Swine waste: A reservoir of high-risk bla(NDM) and mcr-1. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
533701.0000Swine waste: A reservoir of high-risk bla(NDM) and mcr-1. Multidrug resistance associated with pigs not only affects pig production but also threatens human health by influencing the farm surrounding and contaminating the food chain. This paper focused on the occurrence and prevalence of high-risk resistance genes (using bla(NDM) and mcr-1 as marker genes) in two Chinese swine farms, and investigated their fate and seasonal changes in piggery wastewater treatment systems (PWWTSs). Results revealed that bla(NDM) and mcr-1 were prevalent in both confined swine farms, and even prevailed through various processing stages of PWWTSs. Moreover, the abundance of bla(NDM) and mcr-1 in winter was higher than that in summer, with 0.01-1.01 logs variation in piggery wastewater. Of concern is that considerable amounts of bla(NDM) and mcr-1 were present in final effluent that is applied to farmland (up to 10(2)-10(4)copies/mL), raising the risk of propagation to indigenous bacteria. Worse still, those pig-derived isolates harboring the bla(NDM)/mcr-1 gene were confirmed to spread multidrug resistance to other bacteria, which further increased their dissemination potential in agricultural environment. This study highlights the prevalence of bla(NDM) and mcr-1 in swine farms, meanwhile, also emphasizes the necessary to mitigate the release and propagation of these high-risk genes from swine farms following land fertilization and wastewater usage.201931132710
533810.9998Characterisation of microbial communities and quantification of antibiotic resistance genes in Italian wastewater treatment plants using 16S rRNA sequencing and digital PCR. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in humans, animals and environment is a growing threat to public health. Wastewater treatment plants (WWTPs) are crucial in mitigating the risk of environmental contamination by effectively removing contaminants before discharge. However, the persistence of ARB and ARGs even after treatment is a challenge for the management of water system. To comprehensively assess antimicrobial resistance dynamics, we conducted a one-year monitoring study in three WWTPs in central Italy, both influents and effluents. We used seasonal sampling to analyze microbial communities by 16S rRNA, as well as to determine the prevalence and behaviour of major ARGs (sul1, tetA, bla(TEM), bla(OXA-48), bla(CTX-M-1 group), bla(KPC)) and the class 1 Integron (int1). Predominant genera included in order: Arcobacter, Acinetobacter, Flavobacterium, Pseudarcobacter, Bacteroides, Aeromonas, Trichococcus, Cloacibacterium, Pseudomonas and Streptococcus. A higher diversity of bacterial communities was observed in the effluents compared to the influents. Within these communities, we also identified bacteria that may be associated with antibiotic resistance and pose a significant threat to human health. The mean concentrations (in gene copies per liter, gc/L) of ARGs and int1 in untreated wastewater (absolute abundance) were as follows: sul1 (4.1 × 10(9)), tetA (5.2 × 10(8)), bla(TEM) (1.1 × 10(8)), bla(OXA-48) (2.1 × 10(7)), bla(CTX-M-1 group) (1.1 × 10(7)), bla(KPC) (9.4 × 10(5)), and int1 (5.5 × 10(9)). The mean values in treated effluents showed reductions ranging from one to three log. However, after normalizing to the 16S rRNA gene (relative abundance), it was observed that in 37.5 % (42/112) of measurements, the relative abundance of ARGs increased in effluents compared to influents. Furthermore, correlations were identified between ARGs and bacterial genera including priority pathogens. This study improves our understanding of the dynamics of ARGs and provides insights to develop more effective strategies to reduce their spread, protecting public health and preserving the future efficacy of antibiotics.202438750766
534120.9998Occurrence of Bacterial Markers and Antibiotic Resistance Genes in Sub-Saharan Rivers Receiving Animal Farm Wastewaters. Antibiotic resistant bacteria and genes which confer resistance to antibiotics from human/animal sources are currently considered a serious environmental and a public health concern. This problem is still little investigated in aquatic environment of developing countries according to the different climatic conditions. In this research, the total bacterial load, the abundance of relevant bacteria (Escherichia coli (E. coli), Enterococcus (Ent), and Pseudomonas), and antibiotic resistance genes (ARGs: bla(OXA-48), bla(CTX-M), sul1, sul2, sul3, and tet(B)) were quantified using Quantitative Polymerase Chain Reaction (qPCR) in sediments from two rivers receiving animal farming wastewaters under tropical conditions in Kinshasa, capital city of the Democratic Republic of the Congo. Human and pig host-specific markers were exploited to examine the sources of contamination. The total bacterial load correlated with relevant bacteria and genes bla(OXA-48), sul3, and tet(B) (P value < 0.01). E. coli strongly correlated with 16s rDNA, Enterococcus, Pseudomonas spp., bla(OXA-48), sul3, and tet(B) (P value < 0.01) and with bla(CTX-M), sul1, and sul2 at a lower magnitude (P value < 0.05). The most abundant and most commonly detected ARGs were sul1, and sul2. Our findings confirmed at least two sources of contamination originating from pigs and anthropogenic activities and that animal farm wastewaters didn't exclusively contribute to antibiotic resistance profile. Moreover, our analysis sheds the light on developing countries where less than adequate infrastructure or lack of it adds to the complexity of antibiotic resistance proliferation with potential risks to the human exposure and aquatic living organisms. This research presents useful tools for the evaluation of emerging microbial contaminants in aquatic ecosystems which can be applied in the similar environment.201931619758
534930.9998Spread and persistence of antimicrobial resistance genes in wastewater from human and animal sources in São Paulo, Brazil. The spread of antimicrobial resistance (AMR) through multiple reservoirs is a global concern. Wastewater is a critical AMR dissemination source, so this study aimed to assess the persistence of resistance genetic markers in wastewater using a culture-independent approach. Raw and treated wastewater samples (n = 121) from a wastewater treatment plant (WWTP), a human hospital, a veterinary hospital, and a pig farm were monthly collected and concentrated by filtration. DNA was extracted directly from filter membranes, and PCR was used in the qualitative search of 32 antimicrobial resistance genes (ARGs). Selected genes (bla(CTX-M), bla(KPC), qnrB, and mcr-1) were enumerated by quantitative real-time PCR (qPCR). Twenty-six ARGs were detected in the qualitative ARGs search, while quantitative data showed a low variation of the ARG's relative abundance (RA) throughout the months, especially at the human hospital and the WWTP. At the WWTP, despite significantly reducing the absolute number of gene copies/L after each treatment stage (p < 0.05), slight increases (p > 0.05) in the RAs of genes bla(CTX-M), qnrB, and mcr-1 were observed in reused water (tertiary treatment) when compared with secondary effluent. Although the increase is not statistically significant, it is worth noting that there was some level of ARGs concentration after the disinfection process. No significant absolute or relative after-treatment quantification reductions were observed for any ARGs at the veterinary hospital or the pig farm. The spread of ARGs through sewage needs to be continuously addressed, because their release into natural environments may pose potential risks of exposure to resistant bacteria and impact local ecosystems.202438545908
536440.9998Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding extended spectrum β-lactamases (ESBLs). A study was conducted to investigate the impact of raw wastewater use for irrigation on dissemination of bacterial resistance in urban agriculture in African cities. The pollution of agricultural fields by selected antibiotic residues was assessed. The structure and functions of the soil microbial communities, presence of antibiotic resistance genes of human clinical importance and Enterobacteriaceae plasmid replicons were analysed using high throughput metagenomic sequencing. In irrigated fields, the richness of Bacteroidetes and Firmicutes phyla increased by 65% and 15.7%, respectively; functions allocated to microbial communities' adaptation and development increased by 3%. Abundance of antibiotic resistance genes of medical interest was 27% greater in irrigated fields. Extended spectrum β-lactamase genes identified in irrigated fields included bla(CARB-3), bla(OXA-347), bla(OXA-5) and bla(Rm3). The presence of ARGs encoding resistance to amphenicols, β-lactams, and tetracyclines were associated with the higher concentrations of ciprofloxacin, enrofloxacin and sulfamethoxazole in irrigated fields. Ten Enterobacteriaceae plasmid amplicon groups involved in the wide distribution of ARGs were identified in the fields. IncQ2, ColE, IncFIC, IncQ1, and IncFII were found in both farming systems; IncW and IncP1 in irrigated fields; and IncY, IncFIB and IncFIA in non-irrigated fields. In conclusion, raw wastewater irrigated soils in African cities could represent a vector for the spread of antibiotic resistance, thus threatening human and animal health. Consumers of products from these farms and farmers could be at risk of acquiring infections due to drug-resistant bacteria.202031505362
534050.9998Hospital wastewaters: A reservoir and source of clinically relevant bacteria and antibiotic resistant genes dissemination in urban river under tropical conditions. The occurrence and dissemination of antibiotic resistant genes (ARGs) that are associated with clinical pathogens and the evaluation of associated risks are still under-investigated in developing countries under tropical conditions. In this context, cultivable and molecular approaches were performed to assess the dissemination of bacteria and the antibiotic resistance genes in aquatic environment in Kinshasa, Democratic Republic of the Congo. Cultivable approach quantified β-lactam, carbapenem resistant, and total Escherichia coli and Enterobacteriaceae in river sediments and surface waters that receive raw hospital effluents. The molecular approach utilized Quantitative Polymerase Chain Reaction (qPCR) to quantify the total bacteria and the richness of relevant bacteria (Escherichia coli, Enterococcus, and Pseudomonas), and antibiotic resistance genes (ARGs: bla(OXA-48), bla(CTX-M), bla(IMP), bla(TEM)) in sediment samples. Statistical analysis were employed to highlight the significance of hospital contribution and seasonal variation of bacteria and ARGs into aquatic ecosystems in suburban municipalities of Kinshasa, Democratic Republic of the Congo. The contribution of hospitals to antibiotic resistance proliferation is higher in the dry season than during the wet season (p < 0.05). Hospital similarly contributed Escherichia coli, Enterococcus, and Pseudomonas and ARGs significantly to the sediments in both seasons (p < 0.05). The organic matter content correlated positively with E. coli (r = 0.50, p < 0.05). The total bacterial load correlated with Enterococcus, and Pseudomonas (0.49 < r < 0.69, p < 0.05). Each ARG correlated with the total bacterial load or at least one relevant bacteria (0.41 < r < 0.81, p < 0.05). Our findings confirm that hospital wastewaters contributed significantly to antibiotic resistance profile and the significance of this contribution increased in the dry season. Moreover, our analysis highlights this risk from untreated hospital wastewaters in developing countries, which presents a great threat to public health.202032470679
536760.9998Integrated metagenomic, culture-based, and whole genome sequencing analyses of antimicrobial resistance in wastewater and drinking water treatment plants in Barcelona, Spain. The misuse and overuse of antimicrobials drive the emergence of antimicrobial resistance (AMR), a critical global health concern. While wastewater treatment plants (WWTPs) are essential for removing microorganisms and contaminants, they also serve as hotspots for antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), facilitating their persistence and dissemination. This study investigated AMR in two WWTPs and one drinking water treatment plant (DWTP) in the Baix Llobregat area of Barcelona, Spain. Four sampling campaigns were conducted during winter and summer 2023 across different treatment stages. Due to drought conditions, reclaimed water from the Baix Llobregat WWTP was discharged upstream of the DWTP intake to supplement water resources for indirect potable reuse. A total of 991 cultivable ARB were obtained, enabling phenotypic and genotypic characterisation. The most prevalent included Aeromonas spp. (44.3 %), Enterobacterales (27.9 %), Pseudomonas spp. (19.1 %), Acinetobacter spp. (4.8 %), Shewanella spp. (2.2 %), Stenotrophomonas spp. (1 %), and others (0.7 %). Among these, 57.3 % were multidrug-resistant and 2.7 % were extensively drug-resistant. Furthermore, 34.6 % produced extended-spectrum beta-lactamases, 14.1 % harboured carbapenemase genes, and 2.9 % exhibited colistin resistance. Shotgun metagenomic analysis revealed high taxonomic diversity, without dominant genera across treatment stages. The resistome was dominated by ARGs conferring resistance to beta-lactams, aminoglycosides, and macrolides, alongside genes linked to biocide resistance and heavy metal tolerance. Spearman correlation analysis of selected sequenced strains suggested a weak to moderate co-occurrence between ARGs and biocide or heavy metal tolerance genes. These findings underline WWTPs as AMR hotspots and reinforce the need to monitor DWTP source water within the One Health framework.202540914035
331670.9998Winter is coming - Impact of temperature on the variation of beta-lactamase and mcr genes in a wastewater treatment plant. Wastewater treatment plants (WWTP) play a key role in the dissemination of antibiotic resistance and analyzing the abundance of antibiotic resistance genes (ARGs) and resistant bacteria is necessary to evaluate the risk of proliferation caused by WWTPs. Since few studies investigated the seasonal variation of antibiotic resistance, this study aimed to determine the abundance of beta-lactamase and mcr genes and to characterize phenotypic resistant strains in a WWTP in Germany over the seasons. Wastewater, sewage sludge and effluent samples were collected over a one year period and analyzed using quantitative real-time PCR. Resistant strains were isolated, followed by identification and antibiotic susceptibility testing using VITEK 2. The results show a significantly higher occurrence of nearly all investigated ARGs in the wastewater compared to sewage sludge and effluent. ARG abundance and temperature showed a negative correlation in wastewater and significant differences between ARG abundance during warmer and colder seasons were determined, indicating a seasonal effect. Co-occurrence of mcr-1 and carbapenemase genes in a multi-drug resistant Enterobacter cloacae and Escherichia coli producing extended-spectrum beta-lactamase (ESBL) was determined. To the best of our knowledge, this is the first detection of mcr-1, bla(VIM) and bla(OXA-48) in an ESBL-producing E. coli. Although wastewater treatment reduced the abundance of ARGs and resistant strains, a dissemination into the river might be possible because carbapenemase-, CTX-M- and mcr-1-gene harboring strains were still present in the effluent.202031945531
534280.9998Prevalence of antibiotic resistance genes in drinking and environmental water sources of the Kathmandu Valley, Nepal. Antibiotic-resistant bacteria-associated infections are responsible for more than 1.2 million annual deaths worldwide. In low- and middle-income countries (LMICs), the consumption of antibiotics for human and veterinary uses is not regulated effectively. Overused and misused antibiotics can end up in aquatic environments, which may act as a conduit for antibiotic resistance dissemination. However, data on the prevalence of antibiotic resistance determinants in aquatic environments are still limited for LMICs. In this study, we evaluated the prevalence and concentration of antibiotic resistance genes (ARGs) in different drinking and environmental water sources collected from the Kathmandu Valley, Nepal, using droplet digital polymerase chain reaction to understand the current situation of ARG contamination. River water and shallow dug well water sources were the most contaminated with ARGs. Almost all samples contained sul1 (94%), and intI1 and tet(A) were detected in 83 and 60% of the samples, respectively. Maximum ARG concentration varied between 4.2 log(10) copies/100 ml for mecA and 9.3 log(10) copies/100 ml for sul1. Significant positive correlations were found between ARGs (r > 0.5, p < 0.01), except for mecA, qnrS, and vanA. As sul1 and intI1 were detected in almost all samples, the presence of these genes in a given sample may need to be considered as background antibiotic resistance in LMICs. Therefore, monitoring of ARGs, such as β-lactam ARGs, quinolone resistance genes, and vancomycin resistance genes, may provide a better picture of the antibiotic resistance determinants in aquatic environments of LMICs.202236071971
535790.9998Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Antibiotics, antibiotic-resistant bacteria (ARB), antibiotic-resistance genes (ARGs), and mobile genetic elements (MGEs) have been reported in many environments. However, the investigation of their occurrence and diversity in untreated hospital wastewater is still insufficient. High concentrations of antibiotic residues were found in hospital wastewater using solid-phase extraction and UPLC-MS/MS analysis. The concentrations of six of 14 antibiotics reached μg/L levels in the hospital wastewater, which is higher than reported in other aquatic environments. Results of high-throughput sequencing analysis indicated that sequences affiliated to genera Escherichia and Acinetobacter were the predominant in the cultivable multiple-antibiotic-resistant bacteria (CMARB) recovered from the wastewater of three hospitals in China, with compositions of 34%-74%. Notably, several genera containing clinically pathogenic or opportunistic CMARB (e.g., Escherichia, Acinetobacter, Aeromonas, Myroides, Enterococcus, Proteus, Pseudomonas, and Streptococcus) were detected at high relative abundances in the wastewaters of the three hospitals. High-capacity quantitative PCR showed that 131-139 unique ARGs of the 178 targeted genes were detected in the hospital wastewaters. The high prevalence of five MGEs and 12 ARGs was confirmed with qPCR, and some positive correlations between ARGs and MGEs were identified, such as between intI1 and qnrD, intI2 and sul3, intI3 and tetX, Tn916/Tn1545 and sul2, and ISCR1 and sul3. These results suggest that highly abundant antibiotic-resistant pathogens and highly mobile ARGs already exist in the human body, and that their release from hospitals without effective treatment poses high risks to environments and human health.201829054666
5372100.9998Transfer potentials of antibiotic resistance genes in Escherichia spp. strains from different sources. Multidrug-resistant Escherichia coli and antibiotic-resistance genes (ARGs) present a danger to public health. However, information on the dissemination potentials of antibiotic resistance among bacteria from different environments is lacking. We isolated multiple antibiotic-resistant Escherichia spp. from animal farms, hospitals, and municipal wastewater-treatment plants (MWWTPs) using culture-based methods, and carried out resistance phenotype and gene analyses. Thirty-five isolates of multiple antibiotic-resistant Escherichia spp. were further screened to detect 61 ARGs, 18 mobile genetic elements (MGEs), and gene cassettes. The isolates from livestock manure and MWWTPs showed greater diversity in plasmid profiling than hospital wastewater. Each Escherichia sp. carried 21-26 ARGs and 8-12 MGEs. In addition, 11 gene cassettes were detected in 34 Escherichia isolates, with greater diversity in livestock manure and MWWTPs than in hospital wastewater. The results indicated that the potential for ARG transfer was higher in livestock manure and MWWTPs compared with human clinical sources, possibly related to the high occurrence of both residual antibiotics and heavy metals in these environments.202031896018
3315110.9998Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Seven wastewater treatment plants (WWTPs) with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.201728744270
5358120.9998Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Antimicrobial resistance represents a growing and significant public health threat, which requires a global response to develop effective strategies and mitigate the emergence and spread of this phenomenon in clinical and environmental settings. We investigated, therefore, the occurrence and abundance of several antibiotics and antibiotic resistance genes (ARGs), as well as bacterial community composition in wastewater effluents from different hospitals located in the Cluj County, Romania. Antibiotic concentrations ranged between 3.67 and 53.05 μg L(-1), and the most abundant antibiotic classes were β-lactams, glycopeptides, and trimethoprim. Among the ARGs detected, 14 genes confer resistance to β-lactams, aminoglycosides, chloramphenicol, macrolide-lincosamide-streptogramin B (MLSB) antibiotics, sulfonamides, and tetracyclines. Genes encoding quaternary ammonium resistance and a transposon-related element were also detected. The sulI and qacEΔ1 genes, which confer resistance to sulfonamides and quaternary ammonium, had the highest relative abundance with values ranging from 5.33 × 10(-2) to 1.94 × 10(-1) and 1.94 × 10(-2) to 4.89 × 10(-2) copies/16 rRNA gene copies, respectively. The dominant phyla detected in the hospital wastewater samples were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Among selected hospitals, one of them applied an activated sludge and chlorine disinfection process before releasing the effluent to the municipal collector. This conventional wastewater treatment showed moderate removal efficiency of the studied pollutants, with a 55-81% decrease in antibiotic concentrations, 1-3 order of magnitude lower relative abundance of ARGs, but with a slight increase of some potentially pathogenic bacteria. Given this, hospital wastewaters (raw or treated) may contribute to the spread of these emerging pollutants in the receiving environments. To the best of our knowledge, this study quantified for the first time the abundance of antibiotics and ARGs in wastewater effluents from different Romanian hospitals.201728347610
5339130.9998Metal impacts on the persistence and proliferation of β-lactam resistance genes in Xiangjiang River, China. Currently, the emergence of clinically relevant multi-resistant bacteria and the associated β-lactamases resistance genes which threaten the last frontier for antibiotics presents a major challenge for medical treatment. Xiangjiang River is typically contaminated with heavy metals due to the intensive metal mining activities within this watershed. The occurrence and distribution of several β-lactam antibiotics and ten β-lactam resistance genes (bla(TEM), bla(VIM), bla(SHV), bla(GES), bla(DHA), bla(OXA-1), bla(OXA-2), bla(OXA-10), bla(CMY-2), and bla(ampC)) were investigated in the Xiangjiang River, China. The absolute abundance of bla genes was as high as (7.0 ± 0.6) × 10(6) copies/mL for surface water and (2.3 ± 0.7) × 10(8) copies/g for sediment. In contrast, all the detected β-lactam antibiotic compounds were below the detection limit. The distribution of individual bla gene subtypes was correlated with speciation of heavy metals which might affect the bacterial community structure. The principal coordinate analysis (PCoA) and Mantal test reconfirmed that the heavy metals had a correlation with the bla genes and the bla genes were correlated with bacterial community structure, suggesting that heavy metals impacted on the distribution of the bla genes by shifting bacterial community structure under the long-term selective pressure. The microcosm experiments indicated metal-induced persistence of bla genes in the resistant bacteria (Bacillus megaterium, Staphylococcus epidermidis). The persistence of β-lactam resistance under metal selective pressure is beneficial to the survival of resistant bacteria, thereby contributing to the shift of the bacterial community structure, consequently impacts on the distribution of bla genes.201931256402
5359140.9998Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.202439395082
3208150.9998Effects of Antibiotic Residues on Fecal Microbiota Composition and Antimicrobial Resistance Gene Profiles in Cattle from Northwestern China. Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the antibiotic residues, bacterial community, ARG profiles, and mobile genetic elements (MGEs) in cattle feces from three provinces in western China (Ningxia, Xinjiang, and Inner Mongolia) under grazing modes. The HPLC-MS detection showed that the concentration of tetracycline antibiotics was the highest in all three provinces. Correlation analysis revealed a significant negative correlation between antibiotic residues and the diversity and population abundance of intestinal microbiota. However, the abundance of ARGs was directly proportional to antibiotic residues. Then, the Sankey analysis revealed that the ARGs in the cattle fecal samples were concentrated in 15 human pathogenic bacteria (HPB) species, with 9 of these species harboring multiple drug resistance genes. Metagenomic sequencing revealed that carbapenemase-resistant genes (bla(KPC) and bla(VIM)) were also present in considerable abundance, accounting for about 10% of the total ARGs detected in three provinces. Notably, Klebsiella pneumoniae strains carrying bla(CTX-M-55) were detected, which had a possibility of IncFII plasmids harboring transposons and IS19, indicating the risk of horizontal transfer of ARGs. This study significantly advances the understanding of the impact of antibiotic residues on the fecal microbiota composition and ARG profiles in grazing cattle from northwestern China. Furthermore, it provides critical insights for the development of rational antibiotic usage strategies and comprehensive public health risk assessments.202540732167
5333160.9998Antibiotic resistance profile of wastewater treatment plants in Brazil reveals different patterns of resistance and multi resistant bacteria in final effluents. Wastewater treatment plants (WWTPs) are recognized as important sources of Antibiotic Resistant Bacteria (ARBs) and Antibiotic Resistant Genes (ARGs), and might play a role in the removal and dissemination of antimicrobial resistance (AMR) in the environment. Detailed information about AMR removal by the different treatment technologies commonly applied in urban WWTPs is needed. This study investigated the occurrence, removal and characterization of ARBs in WWTPs employing different technologies: WWTP-A (conventional activated sludge-CAS), WWTP-B (UASB reactor followed by biological trickling filter) and WWTP-C (modified activated sludge followed by UV disinfection-MAS/UV). Samples of raw sewage (RI) and treated effluent (TE) were collected and, through the cultivation-based method using 11 antibiotics, the antibiotic resistance profiles were characterized in a one-year period. MAS was effective in reducing ARB counts (2 to 3 log units), compared to CAS (1 log unit) and UASB/BTF (0.5 log unit). The composition of cultivable ARB differed between RI and TE samples. Escherichia was predominant in RI (56/118); whilst in TE Escherichia (31/118) was followed by Bacillus (22/118), Shigella (14/118) and Enterococcus (14/118). Most of the isolates identified (370/394) harboured at least two ARGs and in over 80 % of the isolates, 4 or more ARG (int1, blaTEM, TetA, sul1 and qnrB) were detected. A reduction in the resistance prevalence was observed in effluents after CAS and MAS processes; whilst a slight increase was observed in treated effluents from UASB/BTF and after UV disinfection stage. The multi-drug resistance (MDR) phenotype was attributed to 84.3 % of the isolates from RI (27/32) and 63.6 % from TE (21/33) samples and 52.3 % of the isolates (34/65) were resistant to carbapenems (imipenem, meropenem, ertapenem). The results indicate that treated effluents are still a source for MDR bacteria and ARGs dissemination to aquatic environments. The importance of biological sewage treatment was reinforced by the significant reductions in ARB counts observed. However, implementation of additional treatments is needed to mitigate MDR bacteria release into the environment.202336240935
5300170.9998From Pig Breeding Environment to Subsequently Produced Pork: Comparative Analysis of Antibiotic Resistance Genes and Bacterial Community Composition. It is well verified that pig farms are an important reservoir and supplier of antibiotic resistance genes (ARGs). However, little is known about the transmission of ARGs between the breeding environment and subsequently produced pork. This study was conducted to investigate if ARGs and associated host bacteria spread from the breeding environment onto the meat through the food production chain. We thus analyzed the occurrence and abundance of ARGs, as well as comparing both ARG and bacterial community compositions in farm soil, pig feces and pork samples from a large-scale pig farm located in Xiamen, People's Republic of China. Among the 26 target ARGs, genes conferring resistance to sulfonamide, trimethoprim, aminoglycoside, chloramphenicol, macrolide, florfenicol, and tetracycline were observed at high frequency in both the pig breeding environment and pork. The prevalence of ARGs in pork was surprisingly consistent with breeding environments, especially between the pork and feces. The relative abundance of 10 representative ARGs conferring resistance to six classes of antibiotics ranged from 3.01 × 10(-1) to 1.55 × 10(-6) copies/16S rRNA copies. The ARGs conferring resistance to sulfanilamide (sulI and sulII), aminoglycoside (aadA), and tetracycline [tet(A) and tet(M)] were most highly abundant across most samples. Samples from feces and meat possessed a higher similarity in ARG compositions than samples from the farms soil. Enterobacteriaceae found on the meat samples were further identical with previously isolated multidrug-resistant bacteria from the same pig farm. Our results strongly indicate that ARGs can be potentially spreading from pig breeding environment to meat via the pork industry chain, such as feed supply, pig feeding and pork production.201930761096
5301180.9998High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces. This study analyzed fresh feces from three common bird species that live in urban environments and interact with human communities. Antibiotic resistance genes (ARGs) encoding resistance to three major classes of antibiotics (i.e., tetracyclines, β-lactams, and sulfonamides) and the mobile genetic element integrase gene (intI1) were abundant (up to 10(9), 10(8), 10(9), and 10(10) copies/g dry feces for tetW, bla(TEM), sul1, and intI1, respectively), with relative concentrations surprisingly comparable to that in poultry and livestock that are occasionally fed antibiotics. Biomarkers for opportunistic pathogens were also abundant (up to 10(7) copies/g dry feces) and the dominant isolates (i.e., Enterococcus spp. and Pseudomonas aeruginosa) harbored both ARGs and virulence genes. ARGs in bird feces followed first-order attenuation with half-lives ranging from 1.3 to 11.1 days in impacted soil. Although residual antibiotics were detected in the feces, no significant correlation was observed between fecal antibiotic concentrations and ARG relative abundance. Thus, other unaccounted factors likely contributed selective pressure for ARG maintenance. These findings highlight the contribution of wild urban bird feces to the maintenance and dissemination of ARGs, and the associated health risks.202032663725
5365190.9998Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Drinking water distribution systems (DWDSs) represent an ideal environment for biofilm formation, which can harbor pathogenic and antimicrobial-resistant bacteria. This study aimed to assess longitudinally the microbial community composition and antimicrobial resistance (AMR), as determined by 16S rRNA NGS and qPCR, respectively, in drinking water (DW) and biofilm from DWDSs, as well as faeces, of free-range organic broiler farms. The role of DWDSs in AMR gene (ARG) dissemination within the farm environment and transmission to animals, was also assessed. DW and biofilm microbial communities differed from those of faecal samples. Moreover, potentially pathogenic and opportunistic bacteria (e.g., Staphylococcaceae) were identified in water and biofilms. High prevalence and abundance of ARGs conferring resistance to carbapenems (i.e., bla(NDM)), 3rd and 4th generation cephalosporins (i.e., bla(CMY-2)), (fluoro)quinolones (i.e., qnrS), and polymyxins (i.e., mcr-3 and mcr-5) were detected in DW, biofilm, and faecal samples, which is of concern for both animal and human health. Although other factors (e.g., feed, pests, and wildlife) may contribute to the dissemination of AMR in free-range organic poultry farms, this study indicates that DWDSs can also play a role.202439334983