Quantification of vancomycin-resistant enterococci and corresponding resistance genes in a sewage treatment plant. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
533501.0000Quantification of vancomycin-resistant enterococci and corresponding resistance genes in a sewage treatment plant. This study aimed to analyze vancomycin-resistant enterococci (VRE) and their resistance genes, vanA and vanB, to examine their presence in sewage treatment systems. Water samples were collected from primary sedimentation tank inlet, aeration tank, final sedimentation tank overflow outlet, and disinfection tank. Enterococcal strains were determined their vancomycin susceptibility by the minimum inhibitory concentration (MIC) test. Vancomycin-resistance genes (vanA and vanB) were quantified by real-time PCR. The sewage treatment process indeed decreased the number of most enterococci contained in the entering sewage, with a removal rate of ≥ 5 log. The MIC test showed that two enterococcal strains resistant to a high concentration of vancomycin (>128 μg mL(-1)). However, most of the enterococcal strains exhibited sensitivity to vancomycin, indicating that VRE were virtually absent in the sewage treatment systems. On the other hand, vancomycin-resistance genes were detected in all the sewage samples, including those collected from the chlorination disinfection tank. The highest copy numbers of vanA (1.5 × 10(3) copies mL(-1)) and vanB (1.0 × 10(3) copies mL(-1)) were detected from the water sample of effluent water and chlorinated water, respectively. Therefore, antibiotic resistance genes remain in the sewage treatment plant and might discharged into water environments such as rivers and coastal areas.201526121014
533610.9999Resistant Genes and Multidrug-Resistant Bacteria in Wastewater: A Study of Their Transfer to the Water Reservoir in the Czech Republic. Wastewater is considered the most serious source of the spread of antibiotic resistance in the environment. This work, therefore, focuses on the fate and spread of antibiotic resistance genes (ARGs) in wastewater and the monitoring of multidrug-resistant strains. ARGs were monitored in the nitrification and sedimentation tanks of the wastewater treatment plant (WWTP) and in the dam into which this WWTP flows, at various times. The highest relative abundance was found for the blaTEM > tetW > blaNDM-1 > vanA resistance genes, respectively. An increased concentration of tetracycline (up to 96.00 ng/L) and ampicillin (up to 19.00 ng/L) was found in water samples compared to other antibiotics detected. The increased incidence of seven ARGs and four antibiotics was observed in the November and December sampling times. Isolated ampicillin-resistant strains showed a high degree of resistance to ampicillin (61.2% of the total isolates had a minimum inhibitory concentration (MIC) ≥ 20 mg/mL). In 87.8% of isolates, out of the total number, the occurrence of two or more ARGs was confirmed. These multidrug-resistant strains were most often identified as Aeromonas sp. This strain could represent a significant role in the spread of multidrug resistance through wastewater in the environment.202235207435
530620.9998Occurrence of tetracycline-resistant fecal coliforms and their resistance genes in an urban river impacted by municipal wastewater treatment plant discharges. Antibiotic resistance of fecal coliforms in an urban river poses great threats to both human health and the environment. To investigate the occurrence and distribution of antibiotic resistant bacteria in an urban river, water samples were collected from the Chanhe River in Xi'an, China. After membrane filtration of water samples, the tetracycline resistance rate of fecal coliforms and their resistance genes were detected by plating and polymerase chain reaction (PCR), respectively. We found that fecal coliforms were generally resistant to tetracycline and saw average resistance rates of 44.7%. The genes tetA and tetB were widely detected, and their positive rate was 60%-100% and 40%-90%, respectively. We found few strains containing tetC, tetK, tetQ and tetX, and we did not identify any strains containing tetG, tetM or tetO. The prevalence of tetA and tetB over other genes indicated that the main mechanism for resistance to tetracycline is by changes to the efflux pump. Our analysis of the types and proportion of tetracycline resistance genes in the Chanhe River at locations upstream and downstream of the urban center suggests that the increased number of tetracycline-resistant fecal coliforms and spatial variation of tetracycline resistance genes diversity were related to municipal wastewater treatment plant discharge.201525901852
533430.9998Monitoring and comparison of antibiotic resistant bacteria and their resistance genes in municipal and hospital wastewaters. BACKGROUND: Human exposure to antibiotic resistant bacteria (ARB) is a public health concern which could occur in a number of ways. Wastewaters seem to play an important role in the dissemination of bacteria and antibiotic resistant genes (ARGs) in our environment. The aim of this study was to evaluate the occurrence of three groups of ARB and their resistance genes in hospital and municipal wastewaters (MWs) as possible sources. METHODS: A total of 66 samples were collected from raw MWs and hospital wastewaters (HWs) and final effluents of related wastewater treatment plants (WWTPs). Samples were analyzed for the detection of three groups of ARB including gentamicin (GM), chloramphenicol (CHL) and ceftazidime resistant bacteria and their ARGs (aac (3)-1, cmlA1 and ctx-m-32, respectively). RESULTS: The mean concentration of GM, CHL and ceftazidime resistant bacteria in raw wastewater samples was 1.24 × 10(7), 3.29 × 10(7) and 5.54 × 10(7) colony forming unit/100 ml, respectively. There is a variation in prevalence of different groups of ARB in MWs and HWs. All WWTPs decreased the concentration of ARB. However, high concentration of ARB was found in the final effluent of WWTPs. Similar to ARB, different groups of ARGs were found frequently in both MWs and HWs. All genes also detected with a relative high frequency in effluent samples of MWs WWTPs. CONCLUSIONS: Discharge of final effluent from conventional WWTPs is a potential route for dissemination of ARB and ARGs into the natural environment and poses a hazard to environmental and public health.201425105001
777640.9998Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Antibiotic resistance in wastewater is becoming a major public health concern, but poorly understood about impact of disinfection on antibiotic resistant bacteria and antibiotic resistance genes. The UV disinfection of antibiotic resistant heterotrophic bacteria and their relevant genes in the wastewater of a municipal wastewater treatment plant has been evaluated. Two commonly used antibiotics, erythromycin and tetracycline were selected because of their wide occurrences in regard to the antibiotic resistance problem. After UV treatment at a fluence of 5mJcm(-2), the log reductions of heterotrophic bacteria resistant to erythromycin and tetracycline in the wastewater were found to be 1.4±0.1 and 1.1±0.1, respectively. The proportion of tetracycline-resistant bacteria (5%) was nearly double of that before UV disinfection (3%). Tetracycline-resistant bacteria exhibited more tolerance to UV irradiation compared to the erythromycin-resistant bacteria (p<0.05). Gene copy numbers were quantified via qPCR and normalized to the volume of original sample. The total concentrations of erythromycin- and tetracycline-resistance genes were (3.6±0.2)×10(5) and (2.5±0.1)×10(5) copies L(-1), respectively. UV treatment at a fluence of 5mJcm(-2) removed the total erythromycin- and tetracycline-resistance genes by 3.0±0.1 log and 1.9±0.1 log, respectively. UV treatment was effective in reducing antibiotic resistance in the wastewater.201324055024
337950.9998Comprehensive Study of Antibiotic Resistance in Enterococcus spp.: Comparison of Influents and Effluents of Wastewater Treatment Plants. Background/Objectives: The spread of antibiotic resistance, particularly through Enterococcus spp., in wastewater treatment plants (WWTPs) poses significant public health risks. Given that research on antibiotic-resistant enterococci and their antibiotic-resistance genes in aquatic environments is limited, we evaluated the role of Enterococcus spp. in WWTPs by comparing the antibiotic resistance rates, gene prevalence, biofilm formation, and residual antibiotics in the influent and effluent using culture-based methods. Methods: In 2022, influent and effluent samples were collected from 11 WWTPs in South Korea. Overall, 804 Enterococcus strains were isolated, and their resistance to 16 antibiotics was assessed using the microdilution method. Results: High resistance to tetracycline, ciprofloxacin, kanamycin, and erythromycin was observed. However, no significant differences in the overall resistance rates and biofilm formation were observed between the influent and effluent. Rates of resistance to ampicillin, ciprofloxacin, and gentamicin, as well as the prevalence of the tetM and qnrS genes, increased in the effluent, whereas resistance rates to chloramphenicol, florfenicol, erythromycin, and tylosin tartrate, along with the prevalence of the optrA gene, decreased. E. faecium, E. hirae, and E. faecalis were the dominant species, with E. faecalis exhibiting the highest resistance. Conclusions: Our results suggest that WWTPs do not effectively reduce the rates of resistant Enterococcus spp., indicating the need for continuous monitoring and improvement of the treatment process to mitigate the environmental release of antibiotic-resistant bacteria.202439596765
777460.9998Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P < 0.05), there was no significant correlation between antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P < 0.05). Tet (A) and tet (B) displayed noticeable relationships with both tetracycline and combined antibiotic-resistant bacteria (P < 0.01).201525323405
308970.9998Distribution characteristics of antibiotic resistance bacteria and related genes in urban recreational lakes replenished by different supplementary water source. The distribution characteristics of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in urban recreational water from different water-supply sources might be different. In this study, water samples were collected to detect the antibiotic resistance of heterotrophic bacteria to five antibiotics, and the content, phenotype, gene type and species distribution of resistant bacteria were analyzed. The results showed that the changes of bacteria resistance rate in two lakes to five kinds of antibiotics were synchronous with time, and it would reach its maximum in autumn. The detection of ARGs and int I in 80 resistance strains showed that the detection rate of tetG, tetA and int I was high. Here, 51.25% of the bacteria were doubly resistant to AMP-CTX. The 80 isolate strains were of nine genera and 19 species, among which Bacillus cereus, Escherichia coli, Aeromonas veronii, Aeromonas caviae and Raoultella ornithinolytica were the common ARB species in two lakes. Correlation analysis showed that the water temperature was significantly correlated with the content of ARB in sulfamethoxazole (SMZ) and cefotaxime (CTX) (p < 0.05), and the total phosphorus (TP) in FQ lake was significantly correlated with the content of AMP-resistant bacteria (p < 0.05), while there were no other correlations between the changes of other water quality indexes and the content of ARB (p > 0.05).202235228362
532680.9998The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects. Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (bla (SHV-1), bla (TEM-1), msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC(90) values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance.202439816252
530790.9998Increased Antimicrobial and Multidrug Resistance Downstream of Wastewater Treatment Plants in an Urban Watershed. Development and spread of antimicrobial resistance (AMR) and multidrug resistance (MDR) through propagation of antibiotic resistance genes (ARG) in various environments is a global emerging public health concern. The role of wastewater treatment plants (WWTPs) as hot spots for the dissemination of AMR and MDR has been widely pointed out by the scientific community. In this study, we collected surface water samples from sites upstream and downstream of two WWTP discharge points in an urban watershed in the Bryan-College Station (BCS), Texas area, over a period of nine months. E. coli isolates were tested for resistance to ampicillin, tetracycline, sulfamethoxazole, ciprofloxacin, cephalothin, cefoperazone, gentamycin, and imipenem using the Kirby-Bauer disc diffusion method. Antimicrobial resistant heterotrophic bacteria were cultured on R2A media amended with ampicillin, ciprofloxacin, tetracycline, and sulfamethoxazole for analyzing heterotrophic bacteria capable of growth on antibiotic-containing media. In addition, quantitative real-time polymerase chain reaction (qPCR) method was used to measure eight ARG - tetA, tetW, aacA, ampC, mecA, ermA, blaTEM, and intI1 in the surface water collected at each time point. Significant associations (p < 0.05) were observed between the locations of sampling sites relative to WWTP discharge points and the rate of E. coli isolate resistance to tetracycline, ampicillin, cefoperazone, ciprofloxacin, and sulfamethoxazole together with an increased rate of isolate MDR. The abundance of antibiotic-resistant heterotrophs was significantly greater (p < 0.05) downstream of WWTPs compared to upstream locations for all tested antibiotics. Consistent with the results from the culture-based methods, the concentrations of all ARG were substantially higher in the downstream sites compared to the upstream sites, particularly in the site immediately downstream of the WWTP effluent discharges (except mecA). In addition, the Class I integron (intI1) genes were detected in high amounts at all sites and all sampling points, and were about ∼20 times higher in the downstream sites (2.5 × 10(7) copies/100 mL surface water) compared to the upstream sites (1.2 × 10(6) copies/100 mL surface water). Results suggest that the treated WWTP effluent discharges into surface waters can potentially contribute to the occurrence and prevalence of AMR in urban watersheds. In addition to detecting increased ARG in the downstream sites by qPCR, findings from this study also report an increase in viable AMR (HPC) and MDR (E. coli) in these sites. This data will benefit establishment of improved environmental regulations and practices to help manage AMR/MDR and ARG discharges into the environment, and to develop mitigation strategies and effective treatment of wastewater.202134108949
3088100.9998Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. The occurrence of sulfonamide and tetracycline resistance and their pollution profile in the aquaculture environment of Tianjin, northern China, were investigated. The presence of antibiotic-resistant bacteria was identified and the corresponding antibiotic resistance genes (ARGs) were quantified at 6 aquaculture farms in Tianjin. Sulfonamide-resistance genes were prevalent and their concentrations were the highest detected (3.0 × 10(-5) to 3.3 × 10(-4) for sul1/16S rDNA, 2.0 × 10(-4) to 1.8 × 10(-3) for sul2/16S rDNA) among the various ARGs, most likely because the use of sulfonamides is more prevalent than tetracyclines in this area. Bacillus was the most dominant bacterial genus in both sulfamethoxazole resistant bacteria (63.27% of the total resistant bacteria) and tetracycline-resistant bacteria (57.14% of the total resistant bacteria). At least two of those genes (tetM, tetO, tetT, tetW, sul1 and sul2) were detected in the isolates of Bacillus cereus, Bacillus subtilis, Bacillus megaterium and Acinetobacter lwofii, and all of the above genes were detected in B. cereus, suggesting the occurrence of multi-resistance in the studied area. The genetic transfer of sul1 between intestinal bacteria (e.g., Enterococcus spp.) and indigenous bacteria (e.g., Bacillus spp.) was implied by phylogenetic analysis. Several strains of resistant opportunistic pathogens (e.g., Acinetobacter spp.) were found in indigenous bacteria, which increase the risk of ARGs to public health. Overall, this is the first study to comprehensively investigate the antibiotic resistance profile by analyzing the species of antibiotic-resistant bacteria and adopting qualitative and quantitative methods to investigate ARGs at a typical aquaculture area in northern China.201222377146
3125110.9998Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland. A method for direct detection of antibiotic resistance genes in soil samples has been developed. The tetracycline resistance gene, tet(M), was used as a model. The method was validated on Danish farmland soil that had repeatedly been treated with pig manure slurry containing resistant bacteria. The tet(M) gene was directly detected in 10-80% of the samples from the various farmland soils and could be detected in all samples tested after selective enrichment. To validate the obtained results, the method was applied to garden soil samples where lower prevalence of resistance was found. RESULT: A detection limit of 10(2)-10(3) copies of the tet(M) gene per gram of soil (in a Bacillus cereus group bacterium) was achieved. tet(M) gene was detected in soil samples with the highest prevalence on farmland treated with pig manure slurry.200414664871
5317120.9998Effect of anaerobic digestion on pathogens and antimicrobial resistance in the sewage sludge. Antimicrobial resistance (AMR) is recognized as a global threat. AMR bacteria accumulate in sewage sludge however, knowledge on the persistence of human pathogens and AMR in the sludge line of the wastewater treatment is limited. Sludge can be used, with or without additional treatment, as fertilizer in agricultural fields. The aim of this study is to obtain knowledge about presence of human pathogens and AMR in the sewage sludge, before and after the anaerobic digestion (AD) applying innovative combinations of methods. Fifty sludge samples were collected. Cultivation methods combined with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and Antibiotic Susceptibility Test (AST) were used obtaining knowledge about the microbial community, pathogens, and antibiotic resistant bacteria while the droplet digital Polymerase Chain Reaction (ddPCR) was performed to detect most common AMR genes. In total, 231 different bacterial species were identified in the samples. The most abundant species were spore-forming facultative anaerobic bacteria belonging to Bacillus and Clostridium genera. The AD causes a shift in the microbial composition of the sludge (p = 0.04). Seven pathogenic bacterial species constituting 188 colonies were isolated and tested for susceptibility to Clindamycin, Meropenem, Norfloxacin, Penicillin G, and Tigecycline. Of the Clostridium perfringens and Bacillus cereus isolates 67 and 50 %, respectively, were resistant to Clindamycin. Two B. cereus and two C. perfringens isolates were also resistant to other antibiotics showing multidrug resistance. ARGs (bla(OXA), bla(TEM), ermB, qnrB, tet(A)-(W), sulI-II) were present at 7-8 Log gene copies/kg of sludge. AD is the main driver of a reduction of some ARGs (1 Log) but resistant bacteria were still present. The results showed the usefulness of the integration of the proposed analytical methods and suggest a decrease in the risk of presence of cultivable pathogens including resistant isolates after AD but a persistent risk of ARGs' horizontal transmission.202439244956
5315130.9998Presence of antibiotic resistance genes and its association with antibiotic occurrence in Dilúvio River in southern Brazil. It is known that antibiotics are widely used in human and veterinary medicine. In some countries the use is controlled, however few restrictions to their use are enforced in many countries. Antibiotics and their metabolites can reach the water bodies through sewage systems, especially in those countries with partial or absent wastewater treatment systems. The overuse and misuse of antibiotics has been linked with the increase of antibiotic resistant bacteria. The relation between the occurrence of antibiotics and resistance genes in surface waters has been widely studied worldwide evincing the great importance of this subject. In this work, a methodology for quantification of 40 antibiotics of 5 different classes, in river water, by SPE-LC-MS/MS was validated. Samples were taken during a two-year period from Dilúvio River, a stream that crosses the city of Porto Alegre (RS - Brazil) and receives in nature domestic effluent. The methodology met the requirements of validation, with Limit of Quantification varying from 20 ng L(-1) to 100 ng L(-1). A total of 48 samples was analyzed for the presence of antibiotics for two years. From the 40 antibiotics analyzed, 8 of them (Azithromycin, Cephalexin, ciprofloxacin, clindamycin, norfloxacin, sulfadiazine, sulfamethoxazole and trimethoprim) were present in all sampling points in the range of 202032526421
5310140.9998Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste. This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences and concentrations of antimicrobial-resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in livestock environments.201526197056
5342150.9998Prevalence of antibiotic resistance genes in drinking and environmental water sources of the Kathmandu Valley, Nepal. Antibiotic-resistant bacteria-associated infections are responsible for more than 1.2 million annual deaths worldwide. In low- and middle-income countries (LMICs), the consumption of antibiotics for human and veterinary uses is not regulated effectively. Overused and misused antibiotics can end up in aquatic environments, which may act as a conduit for antibiotic resistance dissemination. However, data on the prevalence of antibiotic resistance determinants in aquatic environments are still limited for LMICs. In this study, we evaluated the prevalence and concentration of antibiotic resistance genes (ARGs) in different drinking and environmental water sources collected from the Kathmandu Valley, Nepal, using droplet digital polymerase chain reaction to understand the current situation of ARG contamination. River water and shallow dug well water sources were the most contaminated with ARGs. Almost all samples contained sul1 (94%), and intI1 and tet(A) were detected in 83 and 60% of the samples, respectively. Maximum ARG concentration varied between 4.2 log(10) copies/100 ml for mecA and 9.3 log(10) copies/100 ml for sul1. Significant positive correlations were found between ARGs (r > 0.5, p < 0.01), except for mecA, qnrS, and vanA. As sul1 and intI1 were detected in almost all samples, the presence of these genes in a given sample may need to be considered as background antibiotic resistance in LMICs. Therefore, monitoring of ARGs, such as β-lactam ARGs, quinolone resistance genes, and vancomycin resistance genes, may provide a better picture of the antibiotic resistance determinants in aquatic environments of LMICs.202236071971
5323160.9998Monitoring and assessing the impact of wastewater treatment on release of both antibiotic-resistant bacteria and their typical genes in a Chinese municipal wastewater treatment plant. Wastewater treatment plants (WWTPs) are important hotspots for the spread of antibiotic resistance. However, the release and impact factors of both antibiotic resistant bacteria and the relevant genes over long periods in WWTPs have rarely been investigated. In this study, the fate of bacteria and genes resistant to six commonly used antibiotics was assessed over a whole year. In WWTP effluent and biosolids, a high prevalence of heterotrophic bacteria resistant to vancomycin, cephalexin, sulfadiazine and erythromycin were detected, each with a proportion of over 30%. The corresponding genes (vanA, ampC, sulI and ereA) were all detected in proportions of (2.2 ± 0.8) × 10(-10), (6.2 ± 3.2) × 10(-9), (1.2 ± 0.8) × 10(-7) and (7.6 ± 4.8) × 10(-8), respectively, in the effluent. The sampling season imposed considerable influence on the release of all ARB. High release loads of most ARB were detected in the spring, while low release loads were generally found in the winter. In comparison, the ARG loads changed only slightly over various seasons. No statistical relevance was found between all ARB abundances and their corresponding genes over the long-term investigation period. This inconsistent behavior indicates that bacteria and genes should both be considered when exploring resistance characteristics in wastewater. A redundancy analysis was adopted to assess the impact of wastewater quality and operational conditions on antibiotic resistance. The results indicated that most ARB and ARG proportions were positively related to the COD and turbidity of the raw sewage, while negatively related to those of the effluent. DO and temperature exhibited strong negative relevance to most ARB prevalence.201424927359
2869170.9998Antibiotic resistance and antibiotic-resistance genes of Pseudomonas spp. and Escherichia coli isolated from untreated hospital wastewater. Hospitals are considered an important factor in the spread of antibiotic-resistant bacteria (ARBs) and antibiotic-resistance genes (ARGs). The purpose of this research was to characterize the microbial populations in hospital wastewater and investigated the prevalence of β-lactamase, SulІ and QnrS resistance genes. In the first step, culture method was used to isolate Pseudomonas aeruginosa and Escherichia coli. In the next step, accurate identification of isolated bacteria was carried out using the polymerase chain reaction (PCR) method, then the resistance of the bacteria at different concentrations of antibiotics (8-128 μg/mL) was examined. Finally the ARGs were detected using the PCR method. The averages of heterotrophic plate count (HPC) and ARB concentration in wastewater samples were 1.8 × 10(8) and 4.3 × 10(6) CFU/100 mL, respectively. The highest resistance rates were found for sulfamethoxazole and the highest resistance rates in the β-lactamase group were for ceftazidime, while highest sensitivity was for gentamicin and there was no isolate that was sensitive to the studied antibiotics. SulІ and QnrS were the highest and lowest abundance of all ARGs in samples respectively and blaSHV was the highest β-lactam resistance gene. Our results indicated an increase in the resistance of identified bacteria to several antibiotics. So it can be concluded that numerous antibiotic-resistant pathogens and vast numbers of ARGs exist in the human body so that their release from hospitals without effective treatment can cause many dangers to the environment and human health.202134280162
7777180.9998Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs.201525950407
7778190.9998Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Municipal wastewater treatment plant (WWTP) effluents represent an important contamination source of antibiotic resistance, threatening the ecological safety of receiving environments. In this study, the release of antibiotic resistance to sulfonamides and tetracyclines in the effluents of ten WWTPs in China was investigated. Results indicate that the concentrations of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) ranged from 1.1 × 10(1) to 8.9 × 10(3) CFU mL(-1) and 3.6 × 10(1) (tetW) to 5.4 × 10(6) (tetX) copies mL(-1), respectively. There were insignificant correlations of the concentrations of ARB and ARGs with those of corresponding antibiotics. Strong correlations were observed between the total concentrations of tetracycline resistance genes and sulfonamide resistance genes, and both of which were significantly correlated with intI1 concentrations. Statistical analysis of the effluent ARG concentrations in different WWTPs revealed an important role of disinfection in eliminating antibiotic resistance. The release rates of ARB and ARGs through the effluents of ten WWTPs ranged from 5.9 × 10(12) to 4.8 × 10(15) CFU d(-1) and 6.4 × 10(12) (tetW) to 1.7 × 10(18) (sul1) copies d(-1), respectively. This study helps the effective assessment and scientific management of ecological risks induced by antibiotic resistance discharged from WWTPs.201728088530