Occurrence of Bacterial Markers and Antibiotic Resistance Genes in Sub-Saharan Rivers Receiving Animal Farm Wastewaters. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
534101.0000Occurrence of Bacterial Markers and Antibiotic Resistance Genes in Sub-Saharan Rivers Receiving Animal Farm Wastewaters. Antibiotic resistant bacteria and genes which confer resistance to antibiotics from human/animal sources are currently considered a serious environmental and a public health concern. This problem is still little investigated in aquatic environment of developing countries according to the different climatic conditions. In this research, the total bacterial load, the abundance of relevant bacteria (Escherichia coli (E. coli), Enterococcus (Ent), and Pseudomonas), and antibiotic resistance genes (ARGs: bla(OXA-48), bla(CTX-M), sul1, sul2, sul3, and tet(B)) were quantified using Quantitative Polymerase Chain Reaction (qPCR) in sediments from two rivers receiving animal farming wastewaters under tropical conditions in Kinshasa, capital city of the Democratic Republic of the Congo. Human and pig host-specific markers were exploited to examine the sources of contamination. The total bacterial load correlated with relevant bacteria and genes bla(OXA-48), sul3, and tet(B) (P value < 0.01). E. coli strongly correlated with 16s rDNA, Enterococcus, Pseudomonas spp., bla(OXA-48), sul3, and tet(B) (P value < 0.01) and with bla(CTX-M), sul1, and sul2 at a lower magnitude (P value < 0.05). The most abundant and most commonly detected ARGs were sul1, and sul2. Our findings confirmed at least two sources of contamination originating from pigs and anthropogenic activities and that animal farm wastewaters didn't exclusively contribute to antibiotic resistance profile. Moreover, our analysis sheds the light on developing countries where less than adequate infrastructure or lack of it adds to the complexity of antibiotic resistance proliferation with potential risks to the human exposure and aquatic living organisms. This research presents useful tools for the evaluation of emerging microbial contaminants in aquatic ecosystems which can be applied in the similar environment.201931619758
534210.9999Prevalence of antibiotic resistance genes in drinking and environmental water sources of the Kathmandu Valley, Nepal. Antibiotic-resistant bacteria-associated infections are responsible for more than 1.2 million annual deaths worldwide. In low- and middle-income countries (LMICs), the consumption of antibiotics for human and veterinary uses is not regulated effectively. Overused and misused antibiotics can end up in aquatic environments, which may act as a conduit for antibiotic resistance dissemination. However, data on the prevalence of antibiotic resistance determinants in aquatic environments are still limited for LMICs. In this study, we evaluated the prevalence and concentration of antibiotic resistance genes (ARGs) in different drinking and environmental water sources collected from the Kathmandu Valley, Nepal, using droplet digital polymerase chain reaction to understand the current situation of ARG contamination. River water and shallow dug well water sources were the most contaminated with ARGs. Almost all samples contained sul1 (94%), and intI1 and tet(A) were detected in 83 and 60% of the samples, respectively. Maximum ARG concentration varied between 4.2 log(10) copies/100 ml for mecA and 9.3 log(10) copies/100 ml for sul1. Significant positive correlations were found between ARGs (r > 0.5, p < 0.01), except for mecA, qnrS, and vanA. As sul1 and intI1 were detected in almost all samples, the presence of these genes in a given sample may need to be considered as background antibiotic resistance in LMICs. Therefore, monitoring of ARGs, such as β-lactam ARGs, quinolone resistance genes, and vancomycin resistance genes, may provide a better picture of the antibiotic resistance determinants in aquatic environments of LMICs.202236071971
532920.9999Distribution of Antibiotic Resistance in a Mixed-Use Watershed and the Impact of Wastewater Treatment Plants on Antibiotic Resistance in Surface Water. The aquatic environment has been recognized as a source of antibiotic resistance (AR) that factors into the One Health approach to combat AR. To provide much needed data on AR in the environment, a comprehensive survey of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues was conducted in a mixed-use watershed and wastewater treatment plants (WWTPs) within the watershed to evaluate these contaminants in surface water. A culture-based approach was used to determine prevalence and diversity of ARB in surface water. Low levels of AR Salmonella (9.6%) and Escherichia coli (6.5%) were detected, while all Enterococcus were resistant to at least one tested antibiotic. Fewer than 20% of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (17.3%) and carbapenem-resistant Enterobacteriaceae (CRE) (7.7%) were recovered. Six ARGs were detected using qPCR, primarily the erythromycin-resistance gene, ermB. Of the 26 antibiotics measured, almost all water samples (98.7%) had detectable levels of antibiotics. Analysis of wastewater samples from three WWTPs showed that WWTPs did not completely remove AR contaminants. ARGs and antibiotics were detected in all the WWTP effluent discharges, indicating that WWTPs are the source of AR contaminants in receiving water. However, no significant difference in ARGs and antibiotics between the upstream and downstream water suggests that there are other sources of AR contamination. The widespread occurrence and abundance of medically important antibiotics, bacteria resistant to antibiotics used for human and veterinary purposes, and the genes associated with resistance to these antibiotics, may potentially pose risks to the local populations exposed to these water sources.202337998788
534030.9999Hospital wastewaters: A reservoir and source of clinically relevant bacteria and antibiotic resistant genes dissemination in urban river under tropical conditions. The occurrence and dissemination of antibiotic resistant genes (ARGs) that are associated with clinical pathogens and the evaluation of associated risks are still under-investigated in developing countries under tropical conditions. In this context, cultivable and molecular approaches were performed to assess the dissemination of bacteria and the antibiotic resistance genes in aquatic environment in Kinshasa, Democratic Republic of the Congo. Cultivable approach quantified β-lactam, carbapenem resistant, and total Escherichia coli and Enterobacteriaceae in river sediments and surface waters that receive raw hospital effluents. The molecular approach utilized Quantitative Polymerase Chain Reaction (qPCR) to quantify the total bacteria and the richness of relevant bacteria (Escherichia coli, Enterococcus, and Pseudomonas), and antibiotic resistance genes (ARGs: bla(OXA-48), bla(CTX-M), bla(IMP), bla(TEM)) in sediment samples. Statistical analysis were employed to highlight the significance of hospital contribution and seasonal variation of bacteria and ARGs into aquatic ecosystems in suburban municipalities of Kinshasa, Democratic Republic of the Congo. The contribution of hospitals to antibiotic resistance proliferation is higher in the dry season than during the wet season (p < 0.05). Hospital similarly contributed Escherichia coli, Enterococcus, and Pseudomonas and ARGs significantly to the sediments in both seasons (p < 0.05). The organic matter content correlated positively with E. coli (r = 0.50, p < 0.05). The total bacterial load correlated with Enterococcus, and Pseudomonas (0.49 < r < 0.69, p < 0.05). Each ARG correlated with the total bacterial load or at least one relevant bacteria (0.41 < r < 0.81, p < 0.05). Our findings confirm that hospital wastewaters contributed significantly to antibiotic resistance profile and the significance of this contribution increased in the dry season. Moreover, our analysis highlights this risk from untreated hospital wastewaters in developing countries, which presents a great threat to public health.202032470679
536340.9999Irrigation Ponds as Sources of Antimicrobial-Resistant Bacteria in Agricultural Areas with Intensive Use of Poultry Litter. Poultry litter is widely used worldwide as an organic fertilizer in agriculture. However, poultry litter may contain high concentrations of antibiotics and/or antimicrobial-resistant bacteria (ARB), which can be mobilized through soil erosion to water bodies, contributing to the spread of antimicrobial resistance genes (ARGs) in the environment. To better comprehend this kind of mobilization, the bacterial communities of four ponds used for irrigation in agricultural and poultry production areas were determined in two periods of the year: at the beginning (low volume of rainfall) and at the end of the rainy season (high volume of rainfall). 16S rRNA gene sequencing revealed not only significantly different bacterial community structures and compositions among the four ponds but also between the samplings. When the DNA obtained from the water samples was PCR amplified using primers for ARGs, those encoding integrases (intI1) and resistance to sulfonamides (sul1 and sul2) and β-lactams (bla(GES), bla(TEM) and bla(SHV)) were detected in three ponds. Moreover, bacterial strains were isolated from CHROMagar plates supplemented with sulfamethoxazole, ceftriaxone or ciprofloxacin and identified as belonging to clinically important Enterobacteriaceae. The results presented here indicate a potential risk of spreading ARB through water resources in agricultural areas with extensive fertilization with poultry litter.202236421294
536550.9999Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Drinking water distribution systems (DWDSs) represent an ideal environment for biofilm formation, which can harbor pathogenic and antimicrobial-resistant bacteria. This study aimed to assess longitudinally the microbial community composition and antimicrobial resistance (AMR), as determined by 16S rRNA NGS and qPCR, respectively, in drinking water (DW) and biofilm from DWDSs, as well as faeces, of free-range organic broiler farms. The role of DWDSs in AMR gene (ARG) dissemination within the farm environment and transmission to animals, was also assessed. DW and biofilm microbial communities differed from those of faecal samples. Moreover, potentially pathogenic and opportunistic bacteria (e.g., Staphylococcaceae) were identified in water and biofilms. High prevalence and abundance of ARGs conferring resistance to carbapenems (i.e., bla(NDM)), 3rd and 4th generation cephalosporins (i.e., bla(CMY-2)), (fluoro)quinolones (i.e., qnrS), and polymyxins (i.e., mcr-3 and mcr-5) were detected in DW, biofilm, and faecal samples, which is of concern for both animal and human health. Although other factors (e.g., feed, pests, and wildlife) may contribute to the dissemination of AMR in free-range organic poultry farms, this study indicates that DWDSs can also play a role.202439334983
530760.9999Increased Antimicrobial and Multidrug Resistance Downstream of Wastewater Treatment Plants in an Urban Watershed. Development and spread of antimicrobial resistance (AMR) and multidrug resistance (MDR) through propagation of antibiotic resistance genes (ARG) in various environments is a global emerging public health concern. The role of wastewater treatment plants (WWTPs) as hot spots for the dissemination of AMR and MDR has been widely pointed out by the scientific community. In this study, we collected surface water samples from sites upstream and downstream of two WWTP discharge points in an urban watershed in the Bryan-College Station (BCS), Texas area, over a period of nine months. E. coli isolates were tested for resistance to ampicillin, tetracycline, sulfamethoxazole, ciprofloxacin, cephalothin, cefoperazone, gentamycin, and imipenem using the Kirby-Bauer disc diffusion method. Antimicrobial resistant heterotrophic bacteria were cultured on R2A media amended with ampicillin, ciprofloxacin, tetracycline, and sulfamethoxazole for analyzing heterotrophic bacteria capable of growth on antibiotic-containing media. In addition, quantitative real-time polymerase chain reaction (qPCR) method was used to measure eight ARG - tetA, tetW, aacA, ampC, mecA, ermA, blaTEM, and intI1 in the surface water collected at each time point. Significant associations (p < 0.05) were observed between the locations of sampling sites relative to WWTP discharge points and the rate of E. coli isolate resistance to tetracycline, ampicillin, cefoperazone, ciprofloxacin, and sulfamethoxazole together with an increased rate of isolate MDR. The abundance of antibiotic-resistant heterotrophs was significantly greater (p < 0.05) downstream of WWTPs compared to upstream locations for all tested antibiotics. Consistent with the results from the culture-based methods, the concentrations of all ARG were substantially higher in the downstream sites compared to the upstream sites, particularly in the site immediately downstream of the WWTP effluent discharges (except mecA). In addition, the Class I integron (intI1) genes were detected in high amounts at all sites and all sampling points, and were about ∼20 times higher in the downstream sites (2.5 × 10(7) copies/100 mL surface water) compared to the upstream sites (1.2 × 10(6) copies/100 mL surface water). Results suggest that the treated WWTP effluent discharges into surface waters can potentially contribute to the occurrence and prevalence of AMR in urban watersheds. In addition to detecting increased ARG in the downstream sites by qPCR, findings from this study also report an increase in viable AMR (HPC) and MDR (E. coli) in these sites. This data will benefit establishment of improved environmental regulations and practices to help manage AMR/MDR and ARG discharges into the environment, and to develop mitigation strategies and effective treatment of wastewater.202134108949
531170.9999Comparison of antibiotic-resistant Escherichia coli and extra-intestinal pathogenic E. coli from main river basins under different levels of the sewer system development. Antimicrobial-resistant Escherichia coli in the aquatic environments is considered a strong indicator of sewage or animal waste contamination and antibiotic pollution. Sewer construction and wastewater treatment plant (WWTP) infrastructure may serve as concentrated point sources of contamination of antibiotic-resistant bacteria and antibiotic resistance genes. In this study, we focused on the distribution of antimicrobial-resistant E. coli in two rivers with large drainage areas and different urbanisation levels. E. coli from Kaoping River with drainage mainly from livestock farming had higher resistance to antibiotics (e.g. penicillins, tetracyclines, phenicols, aminoglycosides, and sulpha drugs) and presented more positive detection of antibiotic-resistance genes (e.g. ampC, bla(TEM), tetA, and cmlA1) than that from Tamsui River. In Kaoping River with a lower percentage of sewer construction nearby (0-30%) in contrast to a higher percentage of sewer construction (55-92%) in Tamsui River, antimicrobial-resistant E. coli distribution was related to livestock farming waste. In Tamsui River, antimicrobial resistant E. coli isolates were found more frequently in the downstream drainage area of WWTPs with secondary water treatment than that of WWTPs with tertiary water treatment. The Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR showed that the fingerprinting group was significantly related to the sampling site (p < 0.01) and sampling date (p < 0.05). By utilising ERIC-PCR in conjunction with antibiotic susceptibility and antibiotic-resistance gene detection, the relationship among different strains of E. coli could be elucidated. Furthermore, we identified the presence of six extra-intestinal pathogenic E. coli isolates and antibiotic-resistant E. coli isolates near drinking water sources, posing a potential risk to public health through community transmission. In conclusion, this study identified environmental factors related to antibiotic-resistant bacteria and antibiotic-resistance gene contamination in rivers during urban development. The results facilitate the understanding of specific management of different waste streams across different urban areas. Periodic surveillance of the effects of WWTPs and livestock waste containing antibiotic-resistant bacteria and antibiotic-resistance genes on river contamination is necessary.202337619401
531080.9999Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste. This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences and concentrations of antimicrobial-resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in livestock environments.201526197056
534990.9999Spread and persistence of antimicrobial resistance genes in wastewater from human and animal sources in São Paulo, Brazil. The spread of antimicrobial resistance (AMR) through multiple reservoirs is a global concern. Wastewater is a critical AMR dissemination source, so this study aimed to assess the persistence of resistance genetic markers in wastewater using a culture-independent approach. Raw and treated wastewater samples (n = 121) from a wastewater treatment plant (WWTP), a human hospital, a veterinary hospital, and a pig farm were monthly collected and concentrated by filtration. DNA was extracted directly from filter membranes, and PCR was used in the qualitative search of 32 antimicrobial resistance genes (ARGs). Selected genes (bla(CTX-M), bla(KPC), qnrB, and mcr-1) were enumerated by quantitative real-time PCR (qPCR). Twenty-six ARGs were detected in the qualitative ARGs search, while quantitative data showed a low variation of the ARG's relative abundance (RA) throughout the months, especially at the human hospital and the WWTP. At the WWTP, despite significantly reducing the absolute number of gene copies/L after each treatment stage (p < 0.05), slight increases (p > 0.05) in the RAs of genes bla(CTX-M), qnrB, and mcr-1 were observed in reused water (tertiary treatment) when compared with secondary effluent. Although the increase is not statistically significant, it is worth noting that there was some level of ARGs concentration after the disinfection process. No significant absolute or relative after-treatment quantification reductions were observed for any ARGs at the veterinary hospital or the pig farm. The spread of ARGs through sewage needs to be continuously addressed, because their release into natural environments may pose potential risks of exposure to resistant bacteria and impact local ecosystems.202438545908
5350100.9999Role of wastewater treatment plants on environmental abundance of Antimicrobial Resistance Genes in Chilean rivers. BACKGROUND: Point sources such as wastewater treatment plants (WWTPs) commonly discharge their effluent into rivers. Their waste may include antibiotic residues, disinfectants, antibiotic resistant bacteria (ARB), and Antimicrobial Resistance Genes (ARG). There is evidence that ARG can be found in the natural environment, but attribution to specific point sources is lacking. OBJECTIVES: The goal of this study was to assess the release and dissemination of ARG from three WWTPs in southern Chile via two pathways: through the river systems, and through wild birds. METHODS: A longitudinal study was conducted, collecting river sediment samples at different distances both upstream and downstream from each WWTP. Wild birds were sampled from around one of the WWTPs once a month for 13 months. A microfluidic q-PCR approach was used to quantify 48 genes covering different molecular mechanisms of resistance, and data was analyzed using ordination methods and linear mixed regression models. RESULTS: There was a statistically significant increase downstream from the WWTPs (p < 0.05) for 17 ARG, but the downstream dissemination through the rivers was not clear. Beta-lactamase genes bla(KPC), bla(TEM), and bla(SHV) were the most abundant in birds, with higher abundance of bla(SHV) in migratory species compared to resident species (p < 0.05). The gene profile was more similar between the migratory and resident bird groups compared to the WWTP gene profile. CONCLUSIONS: While results from this study indicate an influence of WWTPs on ARG abundance in the rivers, the biological significance of this increase and the extent of the WWTPs influence are unclear. In addition, wild birds were found to play a role in disseminating ARG, although association to the specific WWTP could not be ascertained.202031722832
5330110.9999Surveillance on ESBL-Escherichia coli and Indicator ARG in Wastewater and Reclaimed Water of Four Regions of Spain: Impact of Different Disinfection Treatments. In the present study, the occurrence of indicator antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) both in the influent and the effluent of four Spanish wastewater treatment plants (WWTPs) was monitored for 12 months, and the susceptibility profiles of 89 recovered extended spectrum β-lactamase (ESBL)-producing Escherichia coli isolates were obtained against a wide range of antimicrobials. The aim of the study was to better understand whether the current wastewater treatment practices allow us to obtain safe reclaimed water mitigating the spread of ARB and ARGs to the environment. Results showed high concentrations of ESBL-producing E. coli as well as a high prevalence of a range of ARGs in the influent samples. The reclamation treatments implemented in the WWTPs were effective in reducing both the occurrence of ESBL E. coli and ARGs, although significant differences were observed among WWTPs. Despite these reductions in occurrence observed upon wastewater treatment, our findings suggest that WWTP effluents may represent an important source of ARGs, which could be transferred among environmental bacteria and disseminate antimicrobial resistance through the food chain. Remarkably, no major differences were observed in the susceptibility profiles of the ESBL E. coli isolated from influent and effluent waters, indicating that water treatments do not give rise to the emergence of new resistance phenotypes.202336830310
3318120.9999Antibiotic resistance genes in bacteriophages from wastewater treatment plant and hospital wastewaters. Antibiotic resistant bacteria (ARB) are a major health risk caused particularly by anthropogenic activities. Acquisition of antibiotic resistances by bacteria is known to have happened before the discovery of antibiotics and can occur through different routes. Bacteriophages are thought to have an important contribution to the dissemination of antibiotic resistance genes (ARGs) in the environment. In this study, seven ARGs (bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), mecA, vanA, and mcr-1) were investigated, in the bacteriophage fraction, in raw urban and hospital wastewaters. The genes were quantified in 58 raw wastewater samples collected at five WWTPs (n = 38) and hospitals (n = 20). All genes were detected in the phage DNA fraction, with the bla genes found in higher frequency. On the other hand, mecA and mcr-1 were the least frequently detected genes. Concentrations varied between 10(2) copies/L and 10(6) copies/L. The gene coding for the resistance to colistin (mcr-1), a last-resort antibiotic for the treatment of multidrug-resistant Gram-negative infections, was identified in raw urban and hospital wastewaters with positivity rates of 19 % and 10 %, respectively. ARGs patterns varied between hospital and raw urban wastewaters, and within hospitals and WWTP. This study suggests that phages are reservoirs of ARGs, and that ARGs (with particularly emphasis on resistance to colistin and vancomycin) in the phage fraction are already widely widespread in the environment with potential large implications for public health.202337315610
3192130.9999Metagenome-Wide Analysis of Rural and Urban Surface Waters and Sediments in Bangladesh Identifies Human Waste as a Driver of Antibiotic Resistance. In many low- and middle-income countries, antibiotic-resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here, we characterized the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of extended-spectrum beta-lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanized settings (n = 7), rural ponds with a history of aquaculture-related antibiotic use (n = 11), and rural ponds with no history of antibiotic use (n = 6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum Proteobacteria (on average, 73.8% of assigned reads), while in the water samples, Cyanobacteria were the predominant phylum (on average, 60.9% of assigned reads). Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. The abundance of antibiotic resistance genes was significantly correlated (R(2) = 0.73; P = 8.9 × 10(-15)) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanized settings. IMPORTANCE Low- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries, and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here, we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh. We found that urban surface waters are particularly rich in antibiotic resistance genes, with a higher number of them associated with plasmids, indicating that they are more likely to spread horizontally. The abundance of antibiotic resistance genes was strongly correlated with the abundance of bacteria that originate from the human gut, suggesting that uncontrolled release of human waste is a major driver for the spread of antibiotic resistance in the urban environment. Improvements in sanitation in LMICs may thus be a key intervention to reduce the dissemination of antibiotic-resistant bacteria.202134254820
5362140.9999Cross-environmental cycling of antimicrobial resistance in agricultural areas fertilized with poultry litter: A one health approach. Poultry litter, commonly used as an organic fertilizer, can contain antimicrobial residues, resistant bacteria, and/or antimicrobial resistance genes. After application to soil, these contaminants can reach crops and be transported to aquatic systems through leaching and runoff. Once in water bodies, they can return to soil and crops through irrigation, establishing a cycle that promotes the selection, spread and persistence of antimicrobial resistance. To investigate the hypothesis of a cyclical event, samples of poultry litter, cultivable soil fertilized with this organic residue, rhizosphere soil from Sechium edule (chayote), water, and sediments from irrigation ponds were collected across two agricultural and poultry-producing areas during the dry and rainy seasons. Clinically significant bacteria, especially bacteria belonging to the Enterobacteriaceae family, were isolated. Fifty-three strains exhibited one or more antimicrobial resistance genes, as detected by PCR amplification, including those conferring resistance to sulfonamides (sul1 and sul2), fluoroquinolones (qnrB, qnrA, and qnrS), and β-lactams (bla(GES), bla(TEM), bla(SHV), bla(CTX-M-1/2,)bla(CTX-M-8), and bla(CTX-M-14)). Genes encoding integrases related to class-1 and 2 integrons (intI1 and intI2) were also observed. A rare occurrence of the bla(GES) gene was observed in Stenotrophomonas sp. and Brevundimonas sp. Strains of Escherichia sp. were multidrug resistant. Sequencing of the 16S rRNA encoding gene indicated unique operational taxonomic units (OTUs) originating from poultry litter and found in the soil, rhizosphere, water, and sediment, highlighting the dissemination of this material across agricultural substrates. These findings strongly suggest the spread of antimicrobial-resistant bacteria in agricultural environments, posing potential risks to both human and animal health.202439447633
5366150.9999Fresh produce as a reservoir of antimicrobial resistance genes: A case study of Switzerland. Antimicrobial resistance (AMR) can be transferred to humans through food and fresh produce can be an ideal vector as it is often consumed raw or minimally processed. The production environment of fresh produce and the agricultural practices and regulations can vary substantially worldwide, and consequently, the contamination sources of AMR. In this study, 75 imported and 75 non-imported fresh produce samples purchased from Swiss retailers were tested for the presence of antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Moreover, the plasmidome of 4 selected samples was sequenced to have an insight on the diversity of mobile resistome. In total, 91 ARB were isolated from fresh produce, mainly cephalosporin-resistant Enterobacterales (n = 64) and carbapenem-resistant P. aeruginosa (n = 13). All P. aeruginosa, as well as 16 Enterobacterales' isolates were multidrug-resistant. No differences between imported and Swiss fresh produce were found regarding the number of ARB. In 95 % of samples at least one ARG was detected, being the most frequent sul1, bla(TEM), and ermB. Abundance of sul1 and intI1 correlated strongly with the total amount of ARGs, suggesting they could be good indicators for AMR in fresh produce. Furthermore, sul1 correlated with the fecal marker yccT, indicating that fecal contamination could be one of the sources of AMR. The gene sulI was significantly higher in most imported samples, suggesting higher anthropogenic contamination in the food production chain of imported produce. The analyses of the plasmidome of coriander and carrot samples revealed the presence of several ARGs as well as genes conferring resistance to antiseptics and disinfectants in mobile genetic elements. Overall, this study demonstrated that fresh produce contributes to the dissemination of ARGs and ARB.202437813266
5309160.9999Use of Aeromonas spp. as General Indicators of Antimicrobial Susceptibility among Bacteria in Aquatic Environments in Thailand. Antimicrobials are widely used, not only for treating human infections, but also for treatment of livestock and in fish farms. Human habitats in Southeastern Asian countries are located in close proximity to aquatic environments. As such, the human populations within these regions are at risk of exposure to antimicrobial resistant bacteria, and thereby disseminating antimicrobial resistance genes (ARGs). In this study, we collected water samples from 15 sites (5 sites in Chao Phraya River, 2 sites at the mouth of Chao Phraya River, 3 sites in Ta Chin River, and 5 sites at city canals) and 12 sites (6 sites at city canals; 2 sites at chicken farms; 2 sites at pig farms; and 2 samples from sites at pig farms, which were subsequently treated at a biogas plant) in Thailand in 2013 and 2014, respectively. In total, 117 Aeromonas spp. were isolated from the water samples, and these organisms exhibited various antimicrobial susceptibility profiles. Notably, there was a significant correlation between the environmental concentration of tetracyclines and the rates of tetracycline resistance in the isolated Aeromonas spp.; however, both the concentration and rates of tetracycline resistance in samples derived from pig farms were higher than those of samples harvested from other aquatic environments. These findings suggest that the high concentrations of antimicrobials observed in these aquatic environments likely select for ARGs. Furthermore, they indicate that Aeromonas spp. comprise an effective marker for monitoring antimicrobial resistance in aquatic environments.201627433156
3315170.9999Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Seven wastewater treatment plants (WWTPs) with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.201728744270
5308180.9998Simultaneous stream assessment of antibiotics, bacteria, antibiotic resistant bacteria, and antibiotic resistance genes in an agricultural region of the United States. Antimicrobial resistance (AMR) is now recognized as a leading global threat to human health. Nevertheless, there currently is a limited understanding of the environment's role in the spread of AMR and antibiotic resistance genes (ARGs). In 2019, the U.S. Geological Survey conducted the first statewide assessment of antibiotic resistant bacteria (ARB) and ARGs in surface water and bed sediment collected from 34 stream locations across Iowa. Environmental samples were analyzed for a suite of 29 antibiotics and plated on selective media for 15 types of bacteria growth; DNA was extracted from culture growth and used in downstream polymerase chain reaction (PCR) assays for the detection of 24 ARGs. ARGs encoding resistance to antibiotics of clinical importance to human health and disease prevention were prioritized as their presence in stream systems has the potential for environmental significance. Total coliforms, Escherichia coli (E. coli), and staphylococci were nearly ubiquitous in both stream water and stream bed sediment samples, with enterococci present in 97 % of water samples, and Salmonella spp. growth present in 94 % and 67 % of water and bed sediment samples. Bacteria enumerations indicate that high bacteria loads are common in Iowa's streams, with 23 (68 %) streams exceeding state guidelines for primary contact for E. coli in recreational waters and 6 (18 %) streams exceeding the secondary contact advisory level. Although antibiotic-resistant E. coli growth was detected from 40 % of water samples, vancomycin-resistant enterococci (VRE) and penicillinase-resistant Staphylococcus aureus (MRSA) colony growth was detected from nearly all water samples. A total of 14 different ARGs were detected from viable bacteria cells from 30 Iowa streams (88 %, n = 34). Study results provide the first baseline understanding of the prevalence of ARB and ARGs throughout Iowa's waterways and health risk potential for humans, wildlife, and livestock using these waterways for drinking, irrigating, or recreating.202337673265
5339190.9998Metal impacts on the persistence and proliferation of β-lactam resistance genes in Xiangjiang River, China. Currently, the emergence of clinically relevant multi-resistant bacteria and the associated β-lactamases resistance genes which threaten the last frontier for antibiotics presents a major challenge for medical treatment. Xiangjiang River is typically contaminated with heavy metals due to the intensive metal mining activities within this watershed. The occurrence and distribution of several β-lactam antibiotics and ten β-lactam resistance genes (bla(TEM), bla(VIM), bla(SHV), bla(GES), bla(DHA), bla(OXA-1), bla(OXA-2), bla(OXA-10), bla(CMY-2), and bla(ampC)) were investigated in the Xiangjiang River, China. The absolute abundance of bla genes was as high as (7.0 ± 0.6) × 10(6) copies/mL for surface water and (2.3 ± 0.7) × 10(8) copies/g for sediment. In contrast, all the detected β-lactam antibiotic compounds were below the detection limit. The distribution of individual bla gene subtypes was correlated with speciation of heavy metals which might affect the bacterial community structure. The principal coordinate analysis (PCoA) and Mantal test reconfirmed that the heavy metals had a correlation with the bla genes and the bla genes were correlated with bacterial community structure, suggesting that heavy metals impacted on the distribution of the bla genes by shifting bacterial community structure under the long-term selective pressure. The microcosm experiments indicated metal-induced persistence of bla genes in the resistant bacteria (Bacillus megaterium, Staphylococcus epidermidis). The persistence of β-lactam resistance under metal selective pressure is beneficial to the survival of resistant bacteria, thereby contributing to the shift of the bacterial community structure, consequently impacts on the distribution of bla genes.201931256402