susceptibility to clindamycin in vitro may lead to therapeutic failure. Hence, it is mandatory to study the prevalence of inducible resistance to macrolide-lincosamide-streptogramin B (iMLSB) antibiotics conferred by erm genes in those bacteria. METHODOLOGY: S. aureus isolates were identified morphologically and biochemically, and MRSA were appraised using standard procedures. Induction in resistance to MLSB antibiotics among MRSA isolates was detected phenotypically using the D-test, and the presence of erm genes was revealed by polymerase chain reaction (PCR). RESULTS: Of 126 collected Staphylococcus isolates, 71 (56.3%) isolates were S. aureus, of which 55 (77.5%) were MRSA. A total of 43 (78.2%) MRSA-discordant isolates were resistant to erythromycin, of which 33 (76.7%) exhibited the iMLSB (D-test positive), 2 (4.7%) the MSB (D-test negative), and 8 (18.6%) the constitutive resistant (cMLSB) phenotypes. Induction of clindamycin resistance was 1.6 times greater in CA-MRSA than in HA-MRSA. Furthermore, ermA and ermC were significantly prevalent in HA-MRSA and CA-MRSA, respectively. CONCLUSIONS: Continuous surveillance of the MLSB resistance is important and required before the prescription of clindamycin to treat MRSA infections.201728459227
228730.9986Expression of norA, norB and norC efflux pump genes mediating fluoroquinolones resistance in MRSA isolates. INTRODUCTION: Although fluoroquinolones are used to treat methicillin-resistant Staphylococcus aureus (MRSA)-induced infections, acquisition of antibiotic resistance by bacteria has impaired their clinical relevance. We aimed to evaluate the frequency of norA, norB, and norC efflux pump genes-mediating fluoroquinolones resistance and measure their expression levels in MRSA isolates. METHODOLOGY: 126 S. aureus isolates were collected from different clinical samples of adult hospitalized patients and identified by conventional microbiological methods. MRSA was diagnosed by cefoxitin disc diffusion method and minimum inhibitory concentration (MIC) of ciprofloxacin by broth microdilution method. The expression levels of efflux pump genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: 80 (63.5%) MRSA isolates were identified and showed high level of resistance to erythromycin (80%), gentamicin (75%), clindamycin (65%) and ciprofloxacin (60 %). norA, norB and norC were detected in 75%, 35% and 55% of the MRSA isolates respectively. norC was the most commonly overexpressed gene measured by qRT-PCR, occurring in 40% of MRSA isolates, followed by norA (35%) and norB (30%). The expression of these genes was significantly higher in ciprofloxacin-resistant than quantitative real-time PCR ciprofloxacin-sensitive MRSA isolates. CONCLUSIONS: This study showed high prevalence and overexpression of efflux pump genes among MRSA isolates which indicates the significant role of these genes in the development of multidrug resistance against antibiotics including fluoroquinolones.202438635612
228540.9986Efflux genes and active efflux activity detection in Malaysian clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Efflux-mediated resistance has been recognized as an important contributor of antibiotic resistance in bacteria, especially in methicillin-resistant Staphylococcus aureus (MRSA) isolates. This study was carried out to detect and analyze efflux genes (norA and mdeA) and active efflux activity in a collection of Malaysian MRSA and methicillin-sensitive S. aureus (MSSA) clinical isolates. Nineteen isolates including three ATCC S. aureus reference strains were subjected to PCR detection and DNA sequence analysis for norA and mdeA and active efflux detection using modified minimum inhibitory concentration (MIC) assay. From the 19 isolates, 18 isolates harboured the mdeA gene while 16 isolates contained norA gene. DNA sequence analysis reveals 98-100% correlation between the PCR product and the published DNA sequences in GenBank. In addition, 16 isolates exhibited active efflux activity using the ethidium bromide (EtBr)-reserpine combination MIC assay. To our knowledge, this is the first report on the detection of efflux genes and active efflux activity amongst Malaysian clinical isolates of MRSA/MSSA. Detection of active efflux activity may explain the previous report on efflux-mediated drug resistance profile amongst the local clinical isolates.200818720500
244050.9986Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus hominis strains isolated from clinical specimens. Coagulase-negative staphylococci (CoNS) are the most frequently isolated bacteria from the blood and the predominant cause of nosocomial infections. Macrolides, lincosamides and streptogramin B (MLSB) antibiotics, especially erythromycin and clindamycin, are important therapeutic agents in the treatment of methicillin-resistant staphylococci infections. Among CoNS, Staphylococcus hominis represents the third most common organism. In spite of its clinical significance, very little is known about its mechanisms of resistance to antibiotics, especially MLSB. Fifty-five S. hominis isolates from the blood and the surgical wounds of hospitalized patients were studied. The erm(C) gene was predominant in erythromycin-resistant S. hominis isolates. The methylase genes, erm(A) and erm(B), were present in 15 and 25% of clinical isolates, respectively. A combination of various erythromycin resistance methylase (erm) genes was detected in 15% S. hominis isolates. The efflux gene msr(A) was detected in 18% of isolates, alone in four isolates, and in different combinations in a further six. The lnu(A) gene, responsible for enzymatic inactivation of lincosamides was carried by 31% of the isolates. No erythromycin resistance that could not be attributed to the genes erm(A), erm(B), erm(C) and msr(A) was detected. In S. hominis, 75 and 84%, respectively, were erythromycin resistant and clindamycin susceptible. Among erythromycin-resistant S. hominis isolates, 68% of these strains showed the inducible MLSB phenotype. Four isolates harbouring the msr(A) genes alone displayed the MSB phenotype. These studies indicated that resistance to MLSB in S. hominis is mostly based on the ribosomal target modification mechanism mediated by erm genes, mainly the erm(C), and enzymatic drug inactivation mediated by lnu(A).201626253583
238160.9986Potential of Natural Phenolic Compounds as Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus in Chicken Meat. Staphylococcus aureus is one of the most widespread foodborne bacteria that cause high morbidity, mortality, and economic loss, primarily if foodborne diseases are caused by pathogenic and multidrug-resistant (MDR) strains. This study aimed to determine the prevalence of S. aureus in chicken meat in Egyptian markets. Thus, this study might be the first to assess the efficiency of different natural phenolic compounds as novel antibacterial agents against MDR S. aureus pathogens isolated from raw chicken meat in the Egyptian market. The incidence and quantification of pathogenic S. aureus were detected in retail raw chicken meat parts (breast, thigh, fillet, and giblets). In total, 73 out of 80 (91.3%) of the chicken meat parts were contaminated, with S. aureus as the only species isolated. Of the 192 identified S. aureus isolates, 143 were coagulase-positive S. aureus and 117 isolates were MDR (81.8%, 117/143). Twenty-two antibiotic resistance profile patterns were detected. One strain was randomly selected from each pattern to further analyze virulence and resistance genes. Extracted DNA was assessed for the presence of antibiotic-resistance genes, i.e., vancomycin-resistance (vanA), aminoglycosides-resistance (aacA-aphD), apramycin-resistance (apmA), and methicillin-resistance (mecA), penicillin-resistance (blaZ), and virulence genes staphylococcal enterotoxins (sea and seb), Panton-Valentine leucocidin (pvl), clumping factor A (clfA), and toxic shock syndrome toxin (tst). Clustering analyses revealed that six S. aureus strains harbored the most virulence and resistance genes. The activity of hydroquinone was significantly higher than thymol, carvacrol, eugenol, and protocatechuic acid. Therefore, phenolic compounds, particularly hydroquinone, could potentially alternate with conventional antibiotics against the pathogenic MDR S. aureus inhabiting raw chicken meat. Hence, this study indicates that urgent interventions are necessary to improve hygiene for safer meat in Egyptian markets. Moreover, hydroquinone could be a natural phenolic compound for inhibiting foodborne pathogens.202337764518
578270.9986The Efficacy of Bacteriocins Against Biofilm-Producing Bacteria Causing Bovine Clinical Mastitis in Dairy Farms: A New Strategy. Using an alternative bio-product is one of the most promising ways to control bovine mastitis and avoid new intra-mammary infections. The aims of this study were to ascertain the prevalence of biofilm-forming bacteria responsible for causing clinical mastitis in dairy herds and to assess the effectiveness of bacteriocins, produced by Bacillus subtilis, in controlling the growth of these bacteria in the milk of animals. A total of 150 milk samples were collected from cows and buffalos suffering from mastitis and the etiological agents were isolated and identified by the VITEK-2-COMPACT-SYSTEM®. Additionally, the capability of the bacterial isolates to produce biofilms was determined. RT-PCR was used to detect enterotoxin-producing genes (sed and seb), resistance genes (mecA and blaZ), and biofilm-associated genes (icaA and fnbA) in the isolated bacteria. The susceptibility patterns of the bacterial isolates to bacteriocins were assessed using an agar well-diffusion assay. S. aureus was significantly more capable of producing biofilms than coagulase-negative Staphylococcus isolates. S. ubris was the strongest biofilm producer among the Streptococcus species. The sensitivity profiles of the Staphylococcus spp. (S. aureus and coagulase-negative Staphylococcus) and their biofilm producers to bacteriocins were significantly higher (100% and 90%, respectively) at the same concentration. Bacteriocins had a lethal effect on Staphylococci, Streptococci, and biofilm development at a dose of 250 µg/mL. In dairy farms, bacteriocins are a viable alternative treatment for the prevention and control of bovine clinical mastitis.202337256384
578380.9986Molecular Investigation and Virulence Determination of Methicillin and Vancomycin Resistant Clinical Staphylococcus Aureus Isolates. Staphylococcus aureus is an opportunistic pathogen that provides conditions for host invasion due to various virulence factors and plays a role in causing various infections. The pathogenicity of these bacteria may vary depending on the host's susceptibility. This study investigates the sensitivity of S. aureus strains isolated from clinical samples to methicillin and vancomycin, and it evaluates the presence of resistance, virulence and toxin-producing genes, and their expression level in the methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-intermediate S. aureus (VISA) isolates. A cross-sectional study was conducted, encompassing 502 S. aureus isolates obtained from diverse infections over the course of a year. The methicillin and vancomycin sensitivities of the isolates were ascertained by disk diffusion and microdilution broth methods, respectively. The presence of genes associated with resistance, adhesion, and toxin production was subsequently investigated through the implementation of multiplex polymerase chain reaction (PCR) methodology. The expression levels of virulence and resistance genes were detected in resistant and sensitive isolates using real-time quantitative PCR (qPCR). Among the 502 S. aureus isolates, 168 (33.6%) were identified as MRSA. Furthermore, a total of six isolates (1.2%) were identified as VRSA, and two isolates (0.4%) were identified as VISA. The distribution of virulence and resistance-related genes varied among the isolates. The results of the gene expression study demonstrated that the expression levels of the majority of the studied genes were significantly higher in resistant isolates (MRSA and VRSA) compared to sensitive isolates. It is imperative to acknowledge that VRSA and MRSA are regarded as grave hazards to human health. The present study underscores the necessity for enhanced sanitary measures to more effectively control this hospital pathogen, particularly in light of the presence and expression of genes encoding virulence factors in S. aureus isolates.202540980455
583490.9986Real-Time PCR to Identify Staphylococci and Assay for Virulence from Blood. The genus Staphylococcus includes pathogenic and non-pathogenic facultative anaerobes. Due to the plethora of virulence factors encoded in its genome, the species Staphylococcus aureus is known to be the most pathogenic. S. aureus strains harboring genes encoding virulence and antibiotic resistance are of public health importance. In clinical samples, however, pathogenic S. aureus is often mixed with putatively less pathogenic coagulase-negative staphylococci (CoNS), both of which can harbor mecA, the genetic driver for staphylococcal methicillin-resistance. In this chapter, the detailed practical procedure for operating a real-time pentaplex PCR assay in blood cultures is described. The pentaplex real-time PCR assay simultaneously detects markers for the presence of bacteria (16S rRNA), coagulase-negative staphylococcus (cns), S. aureus (spa), Panton-Valentine leukocidin (pvl), and methicillin resistance (mecA).201728600770
5377100.9986Synthetic lincosamides iboxamycin and cresomycin are active against ocular multidrug-resistant methicillin-resistant Staphylococcus aureus carrying erm genes. OBJECTIVE: Antimicrobial resistance is a global pandemic that poses a major threat to vision health as ocular bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA), are becoming increasingly resistant to first-line therapies. Here we evaluated the antimicrobial activity of new synthetic lincosamides in comparison to currently used antibiotics against clinical ocular MRSA isolates. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution for two novel synthetic lincosamides (iboxamycin and cresomycin) and eight comparator antibiotics against a collection of 50 genomically characterised ocular MRSA isolates, including isolates harbouring erm genes (n = 25). RESULTS: Both drugs were active against widespread MRSA clonal complexes CC8 and CC5. The MIC(50) and MIC(90) of iboxamycin were 0.06 and 2 mg/L, respectively. Cresomycin (MIC(50) = 0.06 mg/L) also displayed good activity with an in vitro potency four-fold higher (MIC(90) = 0.5 mg/L) than iboxamycin. In isolates harbouring erm genes, MIC(90) were >16, 2, and 0.5 mg/L for clindamycin, iboxamycin, and cresomycin, respectively. The in vitro potencies of iboxamycin and cresomycin were similar or higher than that of comparator agents and were not impacted by multidrug-resistance phenotypes or by the presence of erm genes when compared with clindamycin. CONCLUSIONS: Our results demonstrate that iboxamycin and cresomycin display potent in vitro activity against ocular MRSA isolates, including multidrug-resistant isolates harbouring erm genes.202439293511
5832110.9985New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. Major challenges in diagnostic molecular microbiology are to develop a simple assay to distinguish Staphylococcus aureus from the less virulent but clinically important coagulase-negative staphylococci (CoNS) and to simultaneously determine their antibiotic resistance profiles. Multiplex PCR assays have been developed for the detection of methicillin- and mupirocin-resistant S. aureus and CoNS but not for the simultaneous discrimination of S. aureus from CoNS. We designed a new set of Staphylococcus genus-specific primers and developed a novel quadriplex PCR assay targeting the 16S rRNA (Staphylococcus genus specific), nuc (S. aureus species specific), mecA (a determinant of methicillin resistance), and mupA (a determinant of mupirocin resistance) genes to identify most staphylococci, to discriminate S. aureus from CoNS and other bacteria, and to simultaneously detect methicillin and mupirocin resistance. Validation of the assay with 96 ATCC control strains and 323 previously characterized clinical isolates, including methicillin- and mupirocin-sensitive and -resistant S. aureus and CoNS isolates and other bacteria, demonstrated 100% sensitivity, specificity, and accuracy. This assay represents a simple, rapid, accurate, and reliable approach for the detection of methicillin- and mupirocin-resistant staphylococci and offers the hope of preventing their widespread dissemination through early and reliable detection.200415528678
2436120.9985Lactic Acid Bacteria as Biological Control of Staphylococcus aureus in Coalho Goat Cheese. The aim of this study is to investigate the bacterial population in coalho goat cheese produced in the semi-arid northeast region of Brazil, to analyse the antibiotic resistance profiles of the identified pathogenic bacteria, to detect the staphylococcal enterotoxin genes and to evaluate the addition of autochthonous lactic acid bacteria (LAB) with technofunctional properties for the control of Staphylococcus aureus growth. In the analysed samples, strains of Escherichia coli (N=11), Salmonella spp. (N=18), Listeria spp. (N=6) and S. aureus (N=9) were classified as multidrug resistant (MDR). The most commonly isolated pathogen from the studied coalho goat cheese was S. aureus. Its isolates were positive for the genes encoding enterotoxins A (sea), B (seb), C (sec) and D (sed). The autochthonous LAB with the potential to inhibit S. aureus were identified as Enterococcus faecium. These strains were selected for in vitro tests of protective, safety, technological and functional properties. In the coalho goat cheese food matrix, these selected autochthonous LAB were able to reduce the enterotoxigenic MDR S. aureus load by approx. 3 log units.201830510486
2439130.9985Differences in distribution of MLS antibiotics resistance genes in clinical isolates of staphylococci belonging to species: S. epidermidis, S. hominis, S. haemolyticus, S. simulans and S. warneri. BACKGROUND: Macrolides and lincosamides are two leading types of antibiotics commonly used in therapies. The study examines the differences in resistance to these antibiotics and their molecular bases in S. epidermidis as well as in rarely isolated species of coagulase-negative staphylococci such as S. hominis, S. haemolyticus, S. warneri and S. simulans. The isolates were tested for the presence of the erm(A), erm(B), erm(C), lnu(A), msr(A), msr(B), mph(C), ere(A) and ere(B) genes. Phenotypic resistance to methicillin and mecA presence were also determined. RESULTS: The MLS(B) resistance mechanism was phenotypically found in isolates of species included in the study. The most prevalent MLS(B) resistance mechanism was observed in S. hominis, S. haemolyticus and S. epidermidis isolates mainly of the MLS(B) resistance constitutive type. Macrolide, lincosamide and streptogramin B resistance genes were rarely detected in isolates individually. The erm(B), ere(A) and ere(B) genes were not found in any of the strains. The erm(A) gene was determined only in four strains of S. epidermidis and S. hominis while lnu(A) was seen in eight strains (mainly in S. hominis). The erm(C) gene was present in most of S. epidermidis strains and predominant in S. hominis and S. simulans isolates. The examined species clearly differed between one another in the repertoire of accumulated genes. CONCLUSIONS: The presence of genes encoding the MLS(B) resistance among CoNS strains demonstrates these genes' widespread prevalence and accumulation in opportunistic pathogens that might become gene reservoir for bacteria with superior pathogenic potential.201931182020
2286140.9985Association of Antibacterial Susceptibility Profile with the Prevalence of Genes Encoding Efflux Proteins in the Bangladeshi Clinical Isolates of Staphylococcus aureus. Expelling antibiotic molecules out of the cell wall through multiple efflux pumps is one of the potential mechanisms of developing resistance against a wide number of antibiotics in Staphylococcus aureus. The aim of this study was to investigate the association between the antibiotic susceptibility profile and the prevalence of different efflux pump genes i.e., norA, norB, norC, mepA, sepA, mdeA, qacA/B, and smr in the clinical isolates of S. aureus. Sixty clinical isolates were collected from a tertiary level hospital in Bangladesh. The disc diffusion method using ten antibiotics of different classes was used to discern the susceptibility profile. polymerase chain reaction (PCR) was employed to observe the resistance patterns and to detect the presence of plasmid and chromosomal encoded genes. Among the clinical isolates, 60% (36 out of 60) of the samples were Methicillin-resistant Staphylococcus aureus (MRSA), whereas 55% (33 out of 60) of the bacterial samples were found to be multi-drug resistant. The bacteria showed higher resistance to vancomycin (73.33%), followed by ciprofloxacin (60%), cefixime (53.33%), azithromycin (43.33%), and amoxicillin (31.67%). The prevalence of the chromosomally-encoded efflux genes norA (91.67%), norB (90%), norC (93.33%), mepA (93.33%), sepA (98.33%), and mdeA (93.33%) were extremely high with a minor portion of them carrying the plasmid-encoded genes qacA/B (20%) and smr (8.33%). Several genetic combinations of efflux pump genes were revealed, among which norA + norB + norC + mepA + sepA + mdeA was the most widely distributed combination among MRSA and MSSA bacteria that conferred resistance against ciprofloxacin and probably vancomycin. Based on the present study, it is evident that the presence of multiple efflux genes potentiated the drug extrusion activity and may play a pivotal role in the development of multidrug resistance in S. aureus.202336830216
2352150.9985Phenotypic and Molecular Detection of Biofilm Formation in Methicillin-Resistant Staphylococcus Aureus Isolated from Different Clinical Sources in Erbil City. BACKGROUND: Staphylococcus aureus is an important causative pathogen. The production of biofilms is an important factor and makes these bacteria resistant to antimicrobial therapy. OBJECTIVES: the current study aimed to assess the prevalence of resistance to antibacterial agents and to evaluate the phenotypic and genotypic characterization of biofilm formation among S. aureus strains. METHODS: This study included 50 isolates of Methicillin-resistant S. aureus (MRSA) and Methicillin-Susceptible S. aureus (MSSA). S. aureus was identified by molecular and conventional methods, and antimicrobial resistance was tested with a disc diffusion method. The biofilm formation was performed through the Microtiter plate method. Strains were subjected to PCR to determine the presence of nuc, mecA, icaA, icaB, icaC, and icaD genes. RESULTS: Of the 50 S. aureus isolates, 32(64%) and 18(36%) were MRSA and MSSA, respectively. A large number of MRSA and MSSA isolates showed resistance to Penicillin and Azithromycin, and a lower number of MRSA and MSSA isolates showed resistance to Amikacin Gentamicin. None of the isolates was resistant to Vancomycin. The MRSA strains had significantly higher resistance against antibiotics than MSSA strains (P = 0.0154). All isolates (MRSA and MSSA) were able to produce biofilm with levels ranging from strong (31.25 %), (16.6%) to moderate (53.12%), (50%) to weak (15.6%), (33.3%) respectively. The MRSA strains had a significantly higher biofilm formation ability than the MSSA strains (P = 0.0079). The biofilm-encoding genes were detected among isolates with different frequencies. The majority of S. aureus isolates, 42 (84%), were positive for the icaA. The prevalence rates of the icaB, icaC and icaD genes were found to be 37 (74%), 40 (80%) and 41 (82%), respectively. CONCLUSIONS: The prevalence of biofilm encoding genes associated with multidrug resistance in S. aureus strains is high. Therefore, identifying epidemiology, molecular characteristics, and biofilm management of S. aureus infection would be helpful.202336908866
2348160.9985Characterization of Multidrug-Resistant Staphylococcus aureus Isolates and Comparison of Methods of Susceptibility to Vancomycin. S. aureus are among the main bacteria causing problems related to multidrug resistance in nosocomial infections. Therefore, it is necessary to carry out a reliable and rapid diagnosis for the identification of the bacteria and characterization of its susceptibility profile, especially vancomycin, which is an alternative treatment against multidrug-resistant (MDR) S. aureus. Thus, the goal of this study was to characterize isolates of S. aureus regarding the resistance and virulence and to check the susceptibility to vancomycin, through different methods, for comparative purposes. Seventeen antimicrobials were tested to assess the susceptibility profile. It was evaluated the presence of identification (nuc), resistance (mecA and blaZ), biofilm (icaA and icaD) and siderophore (sfaD and sbnD) genes. The susceptibility to vancomycin was evaluated by Minimum Inhibitory Concentration (MIC) by broth microdilution (BMD), E-test, commercial panel (Kit), and Phoenix equipment. Most S. aureus (93,33%) was classified as MDR. These isolates were 100% positive for nuc, mecA, icaA, icaD, and sfaD genes; 96.67% for sbnD and 33.33% for blaZ. In relation to BMD, all methods correctly classified the susceptibility of the isolates; however, regarding the exact MIC value for vancomycin, Phoenix showed agreement of 63.33%, E-test (33.33%) and Kit (26.66%). In conclusion, most of S. aureus was considered MDR. Also, they presented resistance, biofilm production, and siderophores genes, showing the pathogenic potential of these bacteria. Besides, the Phoenix test was considered the most effective, as it presents advantages, such as identification of the microorganism and a greater number of antimicrobials tested at a time.202236308600
3658170.9985Antibiotics for gram-positive bacterial infections. Vancomycin, teicoplanin, quinupristin/dalfopristin, and linezolid. Vancomycin is a safe, effective antibiotic for a variety of serious gram-positive infections. Because of emerging resistance in enterococci and staphylococci and the emerging threat of spread of vancomycin-resistant genes to other gram-positive organisms, judicious use of vancomycin should be promoted. Quinupristin/dalfopristin, a streptogramin antibiotic, and linezolid, an oxazolidinone, show promise against some strains of gram-positive bacteria that are resistant to vancomycin.200010829266
2284180.9985Molecular Mechanisms and Epidemiology of Fosfomycin Resistance in Staphylococcus aureus Isolated From Patients at a Teaching Hospital in China. Staphylococcus aureus is a major cause of hospital- and community-acquired infections placing a significant burden on the healthcare system. With the widespread of multidrug-resistant bacteria and the lack of effective antibacterial drugs, fosfomycin has gradually attracted attention as an "old drug." Thus, investigating the resistance mechanisms and epidemiology of fosfomycin-resistant S. aureus is an urgent requirement. In order to investigate the mechanisms of resistance, 11 fosfomycin-resistant S. aureus isolates were analyzed by PCR and sequencing. The genes, including fosA, fosB, fosC, fosD, fosX, and tet38, as well as mutations in murA, glpT, and uhpT were identified. Quantitative real-time PCR (qRT-PCR) was conducted to evaluate the expression of the target enzyme gene murA and the efflux pump gene tet38 under the selection pressure of fosfomycin. Furthermore, multilocus sequence typing (MLST) identified a novel sequence type (ST 5708) of S. aureus strains. However, none of the resistant strains carried fosA, fosB, fosC, fosD, and fosX genes in the current study, and 12 distinct mutations were detected in the uhpT (3), glpT (4), and murA (5) genes. qRT-PCR revealed an elevated expression of the tet38 gene when exposed to increasing concentration of fosfomycin among 8 fosfomycin-resistant S. aureus strains and reference strain ATCC 29213. MLST analysis categorized the 11 strains into 9 STs. Thus, the mutations in the uhpT, glpT, and murA genes might be the primary mechanisms underlying fosfomycin resistance, and the overexpression of efflux pump gene tet38 may play a major role in the fosfomycin resistance in these isolates.202032670230
5939190.9985Resistance to antimicrobial agents of common bacteria isolated from Taiwan. Antimicrobial susceptibility of 11 commonly seen and/or important pathogenic bacteria isolated from the National Taiwan University Hospital in 1981 and 1992 was analysed. Oxacillin-resistance was most remarkable in Staphylococcus aureus. Its prevalence increased rapidly from 6.7% in 1981 to 49.7% in 1992. A high proportion of oxacillin-resistance was also found in coagulase-negative staphylococci, both in 1981 and in 1992. For Streptococcus pneumoniae, no penicillin-resistant nor erythromycin-resistant strain was found in 1981, but by 1992, 5.8% of the isolates were penicillin-resistant 42.3% erythromycin-resistant. Gentamicin-resistance was the most common problem in enterococci, with 70.6% resistance in 1992. As to Gram-negative bacteria, Enterobacter spp. demonstrated a high proportion of resistance to various antimicrobial agents: more than 72% susceptibility was found only for amikacin. Pseudomonas aeruginosa was also a highly resistant bacterium, with only 50 to 90% of susceptibility to various antipseudomonal agents. In Haemophilus influenzae, both ampicillin-resistance and chloramphenicol-resistance were remarkable, with 52.2% and 32.9% resistance, respectively, in 1992.199418611604